⑴ 初一數學證明題怎麼寫。快期末了。急死了。幫幫忙。!!!
數學證明題其實並不難啊!首先可以模仿老師課堂上講例子用的格式啊!一般老師講解例題時,格式都會很規范的!其次就模仿書本上裡面的例題的格式啊,書本裡面的格式都是最標準的!一般考試都不會超出考綱的,模仿例題,用後面的習題試試,學會了,問題一般就不大了。
⑵ 初中數學證明的格式
證:∵【從題目已知條件找】(已知)
∴【從上一步推結論】(定理)
……(寫上你所找的已知條件然後推出結論進行證明,最好「∴」後面都標上所根據的定理)
∴【需要證明的成立】
⑶ 數學證明號怎麼寫
一般中國的考試都寫「證明」。考綱中,沒有說寫Pr要扣分。但有格式不規范要扣分的規則。
在求證過程中,因為和所以的符號分別為∵、 ∴。
數學證明:在數學上,證明是在一個特定的公理系統中,根據一定的規則或標准,由公理和定理推導出某些命題的過程。比起證據,數學證明一般依靠演繹推理,而不是依靠自然歸納和經驗性的理據。這樣推導出來的命題也叫做該系統中的定理。
⑷ 初中數學 如何寫證明
∵·····
∴·····
∵是因為,∴是所以。
證全等時,先寫:在△···和△···中,(字母要對應)
∵{··=··
··=··
··=··
∴△···≡△···(理由)
最後作圖題別忘了寫結論!
(· 是字或字母)
⑸ 初中數學證明題解題格式
證明三角形全等就是初中證明題的其中一個部分。步驟有三步。
1、通讀這個話題中的題目, 熟悉問什麼的問題,然後拿著問題去看圖形, 隨便把已知的條件放在圖表裡,一目瞭然 。
(5)數學寫證明怎麼寫擴展閱讀
初中數學證明題解題格式:牢記幾何語言
首先,從幾何第一課起,就應該特別注意幾何語言的規范性,理解並掌握一些規范性的幾何語句。如:「延長線段AB到點C,使AC=2AB」,「過點C作CD⊥AB,垂足為點D」,「過點A作l‖CD」等,每一句通過上課的教學,課後的輔導,手把手的作圖,表達幾何語言;表達幾何語言後作圖,反復多次,讓學生理解每一句話,看得懂題意。
其次,要注意對幾何語言的理解,幾何語言表達要確切。例如:鈍角的意義是「大於直角而小於平角的叫鈍角」,「大於直角或小於平角的角叫鈍角」,把「而」字說成了「或」字,這就是學習對幾何語言理解不佳,造成的表達不確切。
「一字之差」意思各異,在輔導時,注重語言的准確性,對其犯的錯誤反復更正,做到學習之初要嚴謹。
⑹ 數學證明步驟怎樣的
證明一個命題,一般步驟如下:
(1)按照題意畫出圖形;
(2)分清命題的條件的結論,結合徒刑,在「已知」一項中寫出題設,在「求證」一項中寫出結論;
(3)在「證明」一項中,寫出全部推理過程。
⑺ 關於數學證明題怎麼寫
證明題必須寫「證明」或「證」,對某一結論可寫(1),當在使用時可寫「由(1)」
沒有什麼好用的符號,一定要把前後邏輯關系寫清楚!!
我在做任務,滿意請採納
⑻ 數學的幾何證明題該怎麼寫。怎麼學好。
幾何證明題入門難,證明題難做,是許多學生在學習中的共識,這裡面有很多因素,有主觀的、也有客觀的,學習不得法,沒有適當的解題思路則是其中的一個重要原因。掌握證明題的一般思路、探討證題過程中的數學思維、總結證題的基本規律是求解幾何證明題的關鍵。在這里結合自己的教學經驗,談談自己的一些方法與大家一起分享。
一要審題。很多學生在把一個題目讀完後,還沒有弄清楚題目講的是什麼意思,題目讓你求證的是什麼都不知道,這非常不可取。我們應該逐個條件的讀,給的條件有什麼用,在腦海中打個問號,再對應圖形來對號入座,結論從什麼地方入手去尋找,也在圖中找到位置。
二要記。這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
三要引申。難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那麼這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然後在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便於以後難題的學習。
四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結論出發往回推理。看看結論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.餘角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。然後結合題意選出其中的一種方法,然後再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現,這時再把這些條件綜合在一起,很條理的寫出證明過程。
五要歸納總結。很多同學把一個題做出來,長長的鬆了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鍾的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往後出現同樣類型的題該怎樣入手。
以上是常見證明題的解題思路,當然有一些的題設計的很巧妙,往往需要我們在填加輔助線,
分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯,數學這門學科知識點很少,關鍵是怎樣運用,對於初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現在開始,總結做題方法。同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。例如:可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
⑼ 證明題過程怎麼寫我做數學題時經常在過程
1.弄清題意
如何弄清題意呢?根據命題的定義可知,命題由條件與結論兩部分組成,因此區分命題的條件與結論至關重要,是解題成敗的關鍵.命題可以改寫成「如果………..,那麼……….」的形式,其中「如果………..」就是命題的條件,「那麼…….」就是命題的結論
2、根據題意,畫出圖形.
圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合.並且把題中已知的條件,能標在圖形上的盡量標在圖形上.
3.根據題意與圖形,用數學的語言與符號寫出已知和求證.
眾所周知,命題的條件---已知,命題的結論---求證,但要特別注意的是,已知、求證必須用數學的語言和符號來表示.
4.分析已知、求證與圖形,探索證明的思路.
對於證明題,有三種思考方式:
(1)正向思維.對於一般簡單的題目,我們正向思考.
(2)逆向思維.運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路.
(3)正逆結合.對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路.
5.根據證明的思路,用數學的語言與符號寫出證明的過程
證明過程的書寫,其實就是把證明的思路從腦袋中搬到紙張上.對數學符號與數學語言的應用要求較高,在講解時,要提醒學生任何的「因為、所以」,在書寫是都要符合公理、定理、推論或以已知條件相吻合,不能無中生有、胡說八道,要有根有據!
6.檢查證明的過程,看看是否合理、正確
任何正確的步驟,都有相應的合理性和與之相應證的公理、定理、推論,證明過程書寫完畢後,對證明過程的每一步進行檢查,是非常重要的,是防止證明過程出現遺漏的關鍵.最後,同學們在平時練習中要敢於嘗試,多分析,多總結.才能做到熟能生巧!
⑽ 證明題,怎麼寫
1. 弄清題意
如何弄清題意呢?根據命題的定義可知,命題由條件與結論兩部分組成,因此區分命題的條件與結論至關重要,是解題成敗的關鍵。命題可以改寫成「如果………..,那麼……….」的形式,其中「如果………..」就是命題的條件,「那麼…….」就是命題的結論
2、根據題意,畫出圖形。
圖形對解決證明題,能起到直觀形象的提示,所以畫圖因盡量與題意相符合。並且把題中已知的條件,能標在圖形上的盡量標在圖形上。
3. 根據題意與圖形,用數學的語言與符號寫出已知和求證。
眾所周知,命題的條件---已知,命題的結論---求證,但要特別注意的是,已知、求證必須用數學的語言和符號來表示。
4. 分析已知、求證與圖形,探索證明的思路。
對於證明題,有三種思考方式:
(1)正向思維。對於一般簡單的題目,我們正向思考。
(2)逆向思維。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。
(3)正逆結合。對於從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路。
5. 根據證明的思路,用數學的語言與符號寫出證明的過程
證明過程的書寫,其實就是把證明的思路從腦袋中搬到紙張上。這個過程,對數學符號與數學語言的應用要求較高,在講解時,要提醒學生任何的「因為、所以」,在書寫是都要符合公理、定理、推論或以已知條件相吻合,不能無中生有、胡說八道,要有根有據!
6. 檢查證明的過程,看看是否合理、正確
任何正確的步驟,都有相應的合理性和與之相應證的公理、定理、推論,證明過程書寫完畢後,對證明過程的每一步進行檢查,是非常重要的,是防止證明過程出現遺漏的關鍵。最後,同學們在平時練習中要敢於嘗試,多分析,多總結。才能做到熟能生巧!