導航:首頁 > 數字科學 > 數學廣義化是什麼意思

數學廣義化是什麼意思

發布時間:2022-08-23 23:12:10

1. 數學是什麼意思

數學

數學(mathematics或maths),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。

而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。


數學分支

1:數學史

2:數理邏輯與數學基礎

X軸Y軸(4張)

a:演繹邏輯學(亦稱符號邏輯學)b:證明論 (亦稱元數學) c:遞歸論 d:模型論 e:公理集合論 f:數學基礎 g:數理邏輯與數學基礎其他學科
3:數論
a:初等數論 b:解析數論 c:代數數論 d:超越數論 e:丟番圖逼近 f:數的幾何 g:概率數論 h:計算數論 i:數論其他學科
4:代數學
a:線性代數 b:群論 c:域論 d:李群 e:李代數 f:Kac-Moody代數 g:環論 (包括交換環與交換代數,結合環與結合代數,非結合環與非結 合代數等) h:模論 i:格論 j:泛代數理論 k:范疇論 l:同調代數 m:代數K理論 n:微分代數 o:代數編碼理論 p:代數學其他學科
5:代數幾何學
6:幾何學
a:幾何學基礎 b:歐氏幾何學 c:非歐幾何學 (包括黎曼幾何學等) d:球面幾何學 e:向量和張量分析 f:仿射幾何學 g:射影幾何學 h:微分幾何學 i:分數維幾何 j:計算幾何學 k:幾何學其他學科

7:拓撲學
a:點集拓撲學 b:代數拓撲學 c:同倫論 d:低維拓撲學 e:同調論 f:維數論 g:格上拓撲學 h:纖維叢論 i:幾何拓撲學 j:奇點理論 k:微分拓撲學 l:拓撲學其他學科
8:數學分析

a:微分學 b:積分學 c:級數論 d:數學分析其他學科
9:非標准分析
10:函數論
a:實變函數論 b:單復變函數論 c:多復變函數論 d:函數逼近論 e:調和分析 f:復流形 g:特殊函數論 h:函數論其他學科
11:常微分方程
a:定性理論 b:穩定性理論 c:解析理論 d:常微分方程其他學科
12:偏微分方程
a:橢圓型偏微分方程 b:雙曲型偏微分方程 c:拋物型偏微分方程 d:非線性偏微分方程 e:偏微分方程其他學科
13:動力系統
a:微分動力系統 b:拓撲動力系統 c:復動力系統 d:動力系統其他學科
14:積分方程
15:泛函分析
a:線性運算元理論 b:變分法 c:拓撲線性空間 d:希爾伯特空間 e:函數空間 f:巴拿赫空間 g:運算元代數 h:測度與積分 i:廣義函數論 j:非線性泛函分析 k:泛函分析其他學科
16:計算數學
a:插值法與逼近論b:常微分方程數值解 c:偏微分方程數值解 d:積分方程數值解 e:數值代數 f:連續問題離散化方法 g:隨機數值實驗 h:誤差分析 i:計算數學其他學科
17:概率論
a:幾何概率 b:概率分布 c:極限理論 d:隨機過程 (包括正態過程與平穩過程、點過程等) e:馬爾可夫過程 f:隨機分析 g:鞅論 h:應用概率論 (具體應用入有關學科) i:概率論其他學科
18:數理統計學
a:抽樣理論 (包括抽樣分布、抽樣調查等 )b:假設檢驗 c:非參數統計 d:方差分析 e:相關回歸分析 f:統計推斷 g:貝葉斯統計 (包括參數估計等) h:試驗設計 i:多元分析 j:統計判決理論 k:時間序列分析 l:數理統計學其他學科
19:應用統計數學
a:統計質量控制 b:可靠性數學 c:保險數學 d:統計模擬
20:應用統計數學其他學科
21:運籌學
a:線性規劃b:非線性規劃 c:動態規劃 d:組合最優化 e:參數規劃 f:整數規劃 g:隨機規劃 h:排隊論 i:對策論 亦稱博弈論 j:庫存論 k:決策論 l:搜索論 m:圖論 n:統籌論 o:最優化 p:運籌學其他學科
22:組合數學
23:模糊數學

24:量子數學

25:應用數學 (具體應用入有關學科)

26:數學其他學科

發展歷史

數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意.古希臘學者視其為哲學之起點,「學問的基礎」.另外,還有個較狹隘且技術性的意義——「數學研究」.即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的.

其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).

在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.

代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.

直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.

現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).[1]

數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用.

具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學).

就縱度而言,在數學各自領域上的探索亦越發深入.

圖中數字為國家二級學科編號.

結構

許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示.此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統.把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅理論解決了,它涉及到域論和群論.代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法.

空間

空間的研究源自於歐式幾何.三角學則結合了空間及數,且包含有非常著名的勾股定理、三角函數等。現今對空間的研究更推廣到了更高維的幾何、非歐幾何及拓撲學.數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色.在微分幾何中有著纖維叢及流形上的計算等概念.在代數幾何中有著如多項式方程的解集等幾何對象的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間.李群被用來研究空間、結構及變化.

基礎

旋轉曲面(8張)

主條目:數學基礎

為了弄清楚數學基礎,數學邏輯和集合論等領域被發展了出來.德國數學家康托爾(1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的思想,為以後的數學發展作出了不可估量的貢獻.

集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具.20世紀初,數學家希爾伯特在德國傳播了康托爾的思想,把集合論稱為「數學家的樂園」和「數學思想最驚人的產物」.英國哲學家羅素把康托的工作譽為「這個時代所能誇耀的最巨大的工作」

邏輯

主條目:數理邏輯

數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果.就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果.現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關聯性.

符號

主條目:數學符號

也許我國古代的算籌是世界上最早使用的符號之一,起源於商代的占卜.

我們現今所使用的大部分數學符號都是到了16世紀後才被發明出來的.在此之前,數學是用文字書寫出來,這是個會限制住數學發展的刻苦程序.現今的符號使得數學對於人們而言更便於操作,但初學者卻常對此感到怯步.它被極度的壓縮:少量的符號包含著大量的訊息.如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼.

嚴謹性

數學語言亦對初學者而言感到困難.如何使這些字有著比日常用語更精確的意思,亦困惱著初學者,如開放和域等字在數學里有著特別的意思.數學術語亦包括如同胚及可積性等專有名詞.但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性.數學家將此對語言及邏輯精確性的要求稱為「嚴謹」.

嚴謹是數學證明中很重要且基本的一部分.數學家希望他們的定理以系統化的推理依著公理被推論下去.這是為了避免依著不可靠的直觀,從而得出錯誤的「定理」或"證明",而這情形在歷史上曾出現過許多的例子.在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹.牛頓為了解決問題所作的定義,到了十九世紀才讓數學家用嚴謹的分析及正式的證明妥善處理.今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度.當大量的計算難以被驗證時,其證明亦很難說是有效地嚴謹.

數量

數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的有理和無理數.

另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:阿列夫數,它允許無限集合之間的大小可以做有意義的比較.

簡史

西方數學簡史

數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術.第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破.除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年.算術(加減乘除)也自然而然地產生了.

更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普.歷史上曾有過許多各異的記數系統.

古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算.數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的.這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究.

西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備.但尚未出現極限的概念.

17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換.在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明.隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發展.

中國數學簡史

主條目:中國數學史

數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合.

2. 什麼是廣義數學符號如何培養「符號感」

廣義的符號是指那些能夠被感知且彼此可區別的外界事物,它們依一定的規則對應到別的的事物。

培養學生的符號感,也要結合具體情境和在活動中進行。

首先在具體情境中抽象出數量關系和變化規律,並用符號表示。用自己獨特的方式表示具體情境中的數量關系和變化規律。引進用字母表示,是用符號表示數量關系和變化規律的基礎。用符號表示具體情境中的數量關系,也像普通語言一樣,首先要引進基本字母。在數學語言中,像數字以及表示數字的字母,表示點的字母,運算符號,關系符號等,都是用數學語言刻畫各種現實問題的基礎。

3. 數學是什麼

我國古奇普,印加帝國時所使用的計數工具。數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικ�0�2�0�9(mathematikós)意思是「學問的基礎」,源於μ�0�4θημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
歷史奇普,印加帝國時所使用的計數工具。數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικ�0�2�0�9(mathematikós)意思是「學問的基礎」,源於μ�0�4θημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使所有的人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」分支1.算術
2.初等代數
3.高等代數
4. 數論
5.歐式幾何
6.非歐式幾何
7.解析幾何
8.微分幾何
9.代數幾何
10.射影幾何學
11.拓撲幾何學
12.拓撲學
13.分形幾何
14.微積分學
15. 實變函數論
16.概率和數量統計
17.復變函數論
18.泛函分析
19.偏微分方程
20.常微分方程
21.數理邏輯
22.模糊數學
23.運籌學
24.計算數學
25.突變理論
26.數學物理學 27.計算方法詳細請見詞條:數學分支符號、語言與嚴謹在現代的符號中,簡單的表示式可能描繪出復雜的概念。此一圖像即是由一簡單方程所產生的。
我們現今所使用的大部份數學符號都是到了16世紀後才被發明出來了。在此之前,數學被以文字書寫出來,這是個會限制住數學發展的刻苦程序。現今的符號使得數學對於專家而言更容易去控作,但初學者卻常對此感到怯步。它被極度的壓縮:少量的符號包含著大量的訊息。如同音樂符號一般,現今的數學符號有明確的語法和難以以其他方法書寫的訊息編碼。
數學語言亦對初學者而言感到困難。如何使這些字有著比日常用語更精確的意思。亦困惱著初學者,如開放和域等字在數學里有著特別的意思。數學術語亦包括如同胚及可積性等專有名詞。但使用這些特別符號和專有術語是有其原因的:數學需要比日常用語更多的精確性。數學家將此對語言及邏輯精確性的要求稱為「嚴謹」。
嚴謹是數學證明中很重要且基本的一部份。數學家希望他們的定理以系統化的推理依著公理被推論下去。這是為了避免錯誤的「定理」,依著不可靠的直觀,而這情形在歷史上曾出現過許多的例子。在數學中被期許的嚴謹程度因著時間而不同:希臘人期許著仔細的論點,但在牛頓的時代,所使用的方法則較不嚴謹。牛頓為了解決問題所做的定義到了十九世紀才重新以小心的分析及正式的證明來處理。今日,數學家們則持續地在爭論電腦輔助證明的嚴謹度。當大量的計量難以被驗證時,其證明亦很難說是有效地嚴謹。各領域早期的數學完全著重在演算實際運算的需要上,有如反映在中國算盤上的一般。如同上面所述一般,數學主要的學科首要產生於商業上計算的需要、了解數字間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的子領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。
數量
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。數論還包括兩個被廣為探討的未解問題:孿生素數猜想及哥德巴赫猜想。
當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:艾禮富數,它允許無限集合之間的大小可以做有意義的比較。
結構
許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。
空間
空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及數,且包含有著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。在其許多分支中,拓撲學可能是二十世紀數學中有著最大進展的領域,並包含有存在久遠的龐加萊猜想及有爭議的四色定理,其只被電腦證明,而從來沒有由人力來驗證過。
基礎與哲學
為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,就連被譽為「博大精深,富於創舉」的數學家Pioncare也把集合論比作有趣的「病理情形」,甚至他的老師Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」.對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」他還指出:「數學的本質在於它的自由性,不必受傳統觀念束縛。」這種爭辯持續了十年之久。Cantor由於經常處於精神壓抑之中,致使他1884年患了精神分裂症,最後死於精神病院。
然而,歷史終究公平地評價了他的創造,集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。
恩格斯說:「數學是研究現定世界的數量關系與空間形式的科學。」
離散數學
離散數學是指對理論計算機科學最有用處的數學領域之總稱,包含有可計算理論、計算復雜性理論及資訊理論。可計算理論檢查電腦的不同理論模型之極限,包含現知最有力的模型-圖靈機。復雜性理論研究可以由電腦做為較易處理的程度;有些問題即使理論是可以以電腦解出來,但卻因為會花費太多的時間或空間而使得其解答仍然不為實際上可行的,盡管電腦硬體的快速進步。最後,資訊理論專注在可以儲存在特定媒體內的資料總量,且因此有壓縮及熵等概念。
做為一相對較新的領域,離散數學有許多基本的未解問題。其中最有名的為P/NP問題-千禧年大獎難題之一。一般相信此問題的解答是否定的。
應用數學
應用數學思考將抽象的數學工具運用在解答科學、工商業及其他領域上之現實問題。應用數學中的一重要領域為統計學,它利用機率論為其工具並允許對含有機會成分的現象進行描述、分析與預測。大部份的實驗、測量及觀察研究需要統計對其資料的分析。(許多的統計學家並不認為他們是數學家,而比較覺得是合作團體的一份子。)數值分析研究如何有效地用電腦的方法解決大量因太大而不可能以人類的演算能力算出的數學問題;它亦包含了對計算中舍入誤差或其他來源的誤差之研究。
模糊數學
現代數學是建立在集合論的基礎上。集合論的重要意義就一個側面看,在與它把數學的抽象能力延伸到人類認識過程的深處。一組對象確定一組屬性,人們可以通過說明屬性來說明概念(內涵),也可以通過指明對象來說明它。符合概念的那些對象的全體叫做這個概念的外延,外延其實就是集合。從這個意義上講,集合可以表現概念,而集合論中的關系和運算又可以表現判斷和推理,一切現實的理論系統都一可能納入集合描述的數學框架。
但是,數學的發展也是階段性的。經典集合論只能把自己的表現力限制在那些有明確外延的概念和事物上,它明確地限定:每個集合都必須由明確的元素構成,元素對集合的隸屬關系必須是明確的,決不能模稜兩可。對於那些外延不分明的概念和事物,經典集合論是暫時不去反映的,屬於待發展的范疇。
在較長時間里,精確數學及隨機數學在描述自然界多種事物的運動規律中,獲得顯著效果。但是,在客觀世界中還普遍存在著大量的模糊現象。以前人們迴避它,但是,由於現代科技所面對的系統日益復雜,模糊性總是伴隨著復雜性出現。
各門學科,尤其是人文、社會學科及其它「軟科學」的數學化、定量化趨向把模糊性的數學處理問題推向中心地位。更重要的是,隨著電子計算機、控制論、系統科學的迅速發展,要使計算機能像人腦那樣對復雜事物具有識別能力,就必須研究和處理模糊性。
我們研究人類系統的行為,或者處理可與人類系統行為相比擬的復雜系統,如航天系統、人腦系統、社會系統等,參數和變數甚多,各種因素相互交錯,系統很復雜,它的模糊性也很明顯。從認識方面說,模糊性是指概念外延的不確定性,從而造成判斷的不確定性。
在日常生活中,經常遇到許多模糊事物,沒有分明的數量界限,要使用一些模糊的詞句來形容、描述。比如,比較年輕、高個、大胖子、好、漂亮、善、熱、遠……。在人們的工作經驗中,往往也有許多模糊的東西。例如,要確定一爐鋼水是否已經煉好,除了要知道鋼水的溫度、成分比例和冶煉時間等精確信息外,還需要參考鋼水顏色、沸騰情況等模糊信息。因此,除了很早就有涉及誤差的計算數學之外,還需要模糊數學。
人與計算機相比,一般來說,人腦具有處理模糊信息的能力,善於判斷和處理模糊現象。但計算機對模糊現象識別能力較差,為了提高計算機識別模糊現象的能力,就需要把人們常用的模糊語言設計成機器能接受的指令和程序,以便機器能像人腦那樣簡潔靈活的做出相應的判斷,從而提高自動識別和控制模糊現象的效率。這樣,就需要尋找一種描述和加工模糊信息的數學工具,這就推動數學家深入研究模糊數學。所以,模糊數學的產生是有其科學技術與數學發展的必然性。廣義的數學分類從縱向劃分:
1、初等數學和古代數學:這是指17世紀以前的數學。主要是古希臘時期建立的歐幾里得幾何學,古代中國、古印度和古巴比倫時期建立的算術,歐洲文藝復興時期發展起來的代數方程等。
2、變數數學:是指17--19世紀初建立與發展起來的數學。從17世紀上半葉開始的變數數學時期,可以分為兩個階段:17世紀的創建階段(英雄時代)與18世紀的發展階段(創造時代)。
3、近代數學:是指19世紀的數學。近代數學時期的19世紀是數學的全面發展與成熟階段,數學的面貌發生了深刻的變化,數學的絕大部分分支在這一時期都已經形成,整個數學呈現現出全面繁榮的景象。
4、現代數學:是指20世紀的數學。1900年德國著名數學家希爾伯特(D. Hilbert)在世界數學家大會上發表了一個著名演講,提出了23個預測和知道今後數學發展的數學問題(見下),拉開了20世紀現代數學的序幕。
註:希爾伯特的23個問題——
在1900年巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題通稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未解決。他在講演中所闡發的想信每個數學問題都可以解決的信念,對於數學工作者是一種巨大的鼓舞。
希爾伯特的23個問題分屬四大塊:第1到第6問題是數學基礎問題;第7到第12問題是數論問題;第13到第18問題屬於代數和幾何問題;第19到第23問題屬於數學分析。 現在只列出一張清單:
(1)康托的連續統基數問題。
(2)算術公理系統的無矛盾性。
(3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。
(4)兩點間以直線為距離最短線問題。
(5)拓撲學成為李群的條件(拓撲群)。
(6)對數學起重要作用的物理學的公理化。
(7)某些數的超越性的證明。
(8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。
(9)一般互反律在任意數域中的證明。
(10)能否通過有限步驟來判定不定方程是否存在有理整數解?
(11)一般代數數域內的二次型論。
(12)類域的構成問題。
(13)一般七次代數方程以二變數連續函數之組合求解的不可能性。
(14)某些完備函數系的有限的證明。
(15)建立代數幾何學的基礎。
(16)代數曲線和曲面的拓撲研究。
(17)半正定形式的平方和表示。
(18)用全等多面體構造空間。
(19)正則變分問題的解是否總是解析函數?
(20)研究一般邊值問題。
(21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。
(22)用自守函數將解析函數單值化。
(23)發展變分學方法的研究。
從橫向劃分:
1、基礎數學(英文:Pure Mathematics)。又稱為理論數學或純粹數學,是數學的核心部分,包含代數、幾何、分析三大分支,分別研究數、形和數形關系。
2、應用數學。簡單地說,也即數學的應用。
3、計算數學。研究諸如計算方法(數值分析)、數理邏輯、符號數學、計算復雜性、程序設計等方面的問題。該學科與計算機密切相關。
4、概率統計。分概率論與數理統計兩大塊。5、運籌學與控制論。運籌學是利用數學方法,在建立模型的基礎上,解決有關人力、物資、金錢等的復雜系統的運行、組織、管理等方面所出現的問題的一門學科其它解析另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。 」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(MogensNiss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
給個滿意喲~</dd></dd></p>
</dd></dd></span>

4. 數學的主要特徵是什麼

數學的定義即是數學的特徵
數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。

名稱來源

數學(mathematics;希臘語:μαθηματικά)這一詞在西方源自於古希臘語的μάθημα(máthēma),其有學習、學問、科學,以及另外還有個較狹意且技術性的意義-「數學研究」,即使在其語源內。其形容詞μαθηματικός(mathēmatikós),意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。(拉丁文:Mathemetica)原意是數和數數的技術。

數學的本質
數學的本質是什麼?為什麼數學可以運用在所有的其它科目上?
數學是研究事物數量和形狀規律的科目。
如果要深入的研究其本質及其擴展問題,就必須引入【全集然文明】專有名詞了。
其實數學的本質是:一門研究【儲空】的科目。
自然萬物都有其存儲的空間,這種現象稱之為【儲空】。
要判斷一個事物是否為「儲空」其實很簡單:只要能夠套入「在××里」的××就是「儲空」(包括具體和抽象)。於是大家將會發現,所有的事物都可以套入其中,也就是說:自然萬物都只是不同的「儲空」而已。
於是人們也發現:【代數】就是研究【儲空量】的科目;【幾何】就是研究【儲空形狀】的科目。而既然自然萬物都只是不同的儲空而已,那麼數學當然也就可以通用於所有的科目之中了!

1.更多的證據

因為一個除真空外的儲空都是有【儲隔】(儲空隔膜)的,於是人們在其它科目中使用數字就必須用【單位】來區分各種不同的儲空,如:個、頭、條、小時、牛、焦耳、歐姆、安培等等,可以說離開了單位,數字幾乎毫無意義。
並且各種名詞的【定義】也是相關儲空的儲隔,就是區別於其他事物的地方。

2.新數學等式和計算模型

異儲空計算模型
異儲空等式【異儲空等式】比如:1個人 異等於 5個蘋果 ,就是說:一個人可以得到5個蘋果,或一個人和5個蘋果相聯系(任何聯系都可以);異等號就是等號=下面加個o(儲空標志);這樣就可以簡單的描述很多日常生活中碰到的計算。而且您還可以通過右圖的【異儲空計算模型】(最簡單的模型),來計算一些事物。

3.其他幾何領域

當然有,其實一直都有兩個巨大的幾何領域被人們長期的忽視,那就是【文字幾何】與【功能幾何】。
(1)文字幾何:當一些有特定含義的文字按照特殊的組合和形狀排列下來就會出現各種特殊的功能和特性。就像我們最常見的「化學元素周期表」、「文字圖表」、「數學計算模型」等等。
(2)功能幾何:各種形狀都是擁有各種不同的功能的!如球形可以做大容量的容納物質,交叉有利於物質傳播等等。所以我們應該仔細研究和探討各種形狀的各種特殊功能!
使用全集然文明邏輯:如果自然萬物有共同的本質和規律,那麼它們必然可以用來推導各個科目的本質和規律,並推理出該科目內的新內容。於是我們發現了數學就是研究「儲空」的一個科目,並推理出了各種新領域。
註:等式、四則運算、解方程式的本質都可以用【儲空】內部規律推理出來
數學研究的各領域
數學主要的學科首要產生於商業上計算的需要、了解數字間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的子領域相關連著。除了上述主要的關注之外,亦有用來探索由數學核心至其他領域上之間的連結的子領域:至邏輯、至集合論(基礎)、至不同科學的經驗上的數學(應用數學)、及較近代的至不確定性的嚴格學習。
數量
數量的學習起於數,一開始為熟悉的自然數及整數與被描述在算術內的自然數及整數的算術運算。整數更深的性質被研究於數論中,此一理論包括了如費馬最後定理之著名的結果。數論還包括兩個被廣為探討的未解問題:孿生素數猜想及哥德巴赫猜想。
當數系更進一步發展時,整數被承認為有理數的子集,而有理數則包含於實數中,連續的數量即是以實數來表示的。實數則可以被進一步廣義化成復數。數的進一步廣義化可以持續至包含四元數及八元數。自然數的考慮亦可導致超限數,它公式化了計數至無限的這一概念。另一個研究的領域為其大小,這個導致了基數和之後對無限的另外一種概念:艾禮富數,它允許無限集合之間的大小可以做有意義的比較。
結構
許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。
空間
空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及數,且包含有著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。在其許多分支中,拓撲學可能是二十世紀數學中有著最大進展的領域,並包含有存在久遠的龐加萊猜想及有爭議的四色定理,其只被電腦證明,而從來沒有由人力來驗證過。
基礎與哲學
為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,就連被譽為「博大精深,富於創舉」的數學家Pioncare也把集合論比作有趣的「病理情形」,甚至他的老師Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」.對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」他還指出:「數學的本質在於它的自由性,不必受傳統觀念束縛。」這種爭辯持續了十年之久。Cantor由於經常處於精神壓抑之中,致使他1884年患了精神分裂症,最後死於精神病院。
然而,歷史終究公平地評價了他的創造,集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。
數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。
恩格斯說:「數學是研究現定世界的數量關系與空間形式的科學。」
數學的分類
離散數學
模糊數學

數學分支

1.算術
2.初等代數
3.高等代數
4. 數論
5.歐式幾何
6.非歐式幾何
7.解析幾何
8.微分幾何
9.代數幾何
10.射影幾何學
11.幾何拓撲學
12.拓撲學
13.分形幾何
14.微積分學
15. 實變函數論
16.概率和統計學
17.復變函數論
18.泛函分析
19.偏微分方程
20.常微分方程
21.數理邏輯
22.模糊數學
23.運籌學
24.計算數學
25.突變理論
26.數學物理學

5. 高等數學 函數定義廣義化問題!高手來詳解

我就舉個簡單的例子給你。

6. 高三生活&數學學習問題

數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。

數學屬性是任何事物的可量度屬性,即數學屬性是事物最基本的屬性。可量度屬性的存在與參數無關,但其結果卻取決於參數的選擇。例如:時間,不管用年、月、日還是用時、分、秒來量度;空間,不管用米、微米還是用英寸、光年來量度,它們的可量度屬性永遠存在,但結果的准確性與這些參照系數有關。

數學是研究現實世界中數量關系和空間形式的科學。簡單地說,是研究數和形的科學。由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數。

基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。

今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現。

創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。

這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。

中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。
結構

許多如數及函數的集合等數學物件都有著內含的結構。這些物件的結構性質被探討於群、環、體及其他本身即為此物件的抽象系統中。此為抽象代數的領域。在此有一個很重要的概念,即向量,且廣義化至向量空間,並研究於線性代數中。向量的研究結合了數學的三個基本領域:數量、結構及空間。向量分析則將其擴展至第四個基本的領域內,即變化。

空間

空間的研究源自於幾何-尤其是歐式幾何。三角學則結合了空間及數,且包含有著名的勾股定理。現今對空間的研究更推廣到了更高維的幾何、非歐幾何(其在廣義相對論中扮演著核心的角色)及拓撲學。數和空間在解析幾何、微分幾何和代數幾何中都有著很重要的角色。在微分幾何中有著纖維叢及流形上的計算等概念。在代數幾何中有著如多項式方程的解集等幾何物件的描述,結合了數和空間的概念;亦有著拓撲群的研究,結合了結構與空間。李群被用來研究空間、結構及變化。在其許多分支中,拓撲學可能是二十世紀數學中有著最大進展的領域,並包含有存在久遠的龐加萊猜想及有爭議的四色定理,其只被電腦證明,而從來沒有由人力來驗證過。

基礎與哲學

為了搞清楚數學基礎,數學邏輯和集合論等領域被發展了出來。康托(Georg Cantor,1845-1918)首創集合論,大膽地向「無窮大」進軍,為的是給數學各分支提供一個堅實的基礎,而它本身的內容也是相當豐富的,提出了實無窮的存在,為以後的數學發展作出了不可估量的貢獻。Cantor的工作給數學發展帶來了一場革命。由於他的理論超越直觀,所以曾受到當時一些大數學家的反對,就連被譽為「博大精深,富於創舉」的數學家Pioncare也把集合論比作有趣的「病理情形」,甚至他的老師Kronecker還擊Cantor是「神經質」,「走進了超越數的地獄」.對於這些非難和指責,Cantor仍充滿信心,他說:「我的理論猶如磐石一般堅固,任何反對它的人都將搬起石頭砸自己的腳.」他還指出:「數學的本質在於它的自由性,不必受傳統觀念束縛。」這種爭辯持續了十年之久。Cantor由於經常處於精神壓抑之中,致使他1884年患了精神分裂症,最後死於精神病院。
然而,歷史終究公平地評價了他的創造,集合論在20世紀初已逐漸滲透到了各個數學分支,成為了分析理論,測度論,拓撲學及數理科學中必不可少的工具。20世紀初世界上最偉大的數學家Hilbert在德國傳播了Cantor的思想,把他稱為「數學家的樂園」和「數學思想最驚人的產物」。英國哲學家Russell把Cantor的工作譽為「這個時代所能誇耀的最巨大的工作」。

數學邏輯專注在將數學置於一堅固的公理架構上,並研究此一架構的成果。就其本身而言,其為哥德爾第二不完備定理的產地,而這或許是邏輯中最廣為流傳的成果-總存在一不能被證明的真實定理。現代邏輯被分成遞歸論、模型論和證明論,且和理論計算機科學有著密切的關連性。

離散數學

離散數學是指對理論計算機科學最有用處的數學領域之總稱,包含有可計算理論、計算復雜性理論及資訊理論。可計算理論檢查電腦的不同理論模型之極限,包含現知最有力的模型-圖靈機。復雜性理論研究可以由電腦做為較易處理的程度;有些問題即使理論是可以以電腦解出來,但卻因為會花費太多的時間或空間而使得其解答仍然不為實際上可行的,盡管電腦硬體的快速進步。最後,資訊理論專注在可以儲存在特定媒體內的資料總量,且因此有壓縮及熵等概念。

做為一相對較新的領域,離散數學有許多基本的未解問題。其中最有名的為P/NP問題-千禧年大獎難題之一。一般相信此問題的解答是否定的。
應用數學

應用數學思考將抽象的數學工具運用在解答科學、工商業及其他領域上之現實問題。應用數學中的一重要領域為統計學,它利用機率論為其工具並允許對含有機會成分的現象進行描述、分析與預測。大部份的實驗、測量及觀察研究需要統計對其資料的分析。(許多的統計學家並不認為他們是數學家,而比較覺得是合作團體的一份子。)數值分析研究如何有效地用電腦的方法解決大量因太大而不可能以人類的演算能力算出的數學問題;它亦包含了對計算中舍入誤差或其他來源的誤差之研究。

模糊數學

現代數學是建立在集合論的基礎上。集合論的重要意義就一個側面看,在與它把數學的抽象能力延伸到人類認識過程的深處。一組對象確定一組屬性,人們可以通過說明屬性來說明概念(內涵),也可以通過指明對象來說明它。符合概念的那些對象的全體叫做這個概念的外延,外延其實就是集合。從這個意義上講,集合可以表現概念,而集合論中的關系和運算又可以表現判斷和推理,一切現實的理論系統都一可能納入集合描述的數學框架。

但是,數學的發展也是階段性的。經典集合論只能把自己的表現力限制在那些有明確外延的概念和事物上,它明確地限定:每個集合都必須由明確的元素構成,元素對集合的隸屬關系必須是明確的,決不能模稜兩可。對於那些外延不分明的概念和事物,經典集合論是暫時不去反映的,屬於待發展的范疇。

在較長時間里,精確數學及隨機數學在描述自然界多種事物的運動規律中,獲得顯著效果。但是,在客觀世界中還普遍存在著大量的模糊現象。以前人們迴避它,但是,由於現代科技所面對的系統日益復雜,模糊性總是伴隨著復雜性出現。

各門學科,尤其是人文、社會學科及其它「軟科學」的數學化、定量化趨向把模糊性的數學處理問題推向中心地位。更重要的是,隨著電子計算機、控制論、系統科學的迅速發展,要使計算機能像人腦那樣對復雜事物具有識別能力,就必須研究和處理模糊性。

我們研究人類系統的行為,或者處理可與人類系統行為相比擬的復雜系統,如航天系統、人腦系統、社會系統等,參數和變數甚多,各種因素相互交錯,系統很復雜,它的模糊性也很明顯。從認識方面說,模糊性是指概念外延的不確定性,從而造成判斷的不確定性。

在日常生活中,經常遇到許多模糊事物,沒有分明的數量界限,要使用一些模糊的詞句來形容、描述。比如,比較年輕、高個、大胖子、好、漂亮、善、熱、遠……。在人們的工作經驗中,往往也有許多模糊的東西。例如,要確定一爐鋼水是否已經煉好,除了要知道鋼水的溫度、成分比例和冶煉時間等精確信息外,還需要參考鋼水顏色、沸騰情況等模糊信息。因此,除了很早就有涉及誤差的計算數學之外,還需要模糊數學。

人與計算機相比,一般來說,人腦具有處理模糊信息的能力,善於判斷和處理模糊現象。但計算機對模糊現象識別能力較差,為了提高計算機識別模糊現象的能力,就需要把人們常用的模糊語言設計成機器能接受的指令和程序,以便機器能像人腦那樣簡潔靈活的做出相應的判斷,從而提高自動識別和控制模糊現象的效率。這樣,就需要尋找一種描述和加工模糊信息的數學工具,這就推動數學家深入研究模糊數學。所以,模糊數學的產生是有其科學技術與數學發展的必然性。

廣義的數學分類
[編輯本段]
從縱向劃分:
1、初等數學和古代數學:這是指17世紀以前的數學。主要是古希臘時期建立的歐幾里得幾何學,古代中國、古印度和古巴比倫時期建立的算術,歐洲文藝復興時期發展起來的代數方程等。
2、變數數學:是指17--19世紀初建立與發展起來的數學。從17世紀上半葉開始的變數數學時期,可以分為兩個階段:17世紀的創建階段(英雄時代)與18世紀的發展階段(創造時代)。
3、近代數學:是指19世紀的數學。近代數學時期的19世紀是數學的全面發展與成熟階段,數學的面貌發生了深刻的變化,數學的絕大部分分支在這一時期都已經形成,整個數學呈現現出全面繁榮的景象。
4、現代數學:是指20世紀的數學。1900年德國著名數學家希爾伯特(D. Hilbert)在世界數學家大會上發表了一個著名演講,提出了23個預測和知道今後數學發展的數學問題(見下),拉開了20世紀現代數學的序幕。
註:希爾伯特的23個問題——
在1900年巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題通稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未解決。他在講演中所闡發的想信每個數學問題都可以解決的信念,對於數學工作者是一種巨大的鼓舞。
希爾伯特的23個問題分屬四大塊:第1到第6問題是數學基礎問題;第7到第12問題是數論問題;第13到第18問題屬於代數和幾何問題;第19到第23問題屬於數學分析。 現在只列出一張清單:
(1)康托的連續統基數問題。
(2)算術公理系統的無矛盾性。
(3)只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。
(4)兩點間以直線為距離最短線問題。
(5)拓撲學成為李群的條件(拓撲群)。
(6)對數學起重要作用的物理學的公理化。
(7)某些數的超越性的證明。
(8)素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。
(9)一般互反律在任意數域中的證明。
(10)能否通過有限步驟來判定不定方程是否存在有理整數解?
(11)一般代數數域內的二次型論。
(12)類域的構成問題。
(13)一般七次代數方程以二變數連續函數之組合求解的不可能性。
(14)某些完備函數系的有限的證明。
(15)建立代數幾何學的基礎。
(16)代數曲線和曲面的拓撲研究。
(17)半正定形式的平方和表示。
(18)用全等多面體構造空間。
(19)正則變分問題的解是否總是解析函數?
(20)研究一般邊值問題。
(21)具有給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。
(22)用自守函數將解析函數單值化。
(23)發展變分學方法的研究。
從橫向劃分:
1、基礎數學(英文:Pure Mathematics)。又稱為理論數學或純粹數學,是數學的核心部分,包含代數、幾何、分析三大分支,分別研究數、形和數形關系。
2、應用數學。簡單地說,也即數學的應用。
3、計算數學。研究諸如計算方法(數值分析)、數理邏輯、符號數學、計算復雜性、程序設計等方面的問題。該學科與計算機密切相關。
4、概率統計。分概率論與數理統計兩大塊。5、運籌學與控制論。運籌學是利用數學方法,在建立模型的基礎上,解決有關人力、物資、金錢等的復雜系統的運行、組織、管理等方面所出現的問題的一門學科。

一些從古到今的中國著名數學家的主要貢獻
[編輯本段]

張丘建--<張丘建算經>
《張丘建算經》三卷,據錢寶琮考,約成書於公元466~485年間.張丘建,北魏時清河(今山東臨清一帶)人,生平不詳。最小公倍數的應用、等差數列各元素互求以及「百雞術」等是其主要成就。「百雞術」是世界著名的不定方程問題。13世紀義大利斐波那契《算經》、15世紀阿拉伯阿爾·卡西<<算術之鑰》等著作中均出現有相同的問題。

朱世傑:《四元玉鑒》
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算學啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創作有「四元術」(多元高次方程列式與消元解法)、「垛積法」(高階等差數列求和)與「招差術」(高次內插法)

賈憲:〈〈黃帝九章算經細草〉〉
中國古典數學家在宋元時期達到了高峰,這一發展的序幕是「賈憲三角」(二項展開系數表)的發現及與之密切相關的高次開方法(「增乘開方法」)的創立。賈憲,北宋人,約於1050年左右完成〈〈黃帝九章算經細草〉〉,原書佚失,但其主要內容被楊輝(約13世紀中)著作所抄錄,因能傳世。楊輝〈〈詳解九章演算法〉〉(1261)載有「開方作法本源」圖,註明「賈憲用此術」。這就是著名的「賈憲三角」,或稱「楊輝三角」。〈〈詳解九章演算法〉〉同時錄有賈憲進行高次冪開方的「增乘開方法」。
賈憲三角在西方文獻中稱「帕斯卡三角」,1654年為法國數學家 B·帕斯卡重新發現。
秦九韶:〈〈數書九章〉〉
秦九韶(約1202~1261),字道吉,四川安岳人,先後在湖北、安徽、江蘇、浙江等地做官,1261年左右被貶至梅州(今廣東梅縣),不久死於任所。秦九韶與李冶、楊輝、朱世傑並稱宋元數學四大家。他早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的〈〈數書九章〉〉。〈〈數書九章〉〉全書共18卷,81題,分九大類(大衍、天時、田域、測望、賦役、錢谷、營建、軍旅、市易)。其最重要的數學成就——「大衍總數術」(一次同餘組解法)與「正負開方術」(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。

李冶:《測圓海鏡》——開元術
隨著高次方程數值求解技術的發展,列方程的方法也相應產生,這就是所謂「開元術」。在傳世的宋元數學著作中,首先系統闡述開元術的是李冶的《測圓海鏡》。
李冶(1192~1279)原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回家。1248年撰成《測圓海鏡》,其主要目的就是說明用開元術列方程的方法。「開元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某」,可以說是符號代數的嘗試。李冶還有另一部數學著作《益古演段》(1259),也是講解開元術的。

劉徽: 《海島算經》 《九章算術注》 《九章重差圖》

263年左右,六會發現當圓內接正多邊形的變數無限增加時,多邊形的面積則可無限逼近圓面積,即所謂「割之彌細,所失彌少,割之又割,以至於不可割,則與圓周

合體而無所失矣。」劉徽採用了以直代曲、無限趨近、「內外夾逼」的思想,創立了「割圓術」

《重差》原為《九章算術注》的第十卷,即後來的《海島算經》,內容是測量目標物的高和遠的計算方法。重差法是測量數學中的重要方法。

祖沖之:(公元429年—公元500年)是我國傑出的數學家,科學家。南北朝時期人,漢族人,字文遠。他當時就把圓周率精確到小數點後7位(3.1415926<圓周率<3.1415927),比西方領先了1500年,並得出355/113的密率,22/7的約率。寫書《綴術》,記載了他計算圓周率的方法,不過已經失傳。

數學發展史上的三次危機
[編輯本段]
1.畢達哥拉斯是公元前五世紀古希臘的著名數學家與哲學家。他曾創立了一個合政治、學術、宗教三位一體的神秘主義派別:畢達哥拉斯學派。由畢達哥拉斯提出的著名命題「萬物皆數」是該學派的哲學基石。而「一切數均可表成整數或整數之比」則是這一學派的數學信仰。畢達哥拉斯定理提出後,其學派中的一個成員希帕索斯考慮了一個問題:邊長為1的正方形其對角線長度是多少呢?他發現這一長度既不能用整數,也不能用分數表示,而只能用一個新數來表示。希帕索斯的發現導致了數學史上第一個無理數√2 的誕生。這一結論的悖論性表現在它與常識的沖突上:任何量,在任何精確度的范圍內都可以表示成有理數。可是為我們的經驗所確信的,完全符合常識的論斷居然被小小的√2的存在而推翻了!這就在當時直接導致了人們認識上的危機,從而導致了西方數學史上一場大的風波,史稱「第一次數學危機」。由2000年後的數學家門建立的實數理論才消除它。
2.第二次數學危機導源於微積分工具的使用。貝克萊一針見血地指出牛頓在對x^n(n是正整數)求導時既把△x不當做0看而又把△x當作0看是一個嚴重的自相矛盾,從而幾乎使微積分停滯不前,後來還是柯西和魏爾斯特拉斯等人提出無窮小是一個無限向0靠近,但是永遠不等於0的變數,這才把微積分重新穩固地建立在嚴格的極限理論基礎上,從而消滅的這次數學危機!
3.十九世紀下半葉,康托爾創立了著名的集合論。1900年,國際數學家大會上,法國著名數學家龐加萊就曾興高采烈地宣稱:「………藉助集合論概念,我們可以建造整個數學大廈……今天,我們可以說絕對的嚴格性已經達到了……」可是,好景不長。1903年,一個震驚數學界的消息傳出:集合論是有漏洞的!這就是英國數學家羅素提出的著名的羅素悖論。
羅素構造了一個集合S:S由一切不是自身元素的集合所組成。然後羅素問:S是否屬於S呢?根據排中律,一個元素或者屬於某個集合,或者不屬於某個集合。因此,對於一個給定的集合,問是否屬於它自己是有意義的。但對這個看似合理的問題的回答卻會陷入兩難境地。如果S屬於S,根據S的定義,S就不屬於S;反之,如果S不屬於S,同樣根據定義,S就屬於S。無論如何都是矛盾的。 可以說,這一悖論就象在平靜的數學水面上投下了一塊巨石,而它所引起的巨大反響則導致了第三次數學危機。
危機產生後,數學家紛紛提出自己的解決方案。比如ZF公理系統。這一問題的解決只現在還在進行中。羅素悖論的根源在於集合論里沒有對集合的限制,以至於讓羅素能構造一切集合的集合這樣「過大」的集合,對集合的構造的限制至今仍然是數學界里一個巨大的難題!

當然這些對於高三學生來說可能不具誘惑力,畢竟我也從高三過來,那麼就用我的絕招:數學確實挺難,但是又有什麼辦法,一門不好,就別指望高考有什麼成就。在這種思想的激勵下,我更加努力,高考608,比較滿意。仁兄or 任妹,努力呀!!!

7. 如圖,可否幫我理解廣義化的函數是什麼意思用來幹嘛的它這里把X變成U,而U又在圖像上作為y值來劃

同學,請注意這里是要你求復合函數
我就告訴你一句話你就懂了:這里的u=g(x)
你把所有的u換成g(x),u的值就相當於函數g(x)的函數值
在最終的復合函數中:
x是f(g(x))的自變數
u=g(x)是函數g(x)的因變數,同時也是y=f(u)的自變數
y=f(u)=f(g(x))是f(g(x))的因變數
懂了么

8. 等價無窮小的廣義化

等價無窮小替換要注意:乘除法可替換,加減法慎用!這個 」X→0 「中的 X通常在題目中不會是簡單的一個X,而是其他的一坨表達式,注意其廣義化的形式「這坨表達式→0」.還有就是你說的這個X→0時,這里的X就相應變成1/X了,這時候1/X就變成了無窮大,所以不能直接等過來!

9. 極限構造廣義化,左右兩個等式怎麼求出下面結果的

【上面是直接用洛必達法則求解】

【所謂廣義化的導數,就是把上式中的tanx和sinx看作∆x,那麼上面二式就是f(x)=x^10在x=2

處的導數。然後便有題示的等式,即都=(x^10)'∣﹤x=2﹥=10×2^9】

閱讀全文

與數學廣義化是什麼意思相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:744
乙酸乙酯化學式怎麼算 瀏覽:1409
沈陽初中的數學是什麼版本的 瀏覽:1360
華為手機家人共享如何查看地理位置 瀏覽:1051
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:891
數學c什麼意思是什麼意思是什麼 瀏覽:1418
中考初中地理如何補 瀏覽:1309
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:707
數學奧數卡怎麼辦 瀏覽:1398
如何回答地理是什麼 瀏覽:1032
win7如何刪除電腦文件瀏覽歷史 瀏覽:1061
大學物理實驗干什麼用的到 瀏覽:1491
二年級上冊數學框框怎麼填 瀏覽:1710
西安瑞禧生物科技有限公司怎麼樣 瀏覽:991
武大的分析化學怎麼樣 瀏覽:1253
ige電化學發光偏高怎麼辦 瀏覽:1342
學而思初中英語和語文怎麼樣 瀏覽:1662
下列哪個水飛薊素化學結構 瀏覽:1428
化學理學哪些專業好 瀏覽:1491
數學中的棱的意思是什麼 瀏覽:1068