『壹』 小學階段的數學課程中學生體驗到的數學思想有哪些
化歸思想、符號思想、類比思想、分類思想、建模思想、數形結合
『貳』 小學數學中體現的數學思想與方法有哪些
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
『叄』 小學階段所涉及到的數學思想方法有哪些
1.符號思想
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學的內容,這就是符號思想。符號思想是將復雜的文字敘述用簡潔明了的字母公式表示出來,便於記憶,便於運用。把客觀存在的事物和現象及它們相互之間的關系抽象概括為數學符號和公式,有一個從具體到表象再抽象的過程。在數學中各種量的關系,量的變化以及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式來表達大量的信息。
2.化歸思想
化歸思想是數學中最普遍使用的一種思想方法,其基本思想是:把甲問題的求解,化歸為乙問題的求解,然後通過乙問題的解反向去獲得甲問題的解。它的基本原則是:化難為易,化生為熟,化繁為簡。
3.轉換思想
轉換思想是一種解決數學問題的重要策略,是由一種形式變換成另一種形式的思想方法。對問題進行轉換時,既可轉換已知條件,也可轉換問題的結論。用轉換思想來解決數學問題,轉換僅是第一步,第二步要對轉換後的問題進行求解,第三步要將轉換後問題的解答反演成問題的解答。
4.類比思想
數學上的類比思想是指依據兩類數學對象的相似性,將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔,從而可以激發起學生的創造力。
『肆』 小學數學蘊含的數學思想有哪些
數形結合 化曲為直
『伍』 小學數學教學中應滲透哪些數學思想方法
以下幾種數學思想方法學生不但容易接受,而且對學生數學能力的提高有很好的促進作用。
1.化歸思想
化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。應當指出,這種化歸思想不同於一般所講的「轉化」、「轉換」。它具有不可逆轉的單向性。例1 狐狸和黃鼠狼進行跳躍比賽,狐狸每次可向前跳20米,黃鼠狼每次可向前跳6米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔15米設有一個陷阱,當它們之中有一個掉進陷阱時,另一個跳了多少米?這是一個實際問題,但通過分析知道,當狐狸(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每次所跳距離20(或6)米的整倍數,又是陷阱間隔15米的整倍數,也就是20和15「 最小公倍數」。針對兩種情況,再分別算出各跳了幾次,確定誰先掉入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求「最小公倍數」的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。
2.數形結合思想
數形結合思想是充分利用「形」把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數量關系使問題簡明直觀。例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?此題若把五次所喝的牛奶加起來,即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策略。我們先畫一個正方形,並假設它的面積為單位「1」,由圖可知,1-1/32就為所求,這里不但向學生滲透了數形結合思想,還向學生滲透了類比的思想。
3.組合思想
組合思想是把所研究的對象進行合理的分組,並對可能出現的各種情況既不重復又不遺漏地一一求解。
4.「函數」思想
函數是近代數學的重要概念之一,在現代科學技術中廣泛應用,在小學數學教材中,函數思想的滲透非常廣泛。在第一學段,通過填圖等形式,將函數思想滲透其中;在第二學段,學生掌握了許多計算公式,如s=vt等,這些計算公式實際上就是一些簡單的函數關系式;到了六年級,正、反比例的意義是滲透函數思想的重要內容,因為成正比例和反比例的量反映的是兩個變數之間的依存關系。
此外,還有符號思想、對應思想、極限思想、集合思想等,在小學數學教學中都應注意有目的、有選擇、適時地進行滲透。
此外還有集合思想、符號化思想、對應思想等數學思想和方法。
『陸』 小學數學中可以培養哪些數學思想
1.符號思想。數學課程標准要求,在小學階段要培養和發展學生的符號感,我們知道,運用一套合適的符號,可以清晰、准確、簡潔地表達數學思想、概念、方法和法則,避免日常語言的繁復、冗長或含混不清,從而簡化數學運算或推理過程,加快數學思維的速度,促進數學思想的交流。如講到乘法的諸多運算律時,就把復雜的語言文字敘述用簡潔明了的字母公式表示出來,便於記憶、便於運用。
2.數形結合思想方法。數形結合思想是充分利用「形」把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數量關系,使問題簡明直觀。如諸多的行程問題,我們就可以用線段圖來清楚的讓學生直接感知到總路程、已行路程和剩下路程之間的關系;再如分數應用題的解答,用圓形圖或者線段圖表示整體與部分的關系,讓學生的解答問題是一目瞭然,顯而易懂,對學生的思維和想像能力大有提高。
3.分類思想方法。分類思想也是對小學生培養的一種重要思想方法。一般分類時要求滿足互斥,無遺漏、最簡便的原則。如整數以能否被2整除為例,可分為奇數和偶數;若以自然數的約數個數來分類,則可分為質數、合數和1。幾何圖形中的分類更常見,如學習「角的分類」時,涉及到許多概念,而這些概念之間的關系培養著量變到質變的規律。其中幾種角是按照度數的大小,從量變到質變來分類的,由此推理到在三角形中以最大一個角大於、等於和小於90°為分類標准,可分為鈍角三角形、直角三角形和銳角三角形。而三角形以邊的長短關系為分類標准,又可分為不等邊三角形和等邊三角形,等邊三角形又可分為正三角形和等腰三角形。通過分類,建構了知識網路,不同的分類標准會有不同的分類結果,從而產生新的數學概念和數學知識的結構。
4.集合思想方法。現代的課堂教學,不僅僅要向學生傳授知識,更為重要的是要把含在教材中的集合思想有意識地對學生進行培養,這樣有利於培養學生的抽象概括能力,有利於提高學生分析和解決問題的能力。如:教學分類把某些具有共同屬性的動物、植物和幾何圖形等分別用一個「圈」(封閉曲線)圈起來成為一個整體,這個整體就是集合。在教學求8和12的最大公約數時,可以製作課件或幻燈片,讓學生從圖中可以清楚直觀地知道8和12的公約數是1、2和4,最大公約數是4,這樣孕伏了交集的思想。
5.化歸思想方法。就是在解決數學問題時,不是對問題進行直接進攻,而是採取迂迴的戰術,通過變形把要解決的問題,化歸為某個已經解決的問題,從而求得原問題的解決。它的基本形式有:化難為易,化生為熟,化繁為簡,化整為零,化曲為直等。在小學數學中蘊藏著各種可運用化歸的方法進行解答的內容,讓學生初步學會化歸的思想方法。如:教學圓面積的計算方法,這里要推導出圓面積公式,在推導過程中,採用把圓分成若乾等份,然後拼成一個近似長方形,從而推導出圓的面積公式。這里把圓剪拼成近似長方形的過程,就是把曲線形化歸為直線形的過程。
6.建模思想方法。所謂數學模型是對於現實世界的某一特定研究對象,為了某個目的,在作了一些必要的簡化和假設之後運用適當的數學工具,並通過數學語言表達出來的一個數學結構。而數學建模思想就是把現實世界中有待解決或未解決的問題,從數學的角度發現問題、提出問題、理解問題,通過轉化過程,歸結為一類已經解決或較易解決的問題中去,並綜合運用所學的數學知識與技能求得解決的一種數學思想和方法。
二、我是怎樣培養學生的數學思想的。
結合自己的教學實踐,現在我向大家分享一下自己是如何在教學實踐中培養和發展學生的各種數學思想的:
首先注重在知識形成過程中培養。像數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有形的,而數學思想方法卻隱含在數學知識體系裡,是無形的,並且不成體系地分散在教材各章節之中。因此數學思想方法必須通過具體的教學過程加以實現。因此在教學中,我們要把握好在教學過程中對學生進行數學思想方法教學的契機,它時時應該滲透在每一個概念的形成過程中,每一種結論的推導過程中,每一道習題解題方法的思考過程、思路探索和規律揭示的過程中等,要有意識地潛移默化地啟發學生領悟蘊含於數學知識之中的種種數學思想方法。
其次是要注重在問題解決過程中培養。數學思想方法存在於問題的解決過程中,數學問題的步步轉化無不遵循著數學思想方法的指導。培養數學思想方法,不僅可以加快和優化問題解決的過程,而且還可以達到,會一題而明一路,通一類的效果。通過培養,盡量讓學生達到對數學思想方法內化的境界,提高獨立獲取知識的能力和獨立解決問題的能力。
再次是要注意在反復運用過程中培養。在解決學習重點、突破學習難點及解決具體數學問題中,數學思想方法是起著至關重要的作用,這些問題的解決過程,無一不是數學思想方法反復運用的過程,因此,時時注意數學思想方法的運用既有條件又有可能,這是進行數學思想方法教學行之有效的普遍途徑.數學思想方法也只有在反復運用中,得到鞏固與深化。
總之,加強對學生數學思想方法的培養和訓練,不僅是課程標准對我們提出的必然要求,也是為孩子學會學習提供的重要智力幫助,在平時的課堂教學中,重視加強對學生進行數學思想方法的培養不但有利於提高課堂教學效率,而且有利於提高學生的數學文化素養和思維能力。但是,我們也要清楚地認識到,對學生數學思想方法的培養,不是一朝一夕、一蹴而就的,而是需要有一個過程。因此,在教學過程中,要有機地結合數學知識的內容,做到持之以恆、循序漸進和反復訓練,才能使學生真正地領悟數學思想方法。
『柒』 在小學數學教學中應該滲透哪些數學思想
《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》 ——小學數學教學中滲透數學思想方法思考與實踐 匯報:兆麟小學 農豐小學 蘭陵小學 今天由我們三人匯報的題目是:《領悟數學思想方法,讓課堂綻放魅力,讓學生展現風采》 中國科學院院士、著名數學家張景中曾指出:「小學生學的數學很初等,很簡單。但盡管簡單,裡面卻蘊含了一些深刻的數學思想。」 數學知識和數學思想方法作為小學數學學習的兩條線索,一明一暗,相互支撐,其中數學思想方法提示了數學的本質和發展規律,可以說是數學的精髓。下面我們就談談數學思想方法。 一、為什麼要在教學中滲透數學思想方法 1、基本數學思想方法對學生的發展具有重要意義 一位教育學家曾指出:「作為知識的數學出校門不到兩年可能就忘了,惟有深深銘記在頭腦中的是數學煌精神和數學的思想、研究方法、著眼點等,這些隨時隨地發生作用使學生終身受益。」 數學的思想方法是數學的靈魂和精髓,掌握科學的數學思想方法對提升學生思維品質,對數學學科的後繼學習,對其他學得的學習,乃至學生的終身發展有十分重要的意義。在小學數學教學中有意識地滲透一些基本數學思想方法,是增強學生數學觀念,形成良好思維素質的關鍵。不僅能使學生領悟數學的真諦,懂得數學的價值學會數學地思考和解決問題,還可以把知識的學習與能力的培養、智力的發展有機地統一起來。 2.滲透基本數學思想方法是落實新課標精神的需求 數學課程標准把「四基」:基本知識、基本技能、基本思想、基本活動經驗作為目標體系。基本思想是數學學習的目標之一,其重要性不言而喻。新教材是把一些重要的數學思想方法通過學生日常生活中最簡單的事例呈現出來,並運用操作、實驗等直觀手段解決這些問題。從而加深學生對數學概念、公式、定理、定律的理解,提高學生數學能力和思維品質,這是數學教育實現從傳授知識到培養學生分析問題、解決問題能力的重要途徑,也是小學數學新課程改革的真正內涵之在。 二、課教材滲透了哪些數學思想 小學數學中最上位的思想就是演繹和歸納,是數學教學的主線。還有一些常用的數學思想方法: 對應思想、——是指對兩個集合元素之間聯系的把握。許多數學方法來源於對應思想。比如學生在計算練習時常常有 10 ? 20 ×2 ? 30 ? 40 ? 50 ? 形式出現,這其實就體現了對應的思想。如數軸上的一個點就對應一個數,任何一個數都能在數軸上找到相對應的點,一一對應,呈現完美。 符號化思想、——數學發展到今天,已成為一個符號的世界。英國著名數學家素曾說:「什麼是數學?數學就是符號加邏輯。」符號化思想即指人們有意識地、普遍地運用符號化的語言去表述研究的對象。符號化思想在整個小學都有較多的滲透, 例如:阿拉伯數字:1、2、3、5、6、…… +、–、 、 等運算符號; >、<</SPAN>、=、等表示關系的符號; ( )、[ ] 等括弧; 表示數的字母:x、y、z等。 字母表示公式:長方形、正方形的面積S=ab S=a² 字母表示計量單位符號:m\cm\dm\mm\g\km等。 集合思想——把一組對象放在一起作為討論的范圍,這就是集合的思想。如:一年級教材在教孩子認數的時候,用一個圈把一些圖畫圈在裡面,這就是孩子最初所接觸到集合雛形, 也是第一次對小學生滲透這種集合思想。在以後後的教學中慢慢體現並集、差集、空集等思想。 極限思想——我國古代就對極限思想的思考,古代傑出的數學家劉徽的「割圓術」就是利用極奶子思想的典型。極限思想是研究變數在無限變化中的變化趨勢的思想,運用這一思想,人們的思維可以從有限空間向無限空間,從靜態向動態發展,從具體到抽象升華。 統計思想——小學數學中的統計思想主要體現在:簡單的數據整理和求平均數,簡單的統計表和統計圖,學生在會整理、製表、作圖的同時要能從數據、圖表中發現數學問題和數學信息,得出相關的結論。、 假設思想——是先對題目標中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。 比較思想——是數學教學中常見的思想方法之一,也是促進學生思維發展的手段。在數學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快找到解題途徑。 類比思想——是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊行面積公式和三角形面積公式。這種思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。 轉化思想——是一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到。 分類思想——體現對數學對象的分類及其分類的標准如自然數的分類,三角形按邊分按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。 數形結合思想——數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的幫助分析數量關系。 代換思想——他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少? 可逆相思——它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題的方法,有時可以代線段圖逆推。如:一輛汽車從甲地開往乙地,第一小時行了1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。 化歸思想方法——把有可能解決或示解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。 變中抓不變的思想方法——在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解,如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本? 數學模型的思想方法——是對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析等過程,得到簡化和假設,它是生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。 這些數學思想方法是數學的本質之所在、是數學的精髓,只有方法的掌握、思想的形成,才能使學生受益終生。下面我們就結合自己對數學思想方法的學習與實踐,與大家一起交流。 三、讓課堂彰顯思想的魅力 首先說說備課:備課時要研讀教材、明確目標、設計預案,充分挖掘數學思想方法 如果課前教師對教材內容的教學適合滲透哪些思想方法一無所知,那麼課堂教學就不可能有的放矢。因此我們在備課時,不應只見直接寫在教材上的數學基礎知識與技能,而是要進一步鑽研教材,創造性地使用教材,挖掘隱含在教材中的數學思想方法,並在教學目標中明確寫出滲透哪些數學思想方法,並設計數學活動落實在教學預設的各個環節中,實現數學思想方法有機地融合在數學知識的形成過程中。其實,每冊教材都有數學思想方法的滲透,我們每冊選取有代表性的單元。 這相對所有教學內容只是冰山一角。為此,我在研讀教材時,常常要多問自己幾個為什麼,將教材的編排思想內化為自己的教學思想,如:怎樣讓學生經歷知識的產生與發展的過程?怎麼樣才能喚起學生進行深層次的數學思考?如何激發學生主動探究新知識的積極性?如何依據教材適時地滲透數學思想方法等等。只有我自己做到胸有成竹,方能給學生滲透相應的數學思想。 2上課:創設情境、建立模型、解釋應用,滲透數學思想方法 數學是知識與思想方法的有機結合,沒有不包含數學思想方法的數學知識,也沒有游離於數學知識之外的數學思想方法。這就要求教師在課堂教學中,在揭示數學知識的形成過程中滲透數學思想方法,在教給學生數學知識的同時,也獲得數學思想方法上的點化。教師積極地在課堂中滲透數學思想方法,體現了教師在教學中的大智慧,也為學生的學習開辟了一個廣闊的新天地。不同的教學內容,不同的課型,可據其不同特點,恰當地滲透數學思想方法。以下面三種課型為例。 ①新授課:探索知識的發生與形成,滲透數學思想方法 如在《三角形分類》一課中,教師給學生提供了三角形學具先放手讓學生在小組合作中嘗試對三角形進行分類,學生從關注三角形的角與邊的特徵入手,藉助學具看一看、比一比、量一量、分一分、想一想,尋找特徵、抽象共性,在比較中將具有相同特徵的三角形歸為一類,在分類中抽象出圖形的共同特徵。這樣的教學,學生經歷了三角形分類的過程,滲透了分類、集合的思想,豐富了分類活動的經驗,形成分類的基本策略,發展了歸納能力。 在數學教學中,解題是最基本的活動形式。任何一個問題,從提出直到解決,需要具體的數學知識,但更多的是依靠數學思想方法。因此,在數學問題的探究發現過程中,要精心挖掘數學的思想方法。 如我在教學三年級「植樹問題」時,首先呈現:在一條100米長的路的一側,如果兩端都種,每2米種一棵,能種幾棵?面對這一挑戰性的問題,學生紛紛猜測,有的說種50棵,有的說種51棵。到底有幾棵?我們能否從「種2、3棵……」出發,先來找一找其中的規律呢?隨著問題的拋出,學生陷入了沉思。如果把你們的一隻手5指叉開看作5棵樹,每兩棵樹之間就有一個「間隔」(板書),一共有幾個間隔?學生若有所思地回答是4個。如果種6棵、7棵……,棵數與間隔的個數有怎樣的關系呢?於是我啟發學生通過動手擺一擺、畫一畫、議一議,發現了在兩端都種時棵數和間隔數之間的數量關系(棵數=間隔數+1),順利地解決了上述問題。然後又將問題改為「只種一端、兩端不種時分別種幾棵」,學生運用同樣的方法興趣盎然地找到了答案。以上問題解決過程給學生傳達這樣一種策略:當遇到復雜問題時,不妨退到簡單問題,然後從簡單問題的研究中找到規律,最終來解決復雜問題。通過這樣的解題活動,滲透了探索歸納、數學建模的思想方法,使學生感受到思想方法在問題解決中的重要作用。 因此,教師對數學問題的設計應從數學思想方法的角度加以考慮,盡量安排一些有助於加深學生對數學思想方法體驗的問題,並注意在解決問題之後引導學生進行交流,深化對解題方法的認識。 ②練習課:經歷知識的鞏固與應用,滲透數學思想方法 數學知識的鞏固,技能的形成,智力的開發,能力的培養等需要適量的練習才能實現。練習課的練習不同於新授課的練習,新授課中的練習主要是為了鞏固剛學過的新知,習題側重於知識方面;而練習課中的練習則是為了在形成技能的基礎上向能力轉化,提高學生運用知識解決實際問題的能力,發展學生的思維能力。因此教師要有數學思想方法教學意識,在練習課的教學中不僅要有具體知識、技能訓練的要求,而且要有明確的數學思想方法的教學要求。例如在《6的乘法口訣》練習課中,學生在完成想一想、算一算的練習中,先讓學生計算,再通過交流自己的演算法,以「7×6+6」為例,藉助圖片用課件演示來理解式子的意義,運用數形結合啟發將式子轉化為8×6來計算,滲透變換的思想,懂得兩個式子形式雖不同,表示的意義以及結果是相同的。又如讓學生算一算每個圖中各有多少個格子,之後教師要啟發學生怎樣將圖形轉化成同第一個圖形那樣的圖形,可以直接用口訣計算?學生通過實際操作,動手剪一剪、拼一拼,轉化成長方形後分別用6×3、4×3來計算,從而感受到轉化思想的魅力。 「咱們要教給孩子們什麼?」「數學的學習主要是學習思想和方法以及解題的策略」,因此我們要在練習的過程中不斷地總結和探索,從中尋找共性,呈現給孩子最有價值、最本質的東西——數學思想方法。 如我在教學四年級「看誰算得巧」一課時,學生計算「1100÷25」主要採用了以下幾種方法:①豎式計算②1100÷25=(1100×4)÷(25×4)③1100÷25=1100÷5÷5 ④1100÷25=11×(100÷25) ⑤1100÷25=1100÷100×4 ⑥ 1100÷25=1000÷25+100÷25。在學生陳述了各自的運算依據後,引導學生比較上述方法的異同,結果發現方法①是通法,方法②——⑥是巧法。方法②——⑥雖各有千秋,方法③、④、⑥運用了數的分拆,方法②屬等值變換,方法⑤類似於估算中的「補償」策略,但殊途同歸,都是抓住數據特點,運用學過的運算定律、性質轉化為容易計算的問題。學生對各種方法的評價與反思,就是去深究方法背後的數學思想,從而獲得對數學知識和方法的本質把握。 新課程所倡導的「演算法多樣化」的教學理念,就是讓學生在經歷演算法多樣化的學習過程中,通過對演算法的歸納與優化,深究背後的數學思想,最終能靈活運用數學思想方法解決問題,讓數學思想方法逐步深入人心,內化為學生的數學素養。 ③復習課:學會知識的整理與復習,強化數學思想方法 復習有別於新知識的教學。它是在學生基本掌握了一定的數學知識體系、具備了一定的解題經驗,學生基本認識了某些數學思想方法的基礎上的復習數學。數學思想方法總是隱含在數學知識中,它與具體的數學知識結合成一個有機整體,但它卻無法像數學知識那樣編為章節來教學,而是滲透於全部的小學數學知識中。不同章節的數學知識往往蘊含著不同的數學思想方法,有時在一章或一單元的教學中,又涉及很多的數學思想方法。因此教師在上復習課前,教師要能總體把握教材中隱含的思想方法,明確前後知識間的聯系,做到「瞻前顧後」,並把數學思想方法的滲透落實到教學計劃中。復習時,除了幫助學生掌握好知識與技能,形成良好的認知結構外,還必須加強數學思想方法的滲透,適時地對某種數學思想方法進行揭示、概括和強化,對它的名稱、內容及其運用等予以點撥,使學生從數學思想方法的高度把握知識的本質和內在的規律,逐步體會數學思想方法的價值。 數學思想方法隨著學生對數學知識的深入理解表現出一定的遞進性。在課堂小結、單元復習和知識運用時,教師要引導學生自覺地檢查自己的思維活動,反思自己是怎樣發現和解決問題的,運用了哪些基本的思想方法等,及時對某種數學思想方法進行概括與提煉,使學生從數學思想方法的高度把握知識的本質,提升課堂教學的價值。 如我在教學五年級「平面圖形的面積復習」時,讓學生寫出各種平面圖形(長方形、正方形、平行四邊形、三角形、梯形和菱形)的面積計算公式後提問:這些計算公式是如何推導出來的?每位同學選擇1~2種圖形,利用學具演示推導過程,然後在小組內交流。交流之後我又指出:你能將這些知識整理成知識網路嗎?當學生形成知識網路後(如下圖),再次引導學生將這些平面圖形面積計算。如在復習多邊形的面積推導時,教師可引導學生思考:平行四邊形、三角形、梯形的面積計算公式各是怎樣推導的?有什麼共同點?讓學生提煉概括:學習平行四邊形面積計算時,我們應用割補法把它轉化成學過的長方形來推導;學習三角形和梯形的面積計算時,我們用兩個完全相同的圖形來拼合或把一個圖形割補轉化成學過的圖形來推導……經過系列概括提煉,學生得出其中重要的思想方法——轉化思想。學生一旦掌握了數學思想方法,不僅能使學生的知識結構更完善,還特別有助於今後的學習和運用。因為掌握了數學的思想方法,學生面對新的問題時將懂得怎樣去思考,真正實現質的「飛躍」。 (3)作業:掌握知識、形成技能、發展智力,應用數學思想方法 精心設計作業也是滲透數學思想方法的一條途徑。把作業設計好,設計一些蘊含數學思想方法的題目,採取有效的練習方式,既鞏固了知識技能,又有機地滲透了數學思想方法,一舉兩得。為此教師布置作業要有講究,在學生作業後,要不失時機地恰當地點評,讓學生不僅鞏固所學知識、習得解題技能,更重要的是能悟出其中的數學規律、數學思想方法。再如一位六年級老師布置了下面這道課後思考題。 在作業講評中,教師不僅要給出答案,更重要的是啟發學生思考:你是怎樣算的?是怎麼想的?其中運用了什麼思想方法? 結合上圖引導學生概括出其中的思想與方法:類比思想、數學建模思想、極限的思想、數形結合的思想。 (4)課外:培養興趣、增長見識、培養能力,提升數學思想方法 學校開展數學課外活動是課內教學的重要補充。根據學生的學習水平在年段里開設有關數學思想方法內容的講座,如果平時教學中的數學思想方法的點滴滲透是「美味點心」的話,那麼專題講座對學生來說就是「豐盛大餐」了,學生比較系統地了解了常見的數學思想方法以及應用,拓展學生的眼界;數學思想方法的滲透和數學課外實踐活動相結合可以使二者相得益彰,定期開展數學實踐活動可以發展學生的動手實踐能力和創新意識,發展學生應用數學思想方法解決問題的能力;定期開展數學智力競賽,不但激發優生學習數學的積極性,也考察學生掌握數學思想方法的情況;學生編數學小報、出板報等活動,可以增長學生見識,了解較多相關知識。形式多樣的數學課外活動,使數學思想方法潛移默化,引導學生在學與用中提升了對數學思想方法的認識。
『捌』 小學階段的數學課程中學生體驗到的數學思想有哪些
小學階段的數學課程中學生體驗到的數學思想有很多, 比如常遇到的有:一一對應思想、分類思想、假設思想、比較思想、符 號思想、 類比思想、 轉化思想、 分類思想、 集合思想、 數形結合思想、 統計思想、等量代換思想、化歸思想、變中求不變的...