『壹』 數學八種思維方法分別是
數學八種思維方法:代數思想、數形結合、轉化思想、對應思想方法、假設思想方法、比較思想方法、符號化思想方法、極限思想方法。
詳細介紹:
代數思想。
這是基本的數學思想之一,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!
數形結合。
是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,藉助於函數圖象等等都是數形給的體現。
轉化思想。
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
對應思想方法。
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
假設思想方法。
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
比較思想方法。
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
符號化思想方法。
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
極限思想方法。
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
『貳』 數學思維十種思維方式是什麼
數學思維十種思維方式:
1、對照法。
根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
2、公式法。
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。
3、比較法。
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
4、分類法。
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
5、分析法。
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的種思維方法叫做分析法。
6、綜合法。
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
7、方程法。
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。
方程法最大的特點是把未知數等同於已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。
8、參數法。
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的-種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。
9、排除法。
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。
這是一種不可缺少的形式思維方法。
10、特例法。
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。
特例法的邏輯原理是:事物的一般性存在於特殊性之中。
『叄』 數學思維十種思維方式是什麼
1、公式法。
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
2、對照法。
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
例:三個連續自然數的和是18,則這三個自然數從小到大分別是多少。
對照自然數的概念和連續自然數的性質可以知道:三個連續自然數和的平均數就是這三個連續自然數的中間那個數。
3、比較法。
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
1、找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
2、找聯系與區別,這是比較的實質。
3、必須在同一種關系下(同-種標准)進行比較,這是「比較」的基本條件。
4、要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
5、因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
例:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生。
這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。
找聯系:每人種樹棵數變化了,種樹的總棵數也發生了變化。
找解決思路:每人多種7-5=2(棵), 那麼,全班就多種了75+15=90(棵),全班人數為90+2=45(人)。
4、分類法。
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要故到大類之中的各小類不重復、不遺漏、不交叉。
例:自然數按約數的個數來分,可分成幾類。
答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1; (2)有兩個約數的,也叫質數,有無數個; (3)有三個約數的,也叫合數,也有無數個。
5、分析法。
把整體分解為部分,把復雜的事物分解為各個部分或要素,並對這些部分或要素進行研究、推導的種思維方法叫做分析法。
依據:總體都是由部分構成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。
也就是從求解的問題出發,正確選擇所需要的兩個條件,依次推導,-直到問題得到解決為止,這種解題模式是「由果溯因」。分析法也叫逆推法。常用「枝形圖」進行圖解思路。
例:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件。
思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴,還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。
6、綜合法。
把對象的各個部分或各個方面或各個要素聯結起來,並組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。
用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執因導果,也叫順推法。這種方法適用於己知條件較少,數量關系比較簡單的數學題。
例:兩個質數,它們的差是小於30的合數,它們的和即是11的倍數又是小於50的偶數。寫出適合上面條件的各組數。
思路: 11的倍數同時小於50的偶數有22和44。兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。
和是22的兩個質數有: 3和19, 5和17。它們的差都是小於30的合數嗎?和是44的兩個質數有: 3和41, 7和37, 13和31。它們的差是小於30的合數嗎?這就是綜合法的思路。
7、方程法。
用字母表示未知數,並根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法最大的特點是把未知數等同於已知數看待。
參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利於由已知向未知的轉化,從而提高了解題的效率和正確率。
例:一個數擴大3倍後再增加100,然後縮小2倍後再減去36,得50。求這個數。
例:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩餘6千克。這桶油重多少千克。
這兩題用方程解就比較容易。
8、參數法。
用只參與列式、運算而不需要解出的字母或數表示有關數量,並根據題意列出算式的-種方法叫做參數法。參數又叫輔助未知數,也稱中間變數。參數法是方程法延伸、拓展的產物。
例: 一項工作,甲多帶帶做要4天完成,乙多帶帶做要5天完成。兩人合做要多少天完成。
其實,把總工作量看作「1」,這個「1」就是參數,如果把總工作量看作「2、3、.....都可以,只不過看作「1」運算最方便。
9、排除法。
排除對立的結果叫做排除法。
排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例:為什麼說除2外,所有質數都是奇數。
這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那麼,這個偶數一定能被2整除,也就是說它一定有約數2。 一個數的約數除了1和它本身外,還有別的約數(約數2),這個數定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。
10、特例法。
對於涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一。般性存在於特殊性之中。
例:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。
可以取小圓半徑為1,那麼大圓半徑就是2。計算一下,就能得出正確結果。
『肆』 數學需要什麼思維
我是學數學與應用數學專業的,對於數學來說,我自己的經驗認為,學習數學,絕不能少的以下幾個思維:1、邏輯思維。他是對於數學的基礎,強大的邏輯思維,對於學好數學必不可少。2、抽象思維。抽象思維是解決我們的空間,近世代數,高等代數,實變函數等,需要理解抽象概念的基本思維。
『伍』 數學八種思維方法
數學八種思維方法:代數思想、數形結合、轉化思想、對應思想方法、假設思想方法、比較思想方法、符號化思想方法、極限思想方法。
這是基本的數學思想之一 ,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!
是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,藉助於函數圖象等等都是數形給的體現。
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
『陸』 初中數學解題思路
初中數學解題思路
數學的本質活動是思維。思維的對象是概念,思維的方式是邏輯。下面我就給大家講講初中數學解題思路,希望對大家有幫助。
一、如何獲得數學解題思路
解題思路的獲得,一般要經歷三個步驟:
1.從理解題意中提取有用的信息,如數式特點,圖形結構特徵等;
2.從記憶儲存中提取相關的信息,如有關公式,定理,基本模式等;
3.將上述兩組信息進行有效重組,使之成為一個合乎邏輯的和諧結構。
數學的表達,有3種方式:
1.文字語言,即用漢字表達的內容;
2.圖形語言,如幾何的圖形,函數的圖象;
3.符號語言,即用數學符號表達的內容,比如AB∥CD。
在初中學段中,不僅要學好數學知識,同時也要注意數學思想方法的學習,掌握好思想和方法,對數學的學習將會起到事半功倍的良好效果。其中整體與分類、類比與聯想、轉化與化歸和數形結合等不僅僅是學好數學的重要思想,同時對您今後的生活也必將起重要的作用。
先來看轉化思想:
我們知道任何事物都在不斷的運動,也就是轉化和變化。在生活中,為了解決一個具體問題,不論它有多復雜,我們都會把它簡單化,熟悉化以後再去解決。體現在數學上也就是要把難的問題轉化為簡單的問題,把不熟悉的問題轉化為熟悉的問題,把未知的問題轉化為已知的問題。
如方程的學習中,一元一次方程是學習方程的基礎,那麼在學習二元一次方程組時,可以通過加減消元和代入消元這樣的手段把二元一次方程組轉化為一元一次方程來解決,轉化(加減和代入)是手段,消元是目的;在學習一元二次方程時,可以通過因式分解把一元二次方程轉化為兩個一元一次方程,在這里,轉化(分解因式)是手段,降次是目的。把未知轉化為已知,把復雜轉化為簡單。同樣,三元一次方程組可以通過加減和代入轉化為二元一次方程組,再轉化為一元一次方程。在幾何學習中,三角形是基礎,可能通過連對角線等作輔助線的方法把多邊形轉化為多個三角形進行問題的解決。
所以,在數學學習和生活中都要注意轉化思想的運用,解決問題,轉化是關鍵。
二、初中數學學生必備的解題理念
1.如果把解題比做打仗,那麼解題者的「兵器」就是數學基礎知識,「兵力」就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是「兵法」。
2.數學家存在的主要理由就是解決問題。因此,數學的真正的組成部分是問題和解答。「問題是數學的心臟」。
3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對於學生而言,問題有三個特徵:
(1)接受性:學生願意解決並且具有解決它的知識基礎和能力基礎。
(2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。
(3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。
4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對於教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。
5.「問題解決」有不同的解釋,比較典型的觀點可歸納為4種:
(1)問題解決是心理活動。面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。
(2)問題解決是一個探究過程。把「問題解決」定義為「將先前已獲得的知識用於新的、不熟悉的情境的過程」。這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。
(3)問題解決是一個學習目的。「學習數學的主要目的在於問題解決」。因而,學習怎樣解決問題就成為學習數學的根本原因。此時,問題解決就獨立於特殊的問題,獨立於一般過程或方法,也獨立於數學的具體內容。
(4)問題解決是一種生存能力。重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界裡,學習生存的本領。
6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的觀點解釋現成的例子。其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。第三個表現是,多研究「怎樣解」,較少問「為什麼這樣解」。在這些誤區里,「解題而不立法、作答而不立論」。
7.人的思維依賴於必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。豐富的知識並加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。解題研究的一代宗師波利亞說過:「貨源充足和組織良好的知識倉庫是一個解題者的重要資本」。
8.熟練掌握數學基礎知識的體系。對於中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。還應掌握中學數學競賽涉及的基礎理論。深刻理解數學概念、准確掌握數學定理、公式和法則。熟悉基本規則和常用的方法,不斷積累數學技巧。
9.數學的本質活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現「相容」和「不容」的兩種可能。出現「相容」時,產生新結果,且被原概念吸收,並發展成新概念;當出現「不容」時,則產生了所謂的問題。這時,思維出現迂迴,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。至此,也產生新的結果,也被原思維吸收。這就是一個思維活動的全過程。
10.解題能力,表現於發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想像能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:
(1)掌握解題的科學程序;
(2)掌握數學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;
(3)掌握解題的基本策略,能「因題制宜」地選擇對口的解題思路,使用有效的解題方法、調動精明的解題技巧;
(4)具有敏銳的直覺。應該明白,我們的數學解題活動是在縱橫交錯的數學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,並非對每一個數學細節都洞察無遺,並非總能藉助於「三段論」的橋梁,而是在短時間內朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數學對象的本質領悟:
11.解題具有實踐性與探索性的特徵,「就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題」,「尋找題解,不能教會,而只能靠自己學會」。
12.所謂解題經驗,就是某些數學知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經驗所獲得的有序組合,就好像建築上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。
13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學生解題是一種意志教育。當學生求解那些對他來說並不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現後如何全力以赴,直撲問題的核心或主幹;當一旦突破關卡,如何去佔領問題的至高點,並冷靜地府視全局,從而得到問題的完善解決。如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那麼他的數學解題訓練就在最重要的地方失敗了。
14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講台裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產生誤導。這樣的教師越高明,學生越自卑。
三、淺議初中生數學學習差的原因
初中階段學生數學學習成績兩極分化非常嚴重,學習差的學生占的比例較大,特別在初中二年級表現得尤為明顯。那麼,造成兩極分化比較嚴重的原因是什麼?如何預防嚴重分化?本文結合自己的教學實踐作一些粗淺的探討。
一、造成分化的原因
1、被動學習。
許多同學進初中入後,還像小學那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到「門道」。
2、學不得法。
老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、不重視基礎。
一些「自我感覺良好」的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的「水平」,好高鶩遠,重「量」輕「質」,陷入題海。到正規作業或考試中不是演算出錯就是中途「卡殼」。
4、思維方式和學習方法不適應數學學習要求。
初二階段是數學學習分化最明顯的階段。一個重要原因是初中階段數學課程對學生抽象邏輯思維能力要求有了明顯提高。而初二學生正處於由直觀形象思維為主向以抽象邏輯思維為主過渡的又一個關鍵期,沒有形成比較成熟的抽象邏輯思維方式,而且學生個體差異也比較大,有的抽象邏輯思維能力發展快一些,有的則慢一些,因此表現出數學學習接受能力的差異。除了年齡特徵因素以外,更重要的是教師沒有很好地根據學生的實際和教學要求去組織教學活動,指導學生掌握有效的學習方法,促進學生抽象邏輯思維的發展,提高學習能力和學習適應性。
二、減少學習分化的教學對策
1、培養學生學習數學的興趣興趣是推動學生學習的動力,學生如果能在學習數學中產生興趣,就會形成較強的求知慾,就能積極主動地學習。培養學生數學學習興趣的途徑很多,如讓學生積極參與教學活動,並讓其體驗到成功的愉悅;創設一個適度的學習競賽環境;發揮趣味數學的作用;提高教師自身的教學藝術等等。
2、教會學生學習
(1)加強學法指導,培養良好學習習慣反復使用的方法將變成人們的習慣行為。什麼是良好的學習習慣?我向學生做了如下具體解釋,它包括制定計劃、課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
(2)制定計劃使學習目的明確,時間安排合理,不慌不忙,穩扎穩打,它是推動學生主動學習和克服困難的內在動力。但計劃一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨煉學習意志。
(3)課前自學是學生上好新課,取得較好學習效果的基礎。課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權。自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,盡可能把問題解決在課堂上。
(4)上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。「學然後知不足」,課前自學過的.同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
(5)及時復習是高效率學習的重要一環,通過反復閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯系起來,進行分析比較,一邊復習一邊將復習成果整理在筆記上,使對所學的新知識由「懂」到「會」。
(6)獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程。這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由「會」到「熟」。
(7)解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反復思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來復習強化,作適當的重復性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由「熟」到「活」。
(8)系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節。小結要在系統復習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯系。以達到對所學知識融會貫通的目的。經常進行多層次小結,能對所學知識由「活」到「悟」。
3.循序漸進,防止急躁由於年齡較小,閱歷有限,為數不少的初中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天「沖刺」一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,我們讓學生懂得學習是一個長期的鞏固舊知、發現新知的積累過程,決非一朝一夕可以完成,為什麼初中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功扎實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
三、在數學教學過程中加強抽象邏輯思維的訓練和培養。
要針對後進生抽象邏輯思維能力不適應數學學習的問題,從初一代數教學開始就加強抽象邏輯能力訓練,始終把教學過程設計成學生在教師指導下主動探求知識的過程。這樣學生不僅學會了知識,還學到了數學的基本思想和基本方法,培養了學生邏輯思維能力,為進一步學習奠定較好的基礎。
四、建立良好的師生關繫心理學認為,人的情感與認識過程是相聯系的,任何認識過程都伴隨著情感。
初中生對某一學科的學習興趣與學習情感密不可分,他們往往不是從理性上認為某學科重要而去學好它,常常因為不喜歡某課任老師而放棄該科的學習。和諧的師生關系是保證和促進學習的重要因素,特別要對後進生熱情輔導,真誠幫助,從精神上多鼓勵,學法上多指導,樹立他們的自信心,提高學習能力。
選擇題和填空題是中考中必考的題目,主要考查對概念、基礎知識的理解、掌握及其應用.填空題所佔的比例較大,是學生得分的重要來源.近幾年,隨著中考命題的創新、改革,相繼推出了一些題意新穎、構思精巧、具有一定難度的新題型.這就要求同學切實抓好基礎知識的掌握,強化訓練,提高解題的能力,才能在中考中減少失誤,有的放矢,從容應對。
解題規律:要想迅速、正確地解選擇題、填空題,除了具有準確計算能力、嚴密的推理能力外,還要有解選擇題、填空題的方法與技巧.常用方法有以下幾種:
(1)直接推演法:
直接從命題給出的條件出發,運用概念,公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法.
(2)驗證法:
由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代人條件中去驗證,找出正確答案.此法稱為驗證法(也稱代入法).當遇到定量命題時,常用此法.
(3)特值法:
用合適的特殊元素(如數或圖形)代人題設條件或結論中去,從而獲得解答.這種方法叫特殊元素法.
(4)排除、篩選法:
對於正確答案有且只有一個的選擇題,根據數學知識或推理、演算,把不正確的結論排除,餘下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法.
(5)圖解法:
藉助於符合題設條件的圖形或圖像的性質、特點來判斷,作出正確的選擇稱為圖解法.圖解法是解選擇題常用方法之一.
(6)分析法:
直接通過對選擇題的條件和結論,作詳盡地分析、歸納和判斷,從而選出正確的結果,稱為分析法.
(7)整體代入法:
把某一代數式進行化簡,然後並不求出某個字母的取值,而是直接把化簡的結果作為一個整體代入。
函數與方程思想
函數思想是指運用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系運用函數的圖像和性質去分析問題、轉化問題和解決問題。
方程思想,是從問題的數量關系入手,運用數學語言將問題轉化為方程或不等式模型去解決問題。
同學們在解題時,可利用轉化思想進行函數與方程間的相互轉化。
特殊與一般的思想
用這種思想解選擇題有時特別有效,因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據這一點,同學們可以直接確定選擇題中的正確選項。
不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
極限思想
極限思想解決問題的一般步驟為:
1、對於所求的未知量,先設法構思一個與它有關的變數;
2、確認這變數通過無限過程的結果就是所求的未知量;
3、構造函數(數列)並利用極限計演算法,得出結果或利用圖形的極限位置直接計算結果。
分類討論思想
同學們在解題時常常會遇到這樣一種情況,解到某一步之後,不能再以統一的方法、統一的式子繼續進行下去。
這是因為被研究的對象包含了多種情況,這就需要對各種情況加以分類,並逐類求解,然後綜合歸納得解,這就是分類討論。
引起分類討論的原因很多,數學概念本身具有多種情形,數學運演算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。
建議同學們在分類討論解題時,要做到標准統一,不重不漏。
「傻做題」不如「巧做題」,掌握數學解題思想是解答數學題時不可缺少的一步。
初中數學解題思維方法
充分利用教材內容:首先,通過對教材完整的分析和研究,理清和把握教材的體系和脈絡,統攬教材全局,高屋建瓴。然後,建立各類概念、知識點或知識單元之間的界面關系,歸納和揭示其特殊性質和內在的一般規律。進一步確定數學知識與其思想方法之間的結合點,建立一整套豐富的教學範例或模型,最終形成一個活動的知識與思想互聯網路。
以數學知識為載體:數學思想方法的滲透應根據教學計劃有步驟地進行。一般在知識的概念形成階段導入概念性數學思想,如方程思想、相似思想、已知與未知互相轉化的思想、特殊與一般互相轉化的思想等。在知識的結論、公式、法則等規律的推導階段,要強調和灌輸思維方法,如解方程的如何消元降次、函數的數與形的轉化、判定兩個三角形相似有哪些常用思路等。在知識的總結階段或新舊知識結合部分,要選配結構型的數學思想,如函數與方程思想體現了函數、方程、不等式間的相互轉化,分類討論思想體現了局部與整體的相互轉化。
重知識的形成過程:數學知識發生的過程也是其思想方法產生的過程。在此過程中,要向學生提供豐富的、典型的以及正確的直觀背景材料,創設使認知主體與客體之間激發作用的環境和條件,通過對知識發生過程的展示,使學生的思維和經驗全部投入到接受問題、分析問題和感悟思想方法的挑戰之中,從而主動構建科學的認知結構將數學思想方法與數學知識融會成一體,最終形成獨立探索分析、解決問題的能力。
;『柒』 數學思維有哪些
數學思維有比較思想方法、對應思想方法、假設思想方法、類比思想方法、符號化思想方法、分類思想方法、集合思想方法、轉化思想方法、統計思想方法、極限思想方法、代換思想方法、可逆思想方法、化歸思維方法、變中抓不變的思想方法、數學模型思想方法和整體思想方法等。
1、比較思想方法:是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
2、對應思想方法:對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
3、假設思想方法:假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
4、類比思想方法:是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得自然和簡潔。
5、符號化思想方法:用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式等。