導航:首頁 > 數字科學 > 數學模型構建的基本原則是什麼

數學模型構建的基本原則是什麼

發布時間:2022-08-25 04:21:25

㈠ 數學模型建立過程中所依據的基本定律有哪些

簡潔明了。
簡化原則:實際的人體生理系統是多變數(參數)、多層次的復雜系統,建立數學模型需要對原型進行必要的。
在數學建模過程中,模型假設與模型建立是最重要的兩個步驟,兩者構成機理分析的重要環節.本文將進一步探討,在這兩個步驟中應遵從的基本原則和具體方法,並結合實例闡明這些原則。

㈡ 數學建模怎麼做啊

數學建模就是用數學語言描述實際現象的過程。這里的實際現象既包涵具體的自然現象比如自由落體現象,也包涵抽象的現象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態,內在機制的描述,也包括預測,試驗和解釋實際現象等內容。
我們也可以這樣直觀地理解這個概念:數學建模是一個讓純粹數學家(指只懂數學不懂數學在實際中的應用的數學家)變成物理學家,生物學家,經濟學家甚至心理學家等等的過程。
數學模型一般是實際事物的一種數學簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質的區別。要描述一個實際現象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學性,邏輯性,客觀性和可重復性,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。
數學是研究現實世界數量關系和空間形式的科學,在它產生和發展的歷史長河中,一直是和各種各樣的應用問題緊密相關的。數學的特點不僅在於概念的抽象性、邏輯的嚴密性,結論的明確性和體系的完整性,而且在於它應用的廣泛性,進入20世紀以來,隨著科學技術的迅速發展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數學的應用越來越廣泛和深入,特別是在即將進入21世紀的知識經濟時代,數學科學的地位會發生巨大的變化,它正在從國或經濟和科技的後備走到了前沿。經濟發展的全球化、計算機的迅猛發展,數學理倫與方法的不斷擴充使得數學已經成為當代高科技的一個重要組成部分和思想庫,數學已經成為一種能夠普遍實施的技術。培養學生應用數學的意識和能力已經成為數學教學的一個重要方面。
應用數學去解決各類實際問題時,建立數學模型是十分關鍵的一步,同時也是十分困難的一步。建立教學模型的過程,是把錯綜復雜的實際問題簡化、抽象為合理的數學結構的過程。要通過調查、收集數據資料,觀察和研究實際對象的固有特徵和內在規律,抓住問題的主要矛盾,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分折和解決問題。這就需要深厚扎實的數學基礎,敏銳的洞察力和想像力,對實際問題的濃厚興趣和廣博的知識面。數學建模是聯系數學與實際問題的橋梁,是數學在各個領械廣泛應用的媒介,是數學科學技術轉化的主要途徑,數學建模在科學技術發展中的重要作用越來越受到數學界和工程界的普遍重視,它已成為現代科技工作者必備的重要能力之。

㈢ 數學建模5步建模發的五個基本步驟是什麼

所謂提煉數學模型,就是運用科學抽象法,把復雜的研究對象轉化為數學問題,經合理簡化後,建立起揭示研究對象定量的規律性的數學關系式(或方程式)。這既是數學方法中最關鍵的一步,也是最困難的一步。提煉數學模型,一般採用以下六個步驟完成:

第一步:根據研究對象的特點,確定研究對象屬哪類自然事物或自然現象,從而確定使用何種數學方法與建立何種數學模型。即首先確定對象與應該使用的數學模型的類別歸屬問題,是屬於「必然」類,還是「隨機」類;是「突變」類,還是「模糊」類。

第二步:確定幾個基本量和基本的科學概念,用以反映研究對象的狀態。這需要根據已有的科學理論或假說及實驗信息資料的分析確定。例如在力學系統的研究中,首先確定的摹本物理量是質主(m)、速度(v)、加速度(α)、時間(t)、位矢(r)等。必須注意確定的基本量不能過多,否則未知數過多,難以簡化成可能數學模型,因此必須詵擇出實質性、關鍵性物理量才行。

第三步:抓住主要矛盾進行科學抽象。現實研究對象是復雜的,多種因素混在一起,因此,必須變復雜的研究對象為簡單和理想化的研究對象,做到這一點相當困難,關鍵是分清主次。如何分清主次只能具體問題具體分析,但也有兩條基本原則:一是所建數學模型一定是可能的,至少可給出近似解;二是近似解的誤差不能超過實際問題所允許的誤差范圍。

第四步:對簡化後的基本量進行標定,給出它們的科學內涵。即標明哪些是常量,哪些是已知量,哪些是待求量,哪些是矢量,哪些是標量,這些量的物理含義是什麼?

第五步:按數學模型求出結果

㈣ 如何將實際問題轉化為數學問題,其基本步驟有哪些

把實際問題化成一個數學問題,這個過程稱為數學建模,其步驟如下:

1、審讀題意:從讀懂文字敘述,理解實際背景入手,概括出問題的數學實質。

2、實際問題數學化(即數學建模)將實際問題轉化為方程(組)、不等式組、函數等數學問題。

3、數學問題標准化,將建好的數學模型轉化為一個常規的數學問題。

(4)數學模型構建的基本原則是什麼擴展閱讀:

數學模型的基本原則:

1、簡化原則

現實世界的原型都是具有多因素、多變數、多層次的比較復雜的系統,對原型進行一定的簡化即抓住主要矛盾,數學模型應比原型簡化,數學模型自身也應是「最簡單」的。

2、可推導原則

由數學模型的研究可以推導出一些確定的結果,如果建立的數學模型在數學上是不可推導的,得不到確定的可以應用於原型的結果,這個數學模型就是無意義的。

3、反映性原則

數學模型實際上是人對現實世界的一種反映形式,因此數學模型和現實世界的原型就應有一定的「相似性」,抓住與原型相似的數學表達式或數學理論就是建立數學模型的關鍵性技巧。

㈤ 怎樣在數學教學中建構數學模型發展空間概念

數學課程標准》指出:數學是來源於生活的。在數學教學中,強調的是將數學知識情境化,生活化。小學數學課程在考慮數學自身特點的同時,還要遵循小學生學習數學的認知規律,從已有的生活經驗出發、讓他們親身經歷,將自己所遇到的許多同類的實際問題抽象成數學模型,並加以解釋再應用,從而使學生更加深刻地理解數學。
一、對數學模型建構的認識
數學教學就是在一定基礎上進行對數學知識模型的建立及其方法的應用。數學模型化是一種極為重要的數學思想方法。對於學生學習和處理數學問題有著極其重要的影響,它可以幫助學生體會數學的作用,產生對數學學習的興趣。因而可以得出,在數學教學中,建構和掌握數學模型化方法是培養能力的一條非常重要的途徑。
數學模型是建立在數學一般的基礎知識與應用數學知識之間的一座重要的橋梁,這是在平時的數學教學中教師應該著重培養學生所具備的一種數學思想和方法。建立模型更為重要的是強調用真實的情景展示問題,營造解決問題的環境,以幫助學生在解決問題的過程中活化知識,變事實性知識為解決問題的工具。學生在探索、獲得數學模型的過程中,也同時獲得了建構數學模型、解決實際問題的思想與方法,而這對學生的發展來說,其意義遠大於僅僅獲得某些數學知識。
所謂數學模型指的是對數學知識進行簡化和提煉、再通過數學語言、符號或圖形等形式對其進行概括與歸納、描述、反映特定的問題或具體事物之間關系的數學結構。從廣義理解,數學模型包括數學中的各種概念,各種公式和各種理論。因為它們都是由現實世界的原型抽象出來的,從這意義上講,整個數學也可以說是一門關於數學模型的科學。從狹義理解,數學模型只指那些反映了特定問題或特定的具體事物系統的數學關系結構,這個意義上也可理解為聯系一個系統中各變數間內在關系的數學表達。
建立數學模型是數學學習的重要任務。《數學課程標准》在學習內容上,安排了「數與代數」、「空間與圖形」、「統計與概率」「實踐與綜合應用」四塊學習領域,強調學生的數學活動,發展學生的數感、符號感、空間觀念、以及應用意識與推理的能力。這些內容中最重要的部分,就是數學模型。在小學階段,數學模型的表現形式為一系列的概系統、演算法系統、關系、定律、公理系統等。可以這樣說,學生學習知識的過程,實際上是對一系列數學模型的理解、把握的過程。
二、數學模型建構的基本原則
1、簡化性原則——現實世界的原型都是具有多因素、多變數、多層次的比較復雜的系統,對原型進行一定的簡化即抓住主要矛盾,數學模型應比原型簡化,數學模型自身也應是「最簡單」的。
2、可推導原則——由數學模型的研究可以推導出一些確定的結果,如果建立的數學模型在數學上是不可推導的,得不到確定的可以應用於原型的結果,這個數學模型就是無意義的。
3、反映性原則——數學模型實際上是人對現實世界的一種反映形式,因此數學模型和現實世界的原型就應有一定的「相似性」,抓住與原型相似的數學表達式或數學理論就是建立數學模型的關鍵性技巧。
三、數學模型建構的方法
1、建立數學模型應該讓學生大膽的去猜想,再在直觀的事例中進行具體地分析。
猜想是一種帶有一定直覺性的比較高級的思維方式,對於探索或發現性學習來說,猜想是一種非常重要的思維方法。在教學生一些數學定理之前,我們不妨可以讓他們根據已有的知識大膽地去猜想一下這個定理。例如:學生在掌握了長方形、正方形、平行四邊形、三角形等平面圖形面積計算的推導過程以及計算方法之後,在教學梯形的面積計算時,我讓學生大膽地猜想一下它的面積計算可能會和誰有關,根據以往所學的知識,學生應該會想到轉化的數學思想,推測出可能會與平行四邊形的面積計算有關,再讓學生從我所提供的各種各樣的梯形材料中進行研究,從直觀的圖形中開展具體地分析,從而找出其內在的聯系與規律,最終得出結論。
2、建構數學模型應該讓學生在許多直觀或貼近生活的實例中進行有效地綜合比較。
綜合是指學生在學習的過程中將數學現象、數學實例的分析情況進行整理組合,從而形成對這一類數學知識的總體認識。比較是對有關的數學現象、數學實例,區別它們的相同之處和不同之處。數學中的比較是多方面的,包括多少與大小的比較,相同與不同的比較,結構與關系的比較,定律與性質的比較等。比較的目的是認識事物的聯系與區別,明確彼此之間存在的同一性與相似性,一邊解釋其背後的共同模型。例如:在教學《生活中的百分率》,我先由死海的含鹽率引出,在給出許多相關的實例,比如:出勤率、合格率、成活率、及格率、發芽率、出粉率等等之後,學生通過綜合得出以上這些都是生活中的百分率,都是求部分量占總量的百分之幾。再通過比較得出雖然都是百分率,也各有各的不同,含鹽率是指鹽的重量占鹽水重量的百分之幾,而出勤率則是指實際出勤的人數占應出勤總人數的百分之幾。
3、建構數學模型應該讓學生從具體的實例中抽象出它們所具有的共性,再用數學的語言或符號等進行概括。
抽象是從許多數學實例或數學現象中,發現其共同的本質特點。而概括則是把抽象出來的共同點用數學的語言或符號等形式進行歸納和總結。例如:在教學分數與除法之間的關系,通過大量的實例使學生從中抽象出它們的共性是:被除數÷除數=被除數/除數,最終用數學符號概括出:a÷b=a/b(b≠0)的結論。
4、建構數學模型一定要讓學生進行充分地驗證,得出結論之後再進行有效的應用。
學生在初步得出結論時要給予足夠的空間讓學生進行充分地驗證,在驗證的過程中可能會發現新的現象,並在解決新問題的過程中,進一步完善自己的猜想,最終發現規律得出結論。並運用這個規律解決更多的實際問題。這不僅是一個主動學習的過程,更是發現學習、創新學習的過程。例如:我在教學三角形面積時,學生通過兩個完全一樣的銳角三角形拼成了一個平行四邊形,並通過分析、抽象、概括出了之間的規律,這時我提出那直角三角形或鈍角三角形是不是也是這樣呢?學生再通過充分地操作進行驗證,從而得出只要是兩個完全相同的三角形就能拼成一個平行四邊形,都具備以上的規律,同時學生還會發現兩個直角三角形拼成的不僅是平行四邊形,更是一個長方形,兩個等腰直角三角形拼成的不僅是一個長方形,更是一個特殊的長方形即正方形。
5、建構數學模型應當以數學活動為主要形式。
由於數學思想方法不同於數學知識點,不是一個定義、概念就能代替的。有其活動形式和豐富的內涵。因此,應當在多種形式的數學活動中教授數學思想方法。
(1)問題的生活實景——選擇恰當的環境背景與相關材料引起討論。
(2)問題的合理詮釋——選擇適當的數學形式,重新進行表述。
(3)問題的充分解決——展示數學思想方法形成的心理活動過程,主要通過認知對象或問題解決來進行。
(4)問題的數學模式——形成認知與思維的模式,使數學概念或模式游離於具體材料之外,進而促進學生數學觀念(意識)的形成。
6、建構數學模型應當融多種思維方式於一體。
演示——概括的方法,同類比較——抽象的方法,直觀思維、形象思維、抽象思維、邏輯思維等都應當在數學教學中不斷地出現,使得教學過程經歷:直觀化——准模型化——模型化的過程。
數學模型化的思想與常見的數學知識教學不同,它應是:具體的生活實景——分析——抽象——數學描述——模型的建立——思想方法的形成——問題解決(或認識形成)——觀念(意識)形成——解決更多的實際問題。
四、數學模型建構的基本步驟
用數學模型法解決最重要的就是建立適合問題的數這模型。有以下幾個基本步驟:
1、提出問題並用准確的語言加以表述;
2、分析各種因素,作出理論假設;
3、建立數學模型;
4、按數學模型進行數學推導,得出有意義的數學結果;
5、對數學結論進行分析,若符合要求,可以將數學模型進行一般化和體系化按此解決問題,若不符合,則進一步探討,修改假設,重建模型,直止符合要求為止;
6、優化。對一個問題的假設和數學模型不斷加以修改,進行最優化處理。因為對一個問題或一類問題也可能有幾個模型,以對它們要進行比較,直到找到最優模型。
數學模型是數學基礎知識與數學應用之間的橋梁,建立和處理數學模型的過程,就是將數學理論知識應用於實際問題的過程。並且,建立模型更為重要的是,學生能體會到從實際情景中發展數學,獲得再創造數學的絕好機會,在建立模型,形成新的數學知識的過程中,學生能更加體會到數學與大自然和社會的天然聯系。因此,在小學數學教學中,讓學生從現實問題情景中學數學、做數學、用數學應該成為我們的一種共識,只有這樣,數學教學中的「問題解決」才有了相應的環境與氛圍。

㈥ 什麼是數學模型數學建模可遵循哪些基本原則

建模要求 真實完整 一)真實、系統、完整,形象反映客觀現象; 二)必須具代表性; 三)具外推性即能原型客體信息模型研究實驗能關於原型客體原; 四)必須反映完基本任務所達各種業績且要與實際情況相符合 簡明實用 建模程要本質東西及其關系反映進非本質、反映客觀真實程度影響東西掉使模型保證定精確度條件盡能簡單操作數據易於採集 適應變化 隨著關條件變化認識發展通相關變數及參數調整能適應新情

閱讀全文

與數學模型構建的基本原則是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:744
乙酸乙酯化學式怎麼算 瀏覽:1409
沈陽初中的數學是什麼版本的 瀏覽:1360
華為手機家人共享如何查看地理位置 瀏覽:1051
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:891
數學c什麼意思是什麼意思是什麼 瀏覽:1418
中考初中地理如何補 瀏覽:1309
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:707
數學奧數卡怎麼辦 瀏覽:1398
如何回答地理是什麼 瀏覽:1032
win7如何刪除電腦文件瀏覽歷史 瀏覽:1061
大學物理實驗干什麼用的到 瀏覽:1491
二年級上冊數學框框怎麼填 瀏覽:1710
西安瑞禧生物科技有限公司怎麼樣 瀏覽:991
武大的分析化學怎麼樣 瀏覽:1253
ige電化學發光偏高怎麼辦 瀏覽:1342
學而思初中英語和語文怎麼樣 瀏覽:1662
下列哪個水飛薊素化學結構 瀏覽:1428
化學理學哪些專業好 瀏覽:1491
數學中的棱的意思是什麼 瀏覽:1068