導航:首頁 > 數字科學 > 高斯數學題1加到99等於多少

高斯數學題1加到99等於多少

發布時間:2022-08-26 14:34:51

① 從1加到999等於多少 高斯算數

1+2+.+999
=(1+999)*999/2
=499500

② 從1加到99等於多少

答案是4950。

計算過程:(1+99)+(2+98)+(3+97)……+(49+51)+50=4950 一共有49個100,還餘一個50,所以結果是4950。

方法參考高斯演算法,以首項加末項乘以項數除以2用來計算「1+2+3+4+5+···+(n-1)+n」的結果。這樣的演算法被稱為高斯演算法。

計算方法(公式):

具體的方法是:首項加末項乘以項數除以2

項數的計算方法是末項減去首項除以項差(每項之間的差)加1。

如:1+2+3+4+5+······+n,則用字母表示為:n(1+n)/2

(2)高斯數學題1加到99等於多少擴展閱讀:

等差數列求和公式

當d≠0時,Sn是n的二次函數,(n,Sn)是二次函數 的圖象上一群孤立的點。利用其幾何意義可求前n項和Sn的最值。

注意:公式一二三事實上是等價的,在公式一中不必要求公差等於一。

求和推導

證明:由題意得:

Sn=a1+a2+a3+。。。+an①

Sn=an+a(n-1)+a(n-2)+。。。+a1②

①+②得:

2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](當n為偶數時)

Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d這種形式表示可以發現括弧裡面的數都是一個定值,即(A1+An)。

③ 1+2+3一直加到99等與幾

答案是4950。

這是高中數學的等差數列,公差為1,共有99項,則利用求和公式:Sn=(a1+an)*n/2
其中n=99,a1=1,an=a99=99
代入公式可以求得S99=(1+99)*99/2=4950

拓展資料:

等差數列

等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用A、P表示。這個常數叫做等差數列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通項公式為:an=a1+(n-1)*d。首項a1=1,公差d=2。前n項和公式為:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。

注意:以上n均屬於正整數。

基本公式

通項公式

a(n)=a(1)+(n-1)×d , 注意:n是正整數

即 第n項=首項+(n-1)×公差

n是項數

前n項和公式

S(n)=n*a(1)+n*(n-1)*d/2或S(n)=n*(a(1)+a(n))/2

注意: n是正整數(相當於n個等差中項之和)

等差數列前N項求和,實際就是梯形公式的妙用:

上底為:a1首項,下底為a1+(n-1)d,高為n.

即[a1+a1+(n-1)d]* n/2=a1 n+ n (n-1)d /2.

相關故事

高斯是德國數學家、天文學家和物理學家,被譽為歷史上偉大的數學家之一,和阿基米德、牛頓並列,同享盛名。

高斯1777年4月30日生於不倫瑞克的一個工匠家庭,1855年2月23日卒於格丁根。幼時家境貧困,但聰敏異常,受一貴族資助才進學校受教育。1795~1798年在格丁根大學學習,1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文台台長直至逝世。

高斯7歲那年,父親送他進了耶卡捷林寧國民小學,讀書不久,高斯在數學上就顯露出了常人難以比較的天賦,最能證明這一點的是高斯十歲那年,教師彪特耐爾布置了一道很繁雜的計算題,要求學生把1到 100的所有整數加起來,教師剛敘述完題目,高斯即刻把寫著答案的小石板交了上去。彪特耐爾起初並不在意這一舉動,心想這個小傢伙又在搗亂,但當他發現全班唯一正確的答案屬於高斯時,才大吃一驚。

而更使人吃驚的是高斯的演算法,他發現:第一個數加最後一個數是101,第二個數加倒數第二個數的和也是101,……共有50對這樣的數,用101乘以50得到5050。這種演算法是教師未曾教過的計算等級數的方法,高斯的才華使彪特耐爾十分激動,下課後特地向校長匯報,並聲稱自己已經沒有什麼可教高斯的了。

④ 1加到99是多少,怎麼算呢

答案是4950

計算過程:(1+99)+(2+98)+(3+97)……+(49+51)+50=4950 一共有49個100,還餘一個50,所以結果是4950

方法參考高斯演算法,以首項加末項乘以項數除以2用來計算「1+2+3+4+5+···+(n-1)+n」的結果。這樣的演算法被稱為高斯演算法。

計算方法(公式):

具體的方法是:首項加末項乘以項數除以2

項數的計算方法是末項減去首項除以項差(每項之間的差)加1.

如:1+2+3+4+5+······+n,則用字母表示為:n(1+n)/2

(4)高斯數學題1加到99等於多少擴展閱讀:

約翰·卡爾·弗里德里希·高斯(Johann Carl Friedrich Gauss ,1777年4月30日-1855年2月23日)德國著名數學家、物理學家、天文學家、大地測量學家,是近代數學奠基者之一,被認為是歷史上最重要的數學家之一,並享有「數學王子」之稱。

高斯和阿基米德、牛頓並列為世界三大數學家。一生成就極為豐碩,以他名字「高斯」命名的成果達110個,屬數學家中之最。他對數論、代數、統計、分析、微分幾何、大地測量學、地球物理學、力學、靜電學、天文學、矩陣理論和光學皆有貢獻。

參考鏈接:網路--高斯演算法網頁鏈接

⑤ 1加到99等於多少

1到99,每兩個,例如2與98,組成100,共49組,還有1個50,加起來共4950

⑥ 從1加到99怎樣簡便運算

1+2+3+……+99
=(1+99)×99÷2
=100×99÷2
=9900÷2
=4950

解題過程:

我們可以很容易看出這是一個等差數列,首相為1,末相為99,公差為1,項數為99。利用等差數列的求和公式可以求解:(首相+末相)*公差再除以2就是答案了。

也可以用高斯演算法,我們可以很容易發現1+99=2+98=......,原式中有49個1+99=100所以就是4900,還有一個沒有配對的50再加上就是1900+50=4950了。

(6)高斯數學題1加到99等於多少擴展閱讀:

等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用A、P表示。這個常數叫做等差數列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通項公式為:an=a1+(n-1)*d。首項a1=1,公差d=2。前n項和公式為:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均屬於正整數。

⑦ 從1加到99怎樣簡便運算

這個問題的最簡便演算法便是知名的高斯演算法:以首項加末項乘以項數除以2用來計算「1+2+3+4+5+···+(n-1)+n」的結果。

所以這題的答案就是(1+99)*99/2=50*99=4950.

下圖這個帥氣的老頭就是高斯:

高斯

演算法由來:高斯小時候非常淘氣,一次數學課上,老師為了讓他們安靜下來,給他們列了一道很難的算式,讓他們一個小時內算出1+2+3+4+5+6+……+100的得數。全班只有高斯用了不到20分鍾給出了答案,因為他想到了用(1+100)+(2+99)+(3+98)……+(50+51)……一共有50個101,所以50×101就是1加到一百的得數。後來人們把這種簡便演算法稱作高斯演算法。

⑧ 1加到99等於多少

你知道高斯么,他用1+100,,2+99,3+98,。。。50+51,這樣組合都是101,所以1加到100是等於50乘以101,即5050,所以1加到99等於4950

⑨ 1一直加到99等於多少

運用高斯定理,從1加到100的和為5050,所以從1加到99就是:5050-100=4950

⑩ 高斯數學1十到100的公式

(1+100)×100÷2=5050。

高斯求和

德國著名數學家高斯幼年時代聰明過人,上學時,有一天老師出了一道題讓同學們計算:1+2+3+4+…+99+100。

老師出完題後,全班同學都在埋頭計算,小高斯卻很快算出答案等於5050。原來小高斯通過細心觀察發現:

1+100=2+99=3+98=…=49+52=50+51

1~100正好可以分成這樣的50對數,每對數的和都相等。於是,小高斯把這道題巧算為:

(1+100)×100÷2=5050。

(10)高斯數學題1加到99等於多少擴展閱讀:

高斯的故事:

高斯是一對普通夫婦的兒子。他的母親是一個貧窮石匠的女兒,雖然十分聰明,但卻沒有接受過教育,近似於文盲。在她成為高斯父親的第二個妻子之前,她從事女傭工作。他的父親曾做過園丁,工頭,商人的助手和一個小保險公司的評估師。當高斯三歲時便能夠糾正他父親的借債帳目的事情,已經成為一個軼事流傳至今。他曾說,他能夠在腦袋中進行復雜的計算。

小時候高斯家裡很窮,且他父親不認為學問有何用,但高斯依舊喜歡看書,話說在小時候,冬天吃完飯後他父親就會要他上床睡覺,以節省燃油,但當他上床睡覺時,他會將蕪菁的內部挖空,裡面塞入棉布卷,當成燈來使用,以繼續讀書。

當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會產生一門完全不同的幾何學,即非歐幾里德幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。

等差數列公式

等差數列公式an=a1+(n-1)d

前n項和公式為:Sn=na1+n(n-1)d/2

若公差d=1時:Sn=(a1+an)n/2

若m+n=p+q則:存在am+an=ap+aq

若m+n=2p則:am+an=2ap

以上n均為正整數。和Sn,首相a1,末項an,公差d,項數n。

閱讀全文

與高斯數學題1加到99等於多少相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:744
乙酸乙酯化學式怎麼算 瀏覽:1409
沈陽初中的數學是什麼版本的 瀏覽:1360
華為手機家人共享如何查看地理位置 瀏覽:1051
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:891
數學c什麼意思是什麼意思是什麼 瀏覽:1418
中考初中地理如何補 瀏覽:1309
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:707
數學奧數卡怎麼辦 瀏覽:1398
如何回答地理是什麼 瀏覽:1032
win7如何刪除電腦文件瀏覽歷史 瀏覽:1061
大學物理實驗干什麼用的到 瀏覽:1491
二年級上冊數學框框怎麼填 瀏覽:1710
西安瑞禧生物科技有限公司怎麼樣 瀏覽:991
武大的分析化學怎麼樣 瀏覽:1253
ige電化學發光偏高怎麼辦 瀏覽:1342
學而思初中英語和語文怎麼樣 瀏覽:1662
下列哪個水飛薊素化學結構 瀏覽:1428
化學理學哪些專業好 瀏覽:1491
數學中的棱的意思是什麼 瀏覽:1068