A. 初三數學知識點總結歸納
只有學習精彩,生命才精彩,只有學習成功,事業才成功。每一門科目都有自己的 學習 方法 ,數學作為最燒腦的科目之一,需要不斷的練習。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
目錄
初三新學期數學知識點
初三數學上冊知識點歸納
初三數學復習五大方法
初三新學期數學知識點一、圓的定義
1、以定點為圓心,定長為半徑的點組成的圖形。
2、在同一平面內,到一個定點的距離都相等的點組成的圖形。
二、圓的各元素
1、半徑:圓上一點與圓心的連線段。
2、直徑:連接圓上兩點有經過圓心的線段。
3、弦:連接圓上兩點線段(直徑也是弦)。
4、弧:圓上兩點之間的曲線部分。半圓周也是弧。
(1)劣弧:小於半圓周的弧。
(2)優弧:大於半圓周的弧。
5、圓心角:以圓心為頂點,半徑為角的邊。
6、圓周角:頂點在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長。
三、圓的基本性質
1、圓的對稱性
(1)圓是圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是對稱圖形。
2、垂徑定理。
(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3、圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。
5、夾在平行線間的兩條弧相等。
6、設⊙O的半徑為r,OP=d。
1.數的分類及概念數系表:
說明:分類的原則:1)相稱(不重、不漏)2)有標准
2.非負數:正實數與零的統稱。(表為:x0)
性質:若干個非負數的和為0,則每個非負數均為0。
3.倒數:
①定義及表示法
②性質:A.a1/a(a1);B.1/a中,aC.0
4.相反數:
①定義及表示法
②性質:A.a0時,aB.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:
①定義(三要素)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:
①定義(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│0,符號││是非負數的標志;
③數a的絕對值只有一個;
④處理任何類型的題目,只要其中有││出現,其關鍵一步是去掉││符號。
一、回歸課本,夯實基礎,做好預習。
數學的基本概念、定義、公式,數學知識點之間的內在聯系,基本的數學解題思路與方法,是復習的重中之重。回歸課本,要先對知識點進行梳理,把教材上的每一個例題、習題再做一遍,確保基本概念、公式等牢固掌握,要穩扎穩打,不要盲目攀高,欲速則不達。復習課的內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之後,再聽老師講課,就會在記憶上對老師講的內容有所取捨,把重點放在自己還未掌握的內容上,提高學習效率。
二、抓住關鍵,突出重點,不以題量論英雄
學好數學要做大量的題,但反過來做了大量的題,數學不一定好。「不要以題量論英雄」,題海戰術,有時候往往起到事倍功半的效果,因此要提高解題的效率。做題的目的在於檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那麼多做題的結果,反而鞏固了你的缺欠,在准確地把握住基本知識和方法的基礎上做一定量的練習是必要的,但是要有針對性地做題,突出重點,抓住關鍵。
復習中,所謂突出重點,主要是指突出教材中的重點知識,突出不易理解或尚未理解深透的知識,突出數學思想與解題方法。數學思想與方法是數學的精髓,是聯系數學中各類知識的紐帶。要抓住教材中的重點內容,掌握分析方法,從不同角度出發思索問題,由此探索一題多解、一題多變和一題多用之法。培養正確地把日常語言轉化為代數、幾何語言。並逐步掌握聽、說、讀、寫譯的數學語言技能。
三、提高復習興趣,克服「高原現象」
高原現象在數學復習階段表現得十分明顯。平時授新課,新鮮有趣;搞復習,要重復已學的內容,有的同學會覺得單調、枯燥無味,致使成績提高緩慢,甚至下降。針對這種情況,提醒同學們,一方面要從思想上提高對復習的認識,主動進行復習;另一方面,要以「新」提高復習的積極性。諸如制訂新的復習計劃;採用靈活的 復習方法 ;抓住新穎有趣的內容和習題,把知識串連起來,使書「由厚變薄」。
四、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復習課和評講課,到初三所有課都進入復習階段,通過復習,學生要知道自己哪些知識點掌握的比較好,哪些知識點有待提高,因此在復習課之前一定要有自已的思考,這樣聽課的目的就明確了。現在學生手中都會有一些復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的舊知識,可進行查漏補缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進行比較、分析即可提高自己的數學思維;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,事半功倍。此外對於老師講課中的難點,重點要作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
五、要養成良好的解題習慣
如仔細閱讀題目,看清數字,規范解題格式,部分同學(尤其是腦子比較好的同學),自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規范,在正規考試中即使答案對了,由於過程不完整被扣分較多。部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因並加以改正。這些同學到了考場上常會出現心理性錯誤,導致「會而不對」,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正。「會而不對」是初三數學學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,後患無窮。
初三數學知識點 總結 歸納相關 文章 :
★ 初三數學知識點考點歸納總結
★ 初三數學知識點歸納總結
★ 初三數學知識點歸納人教版
★ 初三數學知識點上冊總結歸納
★ 最新初三數學知識點總結大全
★ 初三數學中考復習重點章節知識點歸納
★ 初三數學復習知識點總結
★ 初三中考數學知識點歸納總結
★ 中考數學知識點總結最全提綱
★ 初三數學知識點總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();B. 初三數學重要知識點歸納
很多同學想知道初三數學重要知識點有哪些?下面和我具體了解一下吧,供大家參考。
(1)、確定一個圓的要素是圓心和半徑。
(2)①連結圓上任意兩點的線段叫做弦。②經過圓心的弦叫做直徑。③圓上任意兩點間的部分叫做圓弧,簡稱弧。④小於半圓周的圓弧叫做劣弧。⑤大於半圓周的圓弧叫做優弧。⑥在同圓或等圓中,能夠互相重合的弧叫做等弧。⑦頂點在圓上,並且兩邊和圓相交的角叫圓周角。⑧經過三角形三個頂點可以畫一個圓,並且只能畫一個,經過三角形三個頂點的圓叫做三角形的外接圓,三角形外接圓的圓心叫做這個三角形的外心,這個三角形叫做這個圓的內接三角形,外心是三角形各邊中垂線的交點;直角三角形外接圓半徑等於斜邊的一半。⑨與三角形各邊都相切的圓叫做三角形的內切圓,三角形的內切圓的圓心叫做三角形的內心,這個三角形叫做圓外切三角形,三角形的內心就是三角形三條內角平分線的交點。
(1)定理在同圓或等圓中,如果圓心角相等,那麼它所對的弧相等,所對的弦相等,所對的弦的弦心距相等。推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對的其餘各組量都分別相等。
(2)垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。
推論1:①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧。②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
(3)圓周角定理:一條弧所對的圓周角等於該弧所對的圓心角的一半。推論1在同圓或等圓中,同弧或等弧所對的圓周角相等,相等的圓周角所對的弧也相等。推論2半圓或直徑所對的圓周角都相等,都等於90。90的圓周角所對的弦是圓的直徑。推論3如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形。
(4)切線的判定與性質:判定定理:經過半徑的外端且垂直與這條半徑的直線是圓的切線。性質定理:圓的切線垂直於經過切點的半徑;經過圓心且垂直於切線的直線必經過切點;經過切點切垂直於切線的直線必經過圓心。
(5)定理:不在同一條直線上的三個點確定一個圓。
(6)圓的切線上某一點與切點之間的線段的長叫做這點到圓的切線長;切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分這兩條切線的夾角。
(7)圓內接四邊形對角互補,一個外角等於內對角;圓外切四邊形對邊和相等;
(8)弦切角定理:弦切角等於它所它所夾弧對的圓周角。
(9)和圓有關的比例線段:相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等。如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項。切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。從圓外一點引圓的兩條割線,這一點到每條割線與圓交點的兩條線段長的積相等。
(10)兩圓相切,連心線過切點;兩圓相交,連心線垂直平分公共弦。
加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。②任何數與0相乘得0。③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
大家知道,二次函數有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。
C. 初三數學重點知識點歸納大全
數學 最重要的就是 知識點 ,下面我就大家整理一下初三數學重點知識點歸納大全,僅供參考。
函數易錯知識點
1:各個待定系數表示的的意義。
2:熟練掌握各種函數解析式的求法,有幾個的待定系數就要幾個點值。
3:利用圖像求不等式的解集和方程(組)的解,利用圖像性質確定增減性。
4:兩個變數利用函數模型解實際問題,注意區別方程、函數、不等式模型解決不等領域的問題。
5:利用函數圖象進行分類(平行四邊形、相似、直角三角形、等腰三角形)以及分類的求解方法。
方程(組)與不等式(組)
1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
2:運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗!
3:運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。
4:關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。
5:關於一元一次不等式組有解、無解的條件易忽視相等的情況。
6:解分式方程時首要步驟去分母,分數相相當於括弧,易忘記根檢驗,導致運算結果出錯。
7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數軸。
8:利用函數圖象求不等式的解集和方程的解。
6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
7:數形結合思想方法的運用,還應注意結合圖像性質解題。函數圖象與圖形結合學會從復雜圖形分解為簡單圖形的方法,圖形為圖像提供數據或者圖像為圖形提供數據。
8:自變數的取值范圍有:二次根式的被開方數是非負數,分式的分母不為0,0指數底數不為0,其它都是全體實數。
初三數學學習法則
認真學習,研究教材,研究考試,把握教學的要求,了解教學中的重點和學生學習中的難點,提高自身的業務素養。另外也要根據當前教改的要求、學生的實際,研究教學方法,達到提高教學效率的目的。
要注重知識的發生發展過程,全面、准確的理解基本概念,切忌就事論事,然後通過大量的練習來「理解」、「掌握」概念,這種做法只能起到事倍功半的效果,不但「記不住」大量的數學概念,而且不會靈活地運用概念解決問題。
在平時的學習例題時,要注重分析解決問題的方法,糾正不研究的學習過程,只追求結果的錯誤學習方法;要注重數學思想方法的滲透,廢棄死記硬背的學習方式。數學思想方法是數學的靈魂,數學的精髓,它是培養學生創新意識、實踐能力的源泉,因此也是中考的重點。在初中階段要注意方程思想、函數思想、整體待換思想、化歸思想、數形結合思想、分類討論思想、換元法、配方法、待定系數法等數學思想方法,這樣才能提高學生分析問題解決問題的能力。
D. 初三數學基礎知識點有哪些
初三數學基礎知識點:
一、方程(組)與不等式(組)
1、各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
2、運用等式性質時,兩邊同除以一個數必須要注意不能為O的情況,還要關註解方程與方程組的基本思想。消元降次的主要陷阱在於消除了一個帶X公因式時回頭檢驗。
3、運用不等式的性質3時,容易忘記改不變號的方向而導致結果出錯。
4、關於一元二次方程的取值范圍的題目易忽視二次項系數不為0。
二、有理數
1、有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
「大」減「小」是指絕對值的大小。
2、有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則。
同號得正異號負,一項為零積是零。
三、二次函數解析式的表示方法
1、一般式:y=ax2+bx+c(a,b,c為常數,a≠0),如:y=2x2+3x+4;
2、頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0),如:y=2(x-5)2+3;
3、兩根式:y=a(x-x1)(x-x2)(a≠0,x1,x2是拋物線與x軸兩交點的橫坐標),如:y=2(x-1)(x+3)。
E. 初三數學主要知識點
學習這件事不在乎有沒有人教你,最重要的是在於你自己有沒有覺悟和恆心。任何科目 學習 方法 其實都是一樣的,不斷的記憶與練習,使知識刻在腦海里。下面是我給大家整理的一些初三數學的知識點,希望對大家有所幫助。
九年級下冊數學知識點
圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆內容提要☆
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.「三點定圓」定理
4.垂徑定理及其推論
5.「等對等」定理及其推論
6.與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.切線的性質(重點)
2.切線的判定定理(重點)
3.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:初中數學復習提綱
內角的一半:初中數學復習提綱(右圖)
(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
七、點的軌跡
六條基本軌跡
八、有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦
初三下冊數學知識點 總結
一、銳角三角函數
正弦等於對邊比斜邊
餘弦等於鄰邊比斜邊
正切等於對邊比鄰邊
餘切等於鄰邊比對邊
正割等於斜邊比鄰邊
二、三角函數的計算
冪級數
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.
泰勒展開式(冪級數展開法)
f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...
三、解直角三角形
1.直角三角形兩個銳角互余。
2.直角三角形的三條高交點在一個頂點上。
3.勾股定理:兩直角邊平方和等於斜邊平方
四、利用三角函數測高
1、解直角三角形的應用
(1)通過解直角三角形能解決實際問題中的很多有關測量問.
如:測不易直接測量的物體的高度、測河寬等,關鍵在於構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.
(2)解直角三角形的一般過程是:
①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).
②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.
初三數學復習資料
軸對稱知識點
1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
3.角平分線上的點到角兩邊距離相等。
4.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
5.與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
6.軸對稱圖形上對應線段相等、對應角相等。
7.畫一圖形關於某條直線的軸對稱圖形的步驟:找到關鍵點,畫出關鍵點的對應點,按照原圖順序依次連接各點。
8.點(x,y)關於x軸對稱的點的坐標為(x,-y)
點(x,y)關於y軸對稱的點的坐標為(-x,y)
點(x,y)關於原點軸對稱的點的坐標為(-x,-y)
9.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為三線合一。
10.等腰三角形的判定:等角對等邊。
11.等邊三角形的三個內角相等,等於60,
12.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60的等腰三角形是等邊三角形
有兩個角是60的三角形是等邊三角形。
13.直角三角形中,30角所對的直角邊等於斜邊的一半。
不等式
1.掌握不等式的基本性質,並會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:如果a>b,那麼a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即:如果a>b,並且c>0,那麼ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:如果a>b,並且c<0,那麼ac
2.比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;
如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;
如果a
即:a>b<===>a-b>0;a=b<===>a-b=0;aa-b<0。
3.不等式的解集:能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。
4.不等式的解集在數軸上的表示:用數軸表示不等式的解集時,要確定邊界和方向:①邊界:有等號的是實心圓圈,無等號的是空心圓圈;②方向:大向右,小向左。
初三數學主要知識點相關 文章 :
★ 初三數學知識點考點歸納總結
★ 中考數學最全考點分析主要知識點
★ 初三數學知識點歸納總結
★ 初三數學中考復習重點章節知識點歸納
★ 九年級數學上冊重要知識點總結
★ 最新初三數學知識點總結大全
★ 初三數學知識點整理
★ 初三數學知識點上冊總結歸納
★ 初三數學復習知識點總結
F. 初三的數學主要是學什麼
初三數學要學習的內容主要包括:直角三角形的邊角關系、反比例函數、二次函數、圓.知識內容看似不多,但是都是中考數學的重點和難點.首先,反比例函數與幾何綜合在中考選擇填空題中,出現壓軸題還是非常正常的;再者,對圓來講,它是平面幾何中知識最多的幾何圖形,
涉及的考點和題型也是最多的,在中考證明題中,難度一定不會小;最後,二次函數,在中考數學中以壓軸題的形式出現,幾乎可以算得上必考的壓軸題了.綜合上述所講,初三的學習內容難度不小,對中考起決定性的作用.
應該怎麼學
加強基礎:無論學什麼或者考什麼,都離不開基礎知識,在學習之初抓住基礎,不可一味求難.
適當拓展:掌握基礎為前提,進行相應的拓展.例如反比例函數與幾何綜合的中考題型可以盡早去接觸,二次函數壓軸題型也要經常去訓練,這樣才不至於時間太緊張而錯失學習的機會.
G. 九年級數學基礎知識點
天才就是勤奮曾經有人這樣說過。如果這話不完全正確,那至少在很大程度上是正確的。學習,就算是天才,也是需要不斷練習與記憶的。下面是我給大家整理的一些 九年級數學 的知識點,希望對大家有所幫助。
初三年級下學期數學知識點
反比例函數
形如y=k/x(k為常數且k≠0,x≠0,y≠0)的函數,叫做反比例函數。
自變數x的取值范圍是不等於0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由於反比例函數屬於奇函數,有f(-x)=-f(x),圖像關於原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
當K>0時,反比例函數圖像經過一,三象限,是減函數(即y隨x的增大而減小)
當K<0時,反比例函數圖像經過二,四象限,是增函數(即y隨x的增大而增大)
由於反比例函數的自變數和因變數都不能為0,所以圖像只能無限向坐標軸靠近,無法和坐標軸相交。
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/x(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
二次函數
知識點一、平面直角坐標系
1,平面直角坐標系
在平面內畫兩條互相垂直且有公共原點的數軸,就組成了平面直角坐標系。
其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
為了便於描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點,不屬於任何象限。
2、點的坐標的概念
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在後,中間有「,」分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。
知識點二、不同位置的點的坐標的特徵
1、各象限內點的坐標的特徵
點P(x,y)在第一象限
點P(x,y)在第二象限
點P(x,y)在第三象限
點P(x,y)在第四象限
2、坐標軸上的點的特徵
點P(x,y)在x軸上,x為任意實數
點P(x,y)在y軸上,y為任意實數
點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)
3、兩條坐標軸夾角平分線上點的坐標的特徵
點P(x,y)在第一、三象限夾角平分線上x與y相等
點P(x,y)在第二、四象限夾角平分線上x與y互為相反數
4、和坐標軸平行的直線上點的坐標的特徵
位於平行於x軸的直線上的各點的縱坐標相同。
位於平行於y軸的直線上的各點的橫坐標相同。
5、關於x軸、y軸或遠點對稱的點的坐標的特徵
點P與點p』關於x軸對稱橫坐標相等,縱坐標互為相反數
點P與點p』關於y軸對稱縱坐標相等,橫坐標互為相反數
點P與點p』關於原點對稱橫、縱坐標均互為相反數
6、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等於
(2)點P(x,y)到y軸的距離等於
(3)點P(x,y)到原點的距離等於
初 三年級數學 知識點歸納
旋轉
一.知識框架
二.知識概念
1.旋轉:在平面內,將一個圖形繞一個圖形按某個方向轉動一個角度,這樣的運動叫做圖形的旋轉。這個定點叫做旋轉中心,轉動的角度叫做旋轉角。(圖形的旋轉是圖形上的每一點在平面上繞著某個固定點旋轉固定角度的位置移動,其中對應點到旋轉中心的距離相等,對應線段的長度、對應角的大小相等,旋轉前後圖形的大小和形狀沒有改變。)
2.旋轉對稱中心:把一個圖形繞著一個定點旋轉一個角度後,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小於0°,大於360°)。
3.中心對稱圖形與中心對稱:
中心對稱圖形:如果把一個圖形繞著某一點旋轉180度後能與自身重合,那麼我們就說,這個圖形成中心對稱圖形。
中心對稱:如果把一個圖形繞著某一點旋轉180度後能與另一個圖形重合,那麼我們就說,這兩個圖形成中心對稱。
4.中心對稱的性質:
關於中心對稱的兩個圖形是全等形。
關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。
關於中心對稱的兩個圖形,對應線段平行(或者在同一直線上)且相等。
本章內容通過讓學生經歷觀察、操作等過程了解旋轉的概念,探索旋轉的性質,進一步發展空間觀察,培養幾何思維和審美意識,在實際問題中體驗數學的快樂,激發對學習學習。
九年級上冊數學復習知識點
知識點1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常數項是-2。
2、一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2。
3、一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
知識點2:直角坐標系與點的位置
1、直角坐標系中,點A(3,0)在y軸上。
2、直角坐標系中,x軸上的任意點的橫坐標為0。
3、直角坐標系中,點A(1,1)在第一象限。
4、直角坐標系中,點A(-2,3)在第四象限。
5、直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變數的值求函數值
1、當x=2時,函數y=的值為1。
2、當x=3時,函數y=的值為1。
3、當x=-1時,函數y=的值為1。
知識點4:基本函數的概念及性質
1、函數y=-8x是一次函數。
2、函數y=4x+1是正比例函數。
3、函數是反比例函數。
4、拋物線y=-3(x-2)2-5的開口向下。
5、拋物線y=4(x-3)2-10的對稱軸是x=3。
6、拋物線的頂點坐標是(1,2)。
7、反比例函數的圖象在第一、三象限。
知識點5:數據的平均數中位數與眾數
1、數據13,10,12,8,7的平均數是10。
2、數據3,4,2,4,4的眾數是4。
3、數據1,2,3,4,5的中位數是3。
知識點6:特殊三角函數值
1.cos30°=。
2.sin260°+cos260°=1。
3.2sin30°+tan45°=2。
4.tan45°=1。
5.cos60°+sin30°=1。
九年級數學基礎知識點相關 文章 :
★ 初三數學基礎知識點總結
★ 九年級數學上冊重要知識點總結
★ 九年級數學知識點上冊
★ 九年級上冊數學知識點歸納整理
★ 初三數學知識點考點歸納總結
★ 初中數學基礎知識點總結
★ 初中數學基礎知識點歸納總結
★ 初三數學知識點歸納總結
★ 初三數學基礎知識的復習規劃
★ 初三數學復習知識點總結
H. 初三數學主要學哪些內容
旋轉、圓、二次函數、概率初步、相似、銳角三角函數、投影與視圖.
旋轉是繼平移和對稱後,我們學習的第三種全等變換.除需要認識及准確描述旋轉外,還要加強對旋轉變換性質的理解.只有真正理解了變換的性質,才能結合變換性質及其他知識,解決操作探究、計算論證、猜想證明等新題型.
圓的有關概念、定理很多,有些容易混淆,把容易混淆的概念進行比較,這樣掌握起來更有效.與圓有關的計算一直是中考的熱點,在學習時應注重對有關計算方法的理解,避免死記硬背,簡單套用公式.
在學習二次函數部分時,有效利用二次函數的對稱性,往往能夠起到化難為易,化繁為簡的作用.解題時將已知條件與圖象結合即數形結合,也是解決問題行之有效的辦法之一.另外,二次函數與幾何圖形、動點、不等式等的結合題目,也常常成為考查的熱點.
要掌握概率的知識,就要正確理解概率的有關概念.如能區分必然事件與隨機事件;能通過列表或樹形圖來計算隨機事件的概率.
相似三角形部分要熟練掌握相似三角形的性質與判定.相似三角形的性質和判定是解綜合題中常用的工具.
銳角三角函數這一部分要關注銳角三角函數的定義以及解直角三角形的實際應用.運用解直角三角形解決實際問題往往要構造直角三角形,將問題的已知與未知轉化為與直角三角形相關的條件.
視圖與投影主要以三視圖、展開與折疊為背景,考查空間觀念.同學們還要能區分「平行投影」與「中心投影」.