導航:首頁 > 數字科學 > 數學有哪些

數學有哪些

發布時間:2022-02-08 17:01:40

Ⅰ 數學中常用名詞有哪些

1、平方

平方是一種運算,比如,a的平方表示a×a,簡寫成a²,也可寫成a×a(a的一次方乘a的一次方等於a的2次方),例如4×4=16,8×8=64,平方符號為2。

2、立方

立方也叫三次方。三個相同的數相乘,叫做這個數的立方。如5×5×5叫做5的立方,記做5³。

3、方程

方程(equation)是指含有未知數的等式。是表示兩個數學式(如兩個數、函數、量、運算)之間相等關系的一種等式,使等式成立的未知數的值稱為「解」或「根」。求方程的解的過程稱為「解方程」。

4、解集

解集是一個數學用語,指以一個方程(組)或不等式(組)的所有解為元素的集合叫做該方程(組)或不等式(組)的解集。表示解的集合的方法有三種:列舉法、描述法和圖示法。解集作為數學中的重要工具,在數學中有著十分廣泛的應用。

5、排列

排列,一般地,從n個不同元素中取出m(m≤n)個元素,按照一定的順序排成一列,叫做從n個元素中取出m個元素的一個排列(permutation)。特別地,當m=n時,這個排列被稱作全排列(all permutation)。

Ⅱ 數學單位有哪些

數學單位有很多,例如:

長度單位:毫米,厘米,分米,米,千米....

面積單位:平方毫米,平方厘米,平方分米,平方米,公頃,平方千米....

體積單位:立方毫米,立方厘米(毫升),立方分米(升),立方米.....

時間單位:秒,分,小時....

重量單位(質量單位):克,千克,斤,公斤,噸....

中國傳統的長度單位有里、丈、尺、寸、尋、仞、扶、咫、跬、步、常、矢、筵、幾、軌、雉、毫、厘、分,等。其基本換算關系如下:

1丈=10尺;1尺=10寸;1寸=10分;1分=10厘;

1丈≈3.33米;1尺≈3.33分米;1寸≈3.33厘米;

1千米(km)=1000米;1米(m)=100厘米;1厘米(cm)=10毫米

1里=150丈=500米;2里=1公里(1000米)。

(2)數學有哪些擴展閱讀:

面積單位從小到大的順序主要有:mm²(平方毫米)、cm²(平方厘米)、dm²(平方分米)、m²(平方米)、hm²(公頃)、km²(平方千米)。在國際單位制(SI)中,標准單位面積為平方米(平方米),面積為一米長的正方形面積

1立方米=1000升=1000立方分米=1,000,000毫升=1000000立方厘米=1,000,000,000立方毫米

1升=1立方分米=1000毫升=1000立方厘米=1,000,000立方毫米

1立方英尺=1(ft³)=0.0283立方米(m³)=28.317升(liter)=28.317立方分米(dm³)=28317立方厘米=28317000立方毫米

時間單位,是7種基本單位之一,長度、時間、質量、物質的量、光照度、電流 和(熱力學)溫度 是七種基本單位。 本詞條中時間單位以時間從大到小列。

現時每晝夜為二十四小時,在古時則為十二個時辰。當年西方機械鍾表傳入中國,人們將中西時點,分別稱為「大時」和「小時」。隨著鍾表的普及,人們將「大時」忘淡,而「小時」沿用至今。

Ⅲ 我們身邊的數學有哪些

生活中的數學應用:

1、求面積:例如:在一個高為4 m長為6 m的樓梯表面鋪地毯,樓梯寬2m,求地毯的面積。

許多學生家裡樓梯上都鋪設了地毯,要買多少就要計算地毯長度,從圖中可以看出應用平移的知識來解答簡單方便,把樓梯步中橫線往下移可組成AC,縱線往左移可組成BC,這樣地毯長為4+6=10米,面積為2×10=20平方米。

2、求概率:概率是一門與現實生活緊密相連的學科,不過大多數人對這門學科的理解還是很平凡的:投一枚硬幣,0.5的概率正面朝上,0.5的概率反面朝上,這就是概率。

3、手指計數

人類的十個手指是個天生的「計數器」。原始人不穿鞋襪,再加上十個足趾,計數的范圍就更大了。至今,有些民族還用「手」表示「五」,用「人」表示「二十」,據推測,「十進制」被廣泛運用,很可能與手指計數有關。

4、冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。

5、遲到的時候需要在執勤人員那裡登記,要求寫下年級班級姓名。這樣學校就會知道這個星期哪個班的遲到人數最多,哪個班遲到人數最少。也是簡單的統計學問題。

Ⅳ 數學有哪些分類

數學一般可分為初等數學和高等數學。初等數學就是高中及其以前學的數學內容,那些都是數學的皮毛;高等數學是大學開始接觸的,它是以微積分為基礎的數學研究模式,可以說微積分的發明是人類歷史上最偉大的發明,如果沒微積分的話,估計我們還生活在幾百年前。
當然數學還有很多分支,比如概率和數理統計,線性代數,解析幾何,離散數學,復變函數,黎曼幾何,拓補學,還有比較新興的模糊數學(模糊數學是智能計算機的基礎)……當然還有很多,但敝人知識空間有限,只涉獵了這么點,只能幫你提供這些了。(補充一點,數學物理方程其實就是偏微分方程(組)的求解問題。它只是數學在物理上的簡單運用,我覺得應該不算是數學的一個分類)

Ⅳ 數學一包括哪些內容

主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。是工科、理科、財經類研究生考試的基礎科目。

指相對於初等數學而言,數學的對象及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

(5)數學有哪些擴展閱讀

初級數學的基本內容

一、小學

整數、分數和小學的四則運算、數與代數、空間與圖形、簡單統計與可能性、一元一次方程,圓,正負數,立體幾何初步。

二、初中

代數部分: 有理數(正數和負數及其運算),實數(根式的運算),平面直角坐標系,基本函數(一次函數,二次函數,反比例函數),簡單統計,銳角三角函數,方程、(一元一次方程,二元一次方程組,一元二次方程,三元一次方程組),因式分解、整式、分式、一元一次不等式。

幾何部分:全等三角形,四邊形(重點是平行四邊形及特殊的平行四邊形),對稱與旋轉,相似圖形(重點是相似三角形),圓的基本性質,

三、高中

集合,基本初等函數(指數函數、對數函數,冪函數,高次函數),二次函數根分布與不等式,柯西不等式,排列不等式,初等行列式,三角函數,解析幾何與圓錐曲線(橢圓,拋物線,雙曲線),復數,數列,高等統計與概率,排列組合,平面向量,空間向量,空間直角坐標系,導數以及相對簡單的定積分。

Ⅵ 數學有哪些知識

加減乘除,小數分數,單位換算,太多了

Ⅶ 生活中的數學有哪些

有很多,舉幾個例子吧。1、風扇的扇葉繞著中心旋轉:過一點有無數條直線。2、三角形的支架:三角形具有穩定性。3、四邊形的推拉門:四邊形具有不穩定性。4、速度、時間、路程三者的函數關系。5、用坐標表示地理位置。6、買彩票是否能中獎,概率問題。7、風箏飛翔平穩是軸對稱圖形的性質的應用。

Ⅷ 數學能力有哪些

數學能力一般是指抽象思維能力、邏輯推理與判斷能力、空間想像能力、數學建模能力、數學運算能力、數據處理與數值計算能力、數學語言與符號表達能力等
2、所謂數學能力是指由計算能力、初步的邏輯思維能力、空間觀念與思維的深刻性、敏捷性、靈活性、廣闊性、創造性等所組成的開放性動態系統結構
48
分享2

數學不會怎麼辦_告訴你一個簡單解決的方法
根據文中提到的數學為您推薦
數學不會怎麼辦,數學怎麼才能獲得高分, 揭露別人孩子學習好的高分秘訣,學習找不到方法,視頻攻略反復學習,1天1小時,名師在線答疑,定製提分計劃,精準提分
明望教育咨詢(山東)有限公司廣告
怎麼學好數學_四個步驟告訴你如何提高孩子學習成績
根據文中提到的數學為您推薦
怎麼學好數學孩子學成績一直在班級墊底,自從用了ces學習法,期末考試已約升至班級前十,找對了學習方法,才能起到事半功倍的效果!
武漢浩瀚天成文化傳播有限公司...廣告
數學能力有哪些
專家1對1在線解答疑惑
去提問
— 你看完啦,以下內容更有趣 —
高中數學思維能力_高中全套重難點知識匯總資料
高中數學思維能力 親身經歷,高考提分有效的方法!讓你在兩個月中達到理想成績!

Ⅸ 數學類專業有哪些

數學類專業包括數學與應用數學、信息與計算科學、數理基礎科學3個專業。

數學與應用數學專業培養掌握數學科學的基本理論與基本方法,具備運用數學知識、使用計算機解決實際問題的能力,受到科學研究的初步訓練,能在科技、教育和經濟部門從事研究、教學工作或在生產經營及管理部門從事實際應用、開發研究和管理工作的高級專門人才。

信息與計算科學專業(原名:計算數學,1987年更名為計算數學及其應用軟體,1998年教育部將其更名為信息與計算科學),是以信息領域為背景。

數學與信息,計算機管理相結合的計算機科學與技術類專業。信息與計算科學專業培養的學生具有良好的數學基礎,能熟練地使用計算機,初步具備在信息與計算機科學領域的某個方向上從事科學研究,解決實際問題,設計開發有關計算機軟體的能力。

數理基礎科學專業介紹

數理基礎科學專業主要培養能從事數學、物理等基礎科學教學和科研的有發展潛力的優秀人才,尤其是在數學、物理上具有創新的能力的人才,同時也為對數理基礎要求高的其它學科培養有良好的數理基礎的新型人才。

數理基礎科學專業的畢業生在畢業以後,可以在物理學、數學領域、信息與計算科學、計算機信息處理、經濟、金融等部門從事研究、教學、應用軟體開發或者是管理部門從事一些實際應用、技術開發、研究或者管理工作。

Ⅹ 數學中有哪些數

1.質數與合數
質數,又名素數,是指只能被1和自身整除的數。如2,3, 5, 7, 11……
合數,是指除了1與自身之外還有其他的約數,如4,除了1與4之外,它還能被2整除。
2、公因數、最大公約數和最小公倍數
公因數,又稱公約數,在兩個或兩個以上的自然數中,如果它們有相同的因數,那麼這些因數就叫做它們的公因數。任何兩個自然數都有公因數1.(除零以外)而這些公因數中最大的那個稱為這些正整數的最大公因數。
求幾個整數的最大公因數,只要把它們的所有共有的素因數連乘,所得的積就是它們的最大公因數。
3、 實數與虛數
負數開平方,在實數范圍內無解。
數學家們就把這種運算的結果叫做虛數,因為這樣的運算在實數范圍內無法解釋,所以叫虛數。
實數和虛數組成的一對數在復數范圍內看成一個數,起名為復數。
於是,實數成為特殊的復數(缺序數部分),虛數也成為特殊的復數(缺實數部分)。
虛數單位為i, i即根號負1。
3i為虛數,即根號(-3), 即3×根號(-1)
2+3i為復數,(實數部分為2,虛數部分為3i)

復數和虛數不一樣,形如a+bi的數。式中a,b 為實數,i是 一個滿足i2=-1的數,因為任何實數的平方不等於-1,所以i不是實數,而是實數以外的新的數。在復數a+bi中,a 稱為復數的實部,b稱為復數的虛部,i稱為虛數單位。當虛部等於零時,這個復數就是實數;當虛部不等於零時,這個復數稱為虛數,虛數的實部如果等於零,則稱為純虛數。由上可知,復數集包含了實數集,因而是實數集的擴張.
4、、有理數與無理數
有理數(rational number):能精確地表示為兩個整數之比的數.

如3,-98.11,5.72727272……,7/22都是有理數.

整數和通常所說的分數都是有理數.有理數還可以劃分為正有理數,0和負有理數.
無理數指無限不循環小數
非負整數集(或自然數集)記作 N 都指的那些?
N---0和自然數,如:0。1。2。3。。。
正整數集 記作 N + 都指的那些?
N+----正整數,如:1。2。3。。。。
整數集 記作 Z 都指的那些?
Z---正整數和負整數和0,如:。。。-2。-1。0。1。2。3。。。
實數集 記作 R 指的那些 ?
R---有理數和無理數
無限不循環小數和開根開不盡的數叫無理數
整數和分數統稱為有理數
數學上,有理數是兩個整數的比,通常寫作 a/b,這里 b 不為零。分數是有理數的通常表達方法,而整數是分母為1的分數,當然亦是有理數。
數學上,有理數是一個整數 a 和一個非零整數 b 的比(ratio),通常寫作 a/b,故又稱作分數。希臘文稱為 λογος ,原意為「成比例的數」(rational number),但中文翻譯不恰當,逐漸變成「有道理的數」。不是有理數的實數遂稱為無理數。
所有有理數的集合表示為 Q,有理數的小數部分有限或為循環。
5、 整數
整數(Integer):像-2,-1,0,1,2這樣的數稱為整數。(整數是表示物體個數的數,0表示有0個物體)整數是人類能夠掌握的最基本的數學工具。整數的全體構成整數集,整數集合是一個數環。在整數系中,自然數為0和正整數的統稱,稱0為零,稱-1、-2、-3、…、-n、… (n為整數)為負整數。正整數、零與負整數構成整數系。 一個給定的整數n可以是負數(n∈Z-),非負數(n∈Z*),零(n=0)或正數(n∈Z+).
我們以0為界限,將整數分為三大類 1.正整數,即大於0的整數如,1,2,3,…,n,… 2.0 既不是正整數,也不是負整數,他是介於正整數和負整數的數 3.負整數,即小於0的整數如,-1,-2,-3,…,-n,…
6、 奇數與偶數
奇數(英文:odd)數學術語 , 整數中,能被2整除的數是偶數,不能被2整除的數是奇數,偶數可用2k表示,奇數可用2k+1表示,這里k是整數。 奇數包括正奇數、負奇數。
關於奇數和偶數,有下面的性質: (1)奇數不會同時是偶數;兩個連續整數中必是一個奇數一個偶數。 (2)奇數跟奇數的和是偶數;偶數跟奇數的和是奇數;任意多個偶數的和是偶數。 (3)兩個奇(偶)數的差是偶數;一個偶數與一個奇數的差是奇數。 (4)若a、b為整數,則a+b與a-b有相同的奇偶性,即a+b與a-b同為奇數或同為偶數。 (5)n個奇數的乘積是奇數,n個偶數的乘積是偶數;順式中有一個是偶數,則乘積是偶數,即:A*B*C*…*偶數*X*Y=偶數,式中A、B、C、…X、Y皆為整數,公式可簡化為:奇數*偶數=偶數。 (6) 奇數的個位是1、3、5、7、9;偶數的個位是0、2、4、6、8.(0是個特殊的偶數。2002年國際數學協會規定,零為偶數.我國2004年也規定零為偶數。小學規定0為最小的偶數,但是在初中學習了負數,出現了負偶數時,0就不是最小的偶數了.) (7)奇數的平方除以8餘1
7、 基數
在數學上,基數(cardinal number)也叫勢(cardinality),指集合論中刻畫任意集合所含元素數量多少的一個概念。兩個能夠建立元素間一一對應的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一 一對應,是兩個對等的集合。此外還有語言學和軍事上的基數。
8、 浮點數
浮點數是屬於有理數中某特定子集的數的數字表示,在計算機中用以近似表示任意某個實數。具體的說,這個實數由一個整數或定點數(即尾數)乘以某個基數(計算機中通常是2)的整數次冪得到,這種表示方法類似於基數為10的科學記數法。
9、 布爾值
布爾值是 true 或 false 中的一個。動作腳本也會在適當時將值 true 和 false 轉換為 1 和 0。布爾值經常與動作腳本語句中通過比較控制腳本流的邏輯運算符一起使用。

閱讀全文

與數學有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:703
乙酸乙酯化學式怎麼算 瀏覽:1371
沈陽初中的數學是什麼版本的 瀏覽:1316
華為手機家人共享如何查看地理位置 瀏覽:1009
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:846
數學c什麼意思是什麼意思是什麼 瀏覽:1368
中考初中地理如何補 瀏覽:1259
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:670
數學奧數卡怎麼辦 瀏覽:1348
如何回答地理是什麼 瀏覽:988
win7如何刪除電腦文件瀏覽歷史 瀏覽:1021
大學物理實驗干什麼用的到 瀏覽:1447
二年級上冊數學框框怎麼填 瀏覽:1658
西安瑞禧生物科技有限公司怎麼樣 瀏覽:824
武大的分析化學怎麼樣 瀏覽:1212
ige電化學發光偏高怎麼辦 瀏覽:1300
學而思初中英語和語文怎麼樣 瀏覽:1605
下列哪個水飛薊素化學結構 瀏覽:1387
化學理學哪些專業好 瀏覽:1451
數學中的棱的意思是什麼 瀏覽:1016