『壹』 數學的發展史是什麼
數學的發展史大致可以分為四個時期。
第一時期:數學形成時期(遠古—公元前六世紀),這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本、最簡單的幾何形式,算術與幾何還沒有分開。
第二時期:初等數學時期、常量數學時期(公元前六世紀—公元十七世紀初)這個時期的基本的、最簡單的成果構成中學數學的主要內容,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期:變數數學時期(公元十七世紀初—十九世紀末)變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分的創立。
第四時期:現代數學時期(十九世紀末開始),數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
數學需要嚴謹性:
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題。從這個意義上,數學屬於形式科學,而不是自然科學。所有的數學對象本質上都是人為定義的,它們並不存在於自然界,而只存在於人類的思維與概念之中。
因而,數學命題的正確性,無法像物理、化學等以研究自然現象為目標的自然科學那樣,能夠藉助於可以重復的實驗、觀察或測量來檢驗,而是直接利用嚴謹的邏輯推理加以證明。一旦通過邏輯推理證明了結論,那麼這個結論也就是正確的。
『貳』 數學的有怎樣的發展歷史
我國古代數學發軔於原始公社末期,當時私有制和貨物交換產生以後,數與形的概念有了進一步的發展,已開始用文字元號取代結繩記事了。
春秋戰國時期,籌算記數法已使用十進位值制,人們已諳熟九九乘法表?整數四則運算,並使用了分數。西漢時期《九章算術》的出現,為我國古代數學體系的形成起到了奠基作用。
春秋時期,有一個宋國人,在路上行走時撿到了一個別人遺失的契據,拿回家收藏了起來。他秘密地數了數那契據上的齒,然後告訴鄰居說:「我發財的日子就要來到了!」
契據上的齒就是木刻上的缺口或刻痕,表示契據所代表的實物的價值。當人類沒有發明文字,或文字使用尚不普遍時,常用在木片?竹片或骨片上刻痕的方法來記錄數字?事件或傳遞信息,統稱為「刻木記事」。
我國少數民族曾經使用木刻記事的,有獨龍族?傈僳族?佤族?景頗族?哈尼族?拉祜族?苗族?瑤族?鄂倫春族?鄂溫克族?珞巴族等。如佤族用木刻計算日子和賬目;苗族用木刻記錄歌詞;景頗族用木刻記錄下村寨之間的糾紛;哈尼族用木刻作為借貸?離婚?典當土地的契約;獨龍族用遞送木刻傳達通知等。凡是通知性木刻,其上還常附上雞毛?火炭?辣子等表意物件,用以強調事情的緊迫性。
其實,早在《列子·說符》記載的故事之前,我們的先民在從野蠻走向文明的漫長歷程中有了數與形的概念。
出土的新石器時期的陶器大多為圓形或其他規則形狀,陶器上有各種幾何圖案,通常還有3個著地點,這都是幾何知識的萌芽。說明人們從辨別事物的多寡中逐漸認識了數,並創造了記數的符號。
殷商甲骨文中已有13個記數單字,最大的數是「三萬」,最小的是「一」。一?十?百?千?萬,各有專名。其中已經蘊含有十進位置值制萌芽。
傳說大禹治水時,便左手拿著准繩,右手拿著規矩丈量大地。因此,我們可以說,「規」?「矩」?「准」?「繩」是我們祖先最早使用的數學工具。
人們丈量土地面積,測算山高谷深,計算產量多少,粟米交換,制訂歷法,都需要數學知識。在約成書於公元前1世紀的《周髀算經》中,記載了西周商高和周公答問之間涉及的勾股定理內容。
有一次,周公問商高:「古時做天文測量和訂立歷法,天沒有台階可以攀登上去,地又不能用尺寸去測量,請問數是怎樣得來的?」商高回答說:「數是根據圓和方的道理得來的,圓從方來,方又從矩來。矩是根據乘?除計算出來的。」這里的「矩」原是指包含直角的作圖工具。這說明了「勾股測量術」,即可用3∶4∶5的辦法來構成直角三角形。
《周髀算經》中有「勾股各自乘,並而開方除之」的記載,這已經是勾股定理的一般形式了,說明當時已普遍使用了勾股定理。勾股定理是我國數學家的獨立發明。
《禮記·內則》提到過,西周貴族子弟從9歲開始便要學習數目和記數方法,他們要受禮?樂?射?馭?書?數的訓練,作為「六藝」之一的「數」已經開始成為專門的課程。
籌算記數法對世界數學的發展具有劃時代意義。這個時期的測量數學在生產上有了廣泛應用,在數學上也有相應地提高。
戰國時期,隨著鐵器的出現,生產力的提高,我國開始了由奴隸制向封建制的過渡,新的生產關系促進了科學技術的發展與進步,此時私學開始出現。
秦漢時期,社會生產力得到恢復和發展,給數學和科學技術的發展帶來新的活力,人們提出了若干算術難題,並創造了解勾股形?重差等新的數學方法。
同時,人們注重先秦文化典籍的收集?整理。作為數學新發展及先秦典籍的搶救工作的結晶,便是《九章算術》的成書,據東漢初鄭眾記載,當時的數學知識分成了方田?粟米?差分?少廣?商功?均輸?方程?贏不足?旁要九個部分,稱為「九數」。九數確立了《九章算術》的基本框架。
《九章算術》集先秦至西漢數學知識之大成,是我國古代最重要的數學經典,對兩漢時期以及後來數學的發展產生了很大的影響。它是西漢丞相張蒼?天文學家耿壽昌收集秦火遺殘,加以整理刪補而成的。
《漢書·藝文志》所載《許商算術》?《杜忠算術》就是研究《九章算術》的作品。東漢時期馬續?張衡?劉洪?鄭玄?徐岳?王粲等通曉《九章算術》,也為之作注。這些著作的問世,推動了稍後的數學理論體系的建立。
《九章算術》的出現,奠定了我國古代數學的基礎,它的框架?形式?風格和特點深刻影響了我國和東方的數學。
刻木記事
『叄』 簡述數學發展歷史
一)屬於算術方面的材料 大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中.乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載.中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來.「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當.」 和其他古代國家一樣,乘法表的產生在中國也很早.乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學.現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣. 現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣. 古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等.」這種以十的方冪來表示位率無疑地也是中國最早發現的. 小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 .在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究. 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一).楊輝還用「連身加」這名詞來說明201—300以內的質數. (二)屬於代數方面的材料 從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就. 「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容. 我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種.一元二次方程是借用幾何圖形而得到證明. 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年.具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金. 十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻. 在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了.四元術是天元術發展的必然產物. 級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數.十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄.十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法. 歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的. 內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算. 十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一. 就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著. (三)屬於幾何方面的材料 自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著.應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識. 中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的. 漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲). 圓和方的研究在古代中國幾何發展中佔了重要位置.墨子對圓的定義是:「圓,一中同長也.」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年. 在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名. 祖沖之所得的結果π=355/133要比歐洲早一千多年. 在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才. 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點. 中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果. 正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長.這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的). (四)屬於三角方面的材料 三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近. 劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值. 在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱). 十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式. 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線. 在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量.這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式.十八世紀以後,中國還出版了不少三角學方面的書籍.
『肆』 數學發展的歷史介紹是什麼
數學發展的歷史介紹如下:
第一階段:數學的萌芽時期(公元前4000年—公元前六世紀)。
隨著遠古人類的發展,生活中慢慢涉及到數的應用,人類建立了最基本的數學概念。自然數出現了,有了簡單的計算,並認識了最基本最簡單的幾何圖形。
這一階段數學發展的傑出代表為古巴比倫數學、中國數學、埃及數學等。這個時期的數學知識大致相當於幼兒園和小學一二年級的內容,甚至比這個還要簡單。
第二階段:初等數學和常量數學時期(公元前6世紀—公元十六世紀末)。
隨著歷史的前進,數學也得到了極大發展。這一時期,希臘的數學家把數學向前推進了一大步。以歐幾里得的《幾何原本》為代表,引入了公理體系和嚴謹的證明,使數學變得更加完備,把數學由單純具體的測量得出結論變為嚴格的抽象證明。
畢達哥拉斯學派完整了勾股定理的嚴謹證明進而發現了無理數,也由此引發了第一次數學危機。這也使得數學從有理數發展到了無理數。
第三階段:變數數學階段(公元十七世紀—十九世紀中後期)。
這一階段也叫做近代數學階段,數學得到了飛速發展。而我國正處在閉關鎖國的大清王朝。
這一階段的標志是數學由常量轉變為變數,其發展有兩個里程碑。
第一個里程碑是解析幾何的誕生。1637年法國數學家笛卡爾發明了坐標系,創立了解析幾何,將變數引入數學,也把數字與圖形結合了起來,為微積分的開創奠定的基礎。
第二里程碑是微積分的創立。英國科學史上最偉大的人物—牛頓,從物理的運動入手,通過引入無窮小量的概念,於1669年提出了微積分的概念,為近代數學的發展提供力最有利的工具,開辟了數學的新紀元。更是把數學從靜態常量階段推向了動態變數的研究階段。
第四階段:現代數學時期(1874年以後)。
1874年德國數學康托創立了集合論,標志著現代數學時期的到來,同時也是純粹數學的開始。數學界三大巨頭龐加萊、克萊因、希爾伯特的出現,也預示著數學更加的抽象和純粹。也導致了實變函數、泛函分析、拓撲學和抽象代數四大抽象分支的崛起。
盡管由集合論所引發的第三次數學危機依然沒有解決,但我們相信,危機的到來依然是數學發展的動力,危機的解決一定會讓數學更上一層樓,這已經有前兩次數學危機所證實。當然了,這一階段的數學知識已經遠遠超出普通人所能理解的范圍,除了專門的數學人才,其他人估計一輩子也不會碰到更不會直接用到。
『伍』 數學發展歷史是什麼
數學發展如下:
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期,人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期,這個時期的基本的、最簡單的成果構成中學數學的主要內容,這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年,這個時期逐漸形成了初等數學的主要分支算術、幾何、代數。
第三時期
變數數學時期,變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟,第一步是解析幾何的產生,第二步是微積分,即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支,它是數學的一個基礎學科,內容主要包括極限、微分學、積分學、方程及其應用。
微分學包括求導數的運算,是一套關於變化率的理論,它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論,積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期
現代數學,現代數學時期,大致從19世紀初開始,數學發展的現代階段的開端,以其所有的基礎代數、幾何、分析中的深刻變化為特徵。
中華民族是一個具有燦爛文化和悠久歷史的民族,在燦爛的文化瑰寶中數學在世界數學發展史中也同樣具有許多耀眼的光環,中國古代算術的許多研究成果裡面就早已孕育了後來西方數學才設計的先進思想方法,近代也有不少世界領先的數學研究成果就是以華人數學家命名的。
華氏定理是我國著名數學家華羅庚的研究成果,華氏定理為體的半自同構必是自同構自同體或反同體,數學家華羅庚關於完整三角和的研究成果被國際數學界稱為華氏定理,另外他與數學家王元提出多重積分近似計算的方法被國際上譽為華—王方。
蘇氏錐面數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為蘇氏錐面。
蘇步青院士對仿射微分幾何的一個極其美妙的發現是他對一般的曲面,構做出一個訪射不變的4次代數錐面。
在訪射的曲面理論中為人們許多協變幾何對象,包括2條主切曲線,3條達布切線,3條塞格雷切線和仿射法線等等,都可以由這個錐面和它的3根尖點直線以美妙的方式體現出來,這個錐面被命名為蘇氏錐面。
『陸』 數學的發展歷史是什麼
數學的發展歷史:
人類進入原始社會,就需要數學了,從早期的結繩記事到學會記數,再到簡單的加減乘除,這些都是人類日常生活中所遇到的數學問題。數學是有等級的,就像自然數的運算是小學生的水平一樣,超出了這個范圍小學生就不能理解了。
像有未知數的運算小學生就無從下手一樣,數學的發生發展也是從低級向高級進化的,人類最早理解的是算數,經過額一段時間的發展算數發展到了方程、函數,一級一級的進化,才發展到了現代的的數學。
人類數學的發展做出較大成就的是古希臘時期,奇怪的是古希臘對數的運算並不突出,反而是要到中學才能學到的幾何學在古希臘就奠定了基礎,學過幾何的人對歐幾里得不會陌生,歐幾里得是古希臘人,數學家,被稱為「幾何之父」。
他最著名的著作《幾何原本》是歐洲數學的基礎,提出五大公設,歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。歐幾里得也寫了一些關於透視、圓錐曲線、球面幾何學及數論的作品。
在古希臘教育中幾何學佔有相當重要的地位,柏拉圖提倡的希臘六藝就包括幾何,後來希臘文化衰落了,希臘被入侵,希臘圖書館的藏書被掠奪了,被阿拉伯人保存了。
有這么一個說法,是阿拉伯人對希臘語與拉丁語文獻的保留,才讓歐洲人得以返過來取經,找回「失落」的希羅文化。其中包括柏拉圖學說和歐幾里得幾何。經過了中世紀的黑暗,歐洲找回了古希臘古羅馬文化,才有了歐洲的文藝復興。
『柒』 數學的歷史有哪些
數學的歷史共分為4個時期。
第1時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第2時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第3時期
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第4時期
現代數學時期,大致從19世紀上半葉開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
『捌』 簡述數學的發展史是什麼
具體如下:
第一時期:數學形成時期(遠古—公元前六世紀),這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本、最簡單的幾何形式,算術與幾何還沒有分開。
第二時期:初等數學時期、常量數學時期(公元前六世紀—公元十七世紀初)這個時期的基本的、最簡單的成果構成中學數學的主要內容,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期:變數數學時期(公元十七世紀初—十九世紀末)變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus)的創立。
第四時期:現代數學時期(十九世紀末開始),數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
『玖』 數學的發展歷史
數學的發展史大致可以分為四個時期。第一時期是數學形成時期,第二時期是常量數學時期等。其研究成果有李氏恆定式、華氏定理、蘇氏錐面。
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分,即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學、方程及其應用。
微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
華羅庚
中華民族是一個具有燦爛文化和悠久歷史的民族,在燦爛的文化瑰寶中數學在世界數學發展史中也同樣具有許多耀眼的光環。中國古代算數的許多研究成果裡面就早已孕育了後來西方數學才設計的先進思想方法,近代也有不少世界領先的數學研究成果就是以華人數學家命名的。
李氏恆定式
數學家李善蘭在級數求和方面的研究成果,在國際上被命名為【李氏恆定式】
華氏定理
「華氏定理」是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
蘇氏錐面
數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。
蘇步青院士對仿射微分幾何的一個極其美妙的發現是:他對一般的曲面,構做出一個訪射不變的4次代數錐面。在訪射的曲面理論中為人們許多協變幾何對象,包括2條主切曲線,3條達布切線,3條塞格雷切線和仿射法線等等,都可以由這個錐面和它的3根尖點直線以美妙的方式體現出來。
這個錐面被命名為蘇氏錐面。
『拾』 歷史上的數學有何發展演變史
歷史上的數學有何發展演變史,第一個被抽象化的概念數字(中國的算籌)古時候,他們為了分清蘋果和橘子,便有了加減法,數學的原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算等等,直到17世紀,大約持續了兩千年,這個時期逐漸形成了初等數學的主要分支,幾何、代數、三角,都是慢慢一步一步走過來不容易