導航:首頁 > 數字科學 > 如何對數學概念進行拓展和延伸

如何對數學概念進行拓展和延伸

發布時間:2022-08-29 11:26:43

⑴ 在小學數學中如何將知識進行有效拓展

我們一般認為,數學的能力,分為兩種水平:一種是獨立創造具有社會價值的數學新成果的能力;一種是在數學學習過程中,學習數學的能力。我們應該培養學生怎樣的數學能力呢?無疑首先應該培養學生的「數學學習能力」,因為數學學習畢竟是將來學習數學,運用數學,以及進行數學創新的基礎,也正是基於這一點,我們的傳統教學,特別重視數學學習能力的培養,採取的方法是「滿堂灌」──讓學生多聽一點;教出的學生是「記憶型」──學生的大腦都成了知識的倉庫。但是,學習數學的最終目的,卻是數學的運用與創新。不論是數學的運用,還是數學創新,都離不開探索,沒有了探索,任何學科--包括數學,都會失去靈魂。現在有許多人都在思考:都是中國人要領先,可到了成年以後,我們的研究成果怎麼就不如別人呢?有人說,中國水平和世界水平,只差「一步」,這「一步」是什麼呢?我認為,我們教育的症結就在於,我們太重視學生的學習能力,而忽略了探索和創新能力的培養。長期以來,我們已經習慣了「老師教」,「學生學」的教學模式,特別是數學,她的抽象和嚴密,幾乎讓人感覺到,數學就是這么呆板吧。我們常說,學生是學習的主人,但有時候,我們的教育,卻讓學生處於從屬地位,長此以往的結果,只能使學生對數學敬而遠之,甚至是畏而遠之。我認為,這應該是我們教育的失敗。因此,改革數學教學,把培養學生的探索能力也作為我們教學活動的重要一環,實在是必要、重要和緊迫。 培養學生的數學探索拓展能力,是一項系統的工程,它包含了許多方面,以下是我在教學實踐中,培養學生數學探索能力的幾點嘗試,它包括培養興趣、指導方法、鼓勵質疑、鼓勵創新等幾個方面。 一、指導學習方法,給學生拓展學習的鑰匙 1.教會學生「讀」,這主要用來培養學生的數學觀察力和歸納整理問題的能力。我們知道,數學觀察力是一種有目的、有選擇並伴有注意的對數學材料的知覺能力。教會學生閱讀,就是培養學生對數學材料的直觀判斷力,這種判斷包括對數學材料的深層次、隱含的內部關系的實質和重點,逐步學會歸納整理,善於抓住重點以及圍繞重點思考問題的方法。這在預習和課外自學中尤為重要。 2.鼓勵學生「議」,在教學中鼓勵學生大膽發言,對於對於那些容易混淆的概念,沒有把握的結論、疑問,就積極引導學生議,真理是愈辯愈明,疑點愈理愈清。對於學生在議中出現的差錯、不足,老師要耐心引導,幫助他們逐步得到正確的結論。 3.引導學生勤「思」,從某種意義上來說,思考尤為重要,它是學生對問題認識的深化和提高的過程。養成反思的習慣,反思自己的思維過程,反思知識點和解題技巧,反思各種方法的優劣,反思各種知識的縱橫聯系,適時地組織引導學生展開想像:題設條件能否減弱?結論能否加強?問題能否推廣?等等。 二、鼓勵質疑,激起向權威挑戰的勇氣 我們會經常遇到這樣的情況:有的同學在解完一道題是時,總是想問老師,或找些權威的書籍,來驗證其結論的正確。這是一種不自信的表現,他們對權威的結論從沒有質疑,更談不上創新。長此以往的結果,只能變成唯書本的「書獃子」。 教學中,對這樣的新發現、巧思妙解及時褒獎、推廣,能激起他們不斷進取,努力鑽研的熱情。而且我認為,質疑教學,對學生今後獨立創造數學新成果很有幫助,也是數學探索能力的一個重要方面。 三、鼓勵學習創新,讓學生學有創見 在數學教學中,我們不僅要讓學生學會學習,而且要鼓勵創新,發展學生的學習能力,讓學生創造性地學習。 1.注意培養學生發現問題和提出問題的能力,老師要深入分析並把握知識間的聯系,從學生的實際出發,依據數學思維規律,提出恰當的富於啟發性的問題,去啟迪和引導學生積極思維,同時採用多種方法,引導學生通過觀察、試驗、分析、猜想、歸納、類比、聯想等思想方法,主動地發現問題和提出問題。 2.引導學生廣開思路,重視發散思維,鼓勵學生標新立異,大膽探索。

⑵ 如何在數學課中培養學生的拓展性思維

一、培養良好的思維習慣
據調查研究,良好的思維習慣一般包括四大塊:深刻性、敏捷性、靈活性和獨創性,當然,這些良好的思維習慣養成要經過反復的練習而形成,它們是條件反射的長期積累,是反復強化的產物,因此,家長在平時引導孩子學習時,要注重培養孩子這四方面的能力。
家長們也許會問了,怎樣培養孩子們良好的思維習慣呢?首先,要引導孩子在做題時養成全神貫注、心無旁騖的專注力,不難發現,孩子們回家做作業時總不能專注於眼下的作業,更多的可能是一邊做作業,一邊看手機或聽歌,這樣對於思考數學來說是非常不利的,家長要及時制止孩子這樣的做法。當然,在孩子全身心投入學習以後,家長一定不能去中斷他的投入思考狀態。
二、學會質疑,勇於提問
問題是所有答案的來源,在每一次考試試卷發放下來之後,家長除開根據情況分析和激勵孩子之外,更別忘了讓孩子自己去分析自己的錯題,可以通過提問的方式來逐步引導孩子分析錯題,歸納總結出一些解題技巧,這還不算,我們都知道,一道題目不止一種解題方法,
要想讓孩子學會提問,父母首先要做到善於向孩子提問,經常和孩子談論一些他們感興趣的話題,從而引導孩子學會思考和提問。在提問孩子的過程中,內容要符合孩子的年齡和知識范圍,不能提得過難或過易,不然會挫傷孩子思考的積極性。孩子經常處於提問和思考的環境之中,自然會慢慢學會提出自己的疑問,進而養成質疑的習慣。
父母要掌握和孩子說話的技巧,啟發、引導孩子的好奇心,比如不馬上為孩子提供答案,而是進一步提出疑問和懸念等方式,激起孩子更強的求知慾。
孩子對事物提出自己的質疑時,父母要給予適當的賞識,讓孩子更加大膽地去質疑。父母千萬不要否定孩子的意見,要站在孩子的角度,從他們的年齡特點和思考方式出發,積極肯定他們的想法。

⑶ 如何上好數學概念課

因此,我們教師要結合學生的實際,挖掘教材中的有利因素,選擇行之有效的方法,幫助學生理解概念。
一、應重視概念的產生過程
有的教師不講概念產生的背景,也不經歷概念的概括過程,用例題教學替代概念的概括過程,認為應用概念的過程就是理解概念的過程。殊不知沒有過程的教學,因為缺乏數學思想方法為紐帶,概念間的關系無法認識,概念間的聯系難以建立,導致學生的數學認知結構缺乏整體性,難以實現概念的正確、有效應用,質量效益都無保障。
二、注重感性,符合學生認知規律
從具體到抽象,是人類認識的基本規律,中學生的抽象思維能力還處在發展過程中,其思維能力仍以直觀感性為主。因此,我們在引入數學概念時,應從直觀入手,巧妙地引導學生理解並掌握抽象的概念。概念教學要避免滿堂灌,注入式的陳舊教學模式,就要在概念教學方法上創新。在教學方法上創新,應突出體現在問題提出和解決的方法上,即:教師提出問題的方法和引導學生善於提出質疑的思維方法。概念教學的首要環節不是向學生展示概念,而是結合概念自身的特徵為學生創設一系列巧妙問題情景,極大限度地調動學生的參與意識,訓練其思維能力。
三、前後聯系,准確把握不同概念的區別和聯系
數學知識的系統性很強,數學概念也不是孤立的,教師應從有關概念的邏輯聯系和區別中,引導學生理解相關的數學概念,從而在學生頭腦中形成一個比較完整准確的概念體系。數學中有許多概念都有著密切的聯系,如平行線段與平行向量、平面角與空間角、方程與不等式、映射與函數、對立事件與互斥事件等等,在教學中應善於尋找、分析其聯系與區別,有利於學生掌握概念的本質。
授人以魚,不如授人以漁,教師在教學中要在挖掘新概念的內涵與外延的基礎上,讓學生理解並掌握概念,
改變學生去機械的背概念,套公式的壞習慣,教會學生分析問題、解決問題的能力,全面提高學生的數學素養。

⑷ 如何加強小學數學的概念教學

在小學數學課中,根據教學內容可以劃分為概念課、計算課、解決問題課與空間圖形課,而幾乎在每一個新知識的起始課,學生最先接觸到的必然是數學概念。
數學概念是數學知識的「細胞」,是進行邏輯思維的第一要素。一切數學規則的研究、表達與應用都離不開數學概念。概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的,也是學習其他數學知識的基礎,因此上好概念課對小學生的後續學習以及數學素質發展的培養都具有很重要的意義。
一、概念引入的教學策略
兒童學習數學概念有一個學習准備的過程,這個過程就稱為「概念的引入」。良好有效的概念引入有助於學生積極主動地去理解和掌握概念。
概念引入的基本策略有:
1、生活實例引入
數學源於生活。結合生活實例引入概念是數學概念教學的一個有效途徑。它可以使數學由「陌生」變為「熟悉」,由」嚴肅」變為「親切」,從而使學生願意接近數學。例如:「直線和線段」的教學。可呈現四組鏡頭讓學生觀察。鏡頭一:媽媽織毛衣的場景,突出散亂在地上的繞來繞去的毛線。鏡頭二:斜拉橋上一根根斜拉的鋼索。鏡頭三:一個女孩打電話,用手指繞著彎彎曲曲的電話線。鏡頭四:建築工地上用繩子拴住重物往上拉的畫面,突出筆直的鋼絲繩。然後提問:「剛才你在屏幕上看到了什麼?你能給這些線分分類嗎?你有什麼辦法使這些線變直?」這些熟悉的生活現象不僅喚起了學生對生活的回憶,更激起了學生探索慾望,為學生提供了「做數學」的機會。
2、從直觀操作引入
組織學生動手操作,可使學生藉助動作思維,獲得鮮明的感知。如:教學「平均分」的概念,可先引導學生動手操作,把8個桃子分給2隻猴子,看看有幾種不同的分法。然後進行比較,說說你認為哪種分法最公平。從而使學生認識到:眾多的分法中有一種分法是與眾不同的,那就是每人分的同樣多,從而形成「平均分」的表象。
3、從舊知遷移引入
數學概念之間的聯系十分緊密,到了中高年級,許多概念可以通過聯系相關的舊概念直接引入。例如:「質數與和數」的教學。由於質數、和數是通過約數的個數來劃分的,所以在教學時,可以從復習約數的概念入手,然學生找出1、2、6、7、8、11、12、15的所有約數。在引導學生觀察比較,他們各有幾個約數?你能給出一個分類標准,把這些數分分類嗎?從而為引出質數、和數做好鋪墊。又如:「乘法」的概念可從「加法」來引入,「整除」的概念可從除法中的「除盡」來引入。
4、從情景設疑引入
豐富的情景不僅能激發學生的學習慾望,而且有利於學生主動觀察和積極思考,還有利於培養學生通過觀察發現並提出問題的能力。例如:關於「體積」概念的教學,可以先將兩個同樣的玻璃容器盛滿水,然後拿出兩個大小明顯不等的石塊,分別放進兩個玻璃容器中,讓學生觀察,出現了什麼現象,並想一想,為什麼石塊放進容器後,水要往外溢?為什麼放進較大石塊的容器,流出的水較多?從而讓學生獲得石塊佔有空間的感性認識,為引出「體積」做好了准備。
5、從動手計算引入
有些數學概念很難讓學生觀察或操作,但可以組織學生進行計算,使學生獲得感性認識。例如:「循環小數」概念的教學。可先讓學生進行小數除法計算,10/3,58.6/11。在計算過程中,學生會發現他們都除不盡,並且注意到當余數不斷重復出現時,商也不斷跟著重復出現,從而感知循環小數。
引進數學概念的方法較多,有時需要配合使用幾種方法才能收到良好的教學效果。
二、概念建立的教學策略
概念建立是概念教學的中心環節。小學生建立數學概念有兩種基本形式:一是概念的形成,二是概念的同化。由於小學生的思維特點處於由形象思維像抽象邏輯思維過度的階段,因此,小學生學習數學概念大多以「概念形成」的形式為主。數學概念的形成,一般要經過直觀感知---建立表象---解釋本質屬性三個過程。
1、強化感知
感知是人們認識事物的開始,沒有感知就不可能認識事物的本質和規律。因此在概念教學中,首先根據教學內容有目的、有計劃地向學生提供豐富的感性材料,引導學生觀察,並結合學生自己的動手操作,豐富感性認識,為概念形成做好准備。在組織學生進行感知活動時,要有意識地把感知的對象從背景中凸現出來,以便學生清晰地感知。同時,變靜止的為活動的,給學生留下清晰而深刻的印象。
2、重視表象
表象是人腦對客觀事物感知後留下的形象,是多層次感知的結果。表象接近感知,具有一定的具體性,同時又接近於概念,具有一定的抽象性,它起著從感知到概念的橋梁作用。建立表象,可以使學生逐步擺脫對直觀材料的依賴,克服感知中的局限性,為揭示概念的本質屬性奠定基礎。因此,在演示或操作結束後,不要急於進行概括,可以讓學生脫離直觀事例,默默地回想一下,喚起頭腦中的表象,並通過教師的引導,是表象有模糊到清晰,由分散到集中,進而過渡到抽象概括。如:在直觀感知黑板面、課桌面、課本面是長方形的基礎上,抽象出幾何圖形。
3、揭示本質屬性
在學生充分感知並形成表象後,教師要不失時機地引導學生進行分析、比較、綜合,概括出事物的本質屬性,並把這些本質屬性推廣到同類事物的全體,從而形成概念。
如:「三角形的認識」教學。首先讓學生說出日常生活中常見的三角形實物;接著在屏幕上出示三角旗、紅領巾、三角板等實物圖,提問這些物體都是什麼形狀?然後教師去掉圖中的顏色,只留下三個物體的外框,讓學生說說這三個圖形的相同點和不同點。舍棄這三種物體的顏色、大小、材料等非本質的東西,抽象出三角形的本著特徵:都是有三條線段組成的。接著教師出示三條線段,在屏幕上慢慢「圍成」一個三角形,形象地突出了「圍成」這一特徵,是學生准確理解:「由三條線段圍成的圖形叫三角形」。
4、深入理解概念的內涵和外延
當用定義把概念的本質屬性揭示出來時,學生對概念的理解還是膚淺的。因此,教師要採取一切手段幫助學生逐步理解概念的內涵和外延,以便學生在理解的基礎上掌握概念。一般可採取以下方法。
(1)析概念的關鍵性詞語。如在概括出分數的概念後,可進一步剖析:①單位「1」表示什麼意思?②「1」為什麼加引號?③「平均分」表示什麼意思?④「表示這樣的一份或幾份」是什麼意思?只有把這些觀念詞語的意思弄清楚了,才能對分數的概念有深刻的理解。
(2)利用概念的肯定例證和否定例證。肯定例證有利於概念的概括,否定例證有利於概念的辨別。因此教師不僅要充分運用肯定例證幫助學生正面理解概念的內涵,同時還及時運用否定例證促進學生對概念的辨析。如:學習了「循環小數」的概念後,可舉若干肯定例證和否定例證。
(3)運用變式突出概念的內涵與外延。「變式」是指本質屬性不變而非本質屬性發生變化。例如教學「三角形的高」時,當學生在標准圖形做出高之後,可出示變式圖形,然學生根據概念做出高。這樣即使「三角形的高」的內涵到強化,又使外延到充分揭示。如果只提供標准圖形,學生只會在標准圖形上做高,而不會再變式圖形上做高,這樣就會縮小「三角形的高」這一概念的外延。
三、概念鞏固的教學策略
學生對概念的掌握不是一次就能完成的,要由具體到抽象,再由抽象到具體多次往復。當學生初步建立概念後還需要運用多種方法,促進概念在學生認知結構中的保持,並通過不斷運用加深對概念的理解和記憶,使新建立的概念得以鞏固。
1、促進記憶
為了鞏固所獲得的新概念,首先需要記憶。教學中,我們必須遵循記憶的規律,指導學生對概念進行記憶。記憶有機械記憶、理解記憶。概念的機械記憶就是按概念在課本上的表述進行記憶。小學生機械記憶的能力一般比較強,但這種記憶如不及時上升到理解記憶,就很容易被遺忘,即使記住了也很難運用。概念的理解記憶是在明確了概念的內涵和外延,並使新概念和學生原有的知識經驗建立聯系後進行的記憶。
2、自舉實例
自舉實例就是讓學生把已獲得的概念簡單地運用於實際,通過實例來說明概念,來加深對概念的理解。有經驗的教師根據小學生通常帶有具體性的特點,在學生通過分析、綜合、抽象概括出概念以後,總是讓他們自舉例證,並把概念具體化。如在學生學習乘法的初步認識後,然學生找找生活中哪些問題可以用乘法解決。
3、強化應用
學生是否牢固地掌握了某個概念,不僅在於能否說出概念的名稱和定義,還在於能否正確地應用。通過應用可以家生理解,增強記憶,提高數學的應用意識。
概念的應用可以從概念的內涵和外延兩方面進行。概念的內涵的應用有:①復述定義或根據定義填空;②根據定義判斷是非;③根據定義推理;④根據定義計算。概念外延的應用有:①舉例;②辨認肯定例證或否定例證,並說明理由;③按指定條件從概念的外延種選擇事例;④將概念按不同的標准分類。
4、注意辨析
隨著學習的深入,學生掌握的概念不斷增多,有些概念的文字表述相同,有些概念的內涵相近,學生容易混淆,如質數與互質數、整除與除盡、和數與偶數等。因此在概念的鞏固階段,要注意引導學生運用對比的方法,弄清易混淆概念的聯系與區別,以促使概念的精確分化。
總之,小學數學概念教學是小學數學教學的重要組成部分,教師在上概念課的時候一定要根據針對學生的認知規律以及概念的具體特點,採取科學的教學策略來開展教學工作,以保證數學概念教學的質量。在小學數學教學中,幫助學生逐步形成正確的數學概念,是課堂教學的一個重要任務。

⑸ 如何在小學數學教學中有效開展概念教學

數學概念不僅是小學數學知識的基本要素,也是培養和發展學生數學能力的重要內容。對它的理解和掌握,關繫到學生學習數學的興趣,關繫到學生計算能力和邏輯思維能力的培養,關繫到學生解決實際問題的能力。由於小學生的年齡特點,直觀形象思維制約了對數學中抽象概念的掌握,導致孩子們在學習和運用概念的過程中,經常出現這樣或那樣的錯誤。那麼,怎樣才能使數學概念教學更有效呢?
一、數學和生活實際聯系,引入概念
數學知識來源於生活,又應用於生活。把點滴生活經驗變成系統數學知識目的在於使其更好地運用到生活中去,除了在課堂上一些與生活相連的習題更好體會知識的還是生活本生。
例如,在教學《認識鍾表》時,認識整時和大約幾時這兩個數學概念本身就比較抽象,你若直接告訴孩子看鍾點的方法:分針對著12,時針對著幾就是幾時,1時=60分,1分=60秒,孩子未必真正理解,而且長期地這樣教學學生就不會去思考,產生一種依賴的心理。因此我們在課起始時便以猜謎揭示課題,而後分認識鍾面,認識整時和大約幾時三步走。認識鍾面環節讓學生根據已有經驗說說鍾面的認識,為了讓學生的介紹更為有針對性把提問變成「你知道鍾面上有什麼?」這樣學生根據手中的鬧鍾很容易回答。在學生撥鍾也讓學生自由的撥出一些整時並說說在這一時刻在干什麼,這樣學生對各個時段的認識就能聯系生活而不僅僅停留在1~12各個數上。在「兩個8時」這一環節,讓學生根據生活經驗充分的討論兩個8時的存在和不同,再指導學生會照樣子用一句話說一說,同時從數學角度提醒學生在平時說話時要注意用上「早晨、上午、下午、晚上」 等詞語,這樣說起來就更清楚明白。鍾面、整時和大約幾時三個環節層層遞進,每一個環節與學生經驗緊密聯系。
低年級小學生,由於年齡、知識和生活的局限,理解一個概念主要是憑借事物的具體形象。因此,在低年級數學概念教學的過程中,要做到細心、耐心,盡量從學生日常生活中所熟悉的事物開始引入。這樣,學生學起來就有興趣,思考的積極性就會高。

二、迎合學生學習興趣,引入概念
托爾斯泰說過:「成功的教育所需要的不是強制,而是激發學生的興趣。」興趣是成功的秘訣,是獲取知識的開端,是求知慾的基礎。學生對學習數學的興趣,直接影響到課堂教學效率的高低。抽象的理論如果再加上乾巴巴的講解,必然不會引起學生的學習興趣。
例如,在教學《認識角》時, 既要讓學生感知直角、銳角、鈍角等不同種類的角,又要注意變化角的大小和角的開口方向,這樣才能獲得對角的清晰認識。教師可以事先做好一個只露出三角形一個角的教具,讓學生觀察露出的一個角,判斷整個三角形是什麼三角形。當露出一個直角時,學生馬上回答這是個直角三角形;當露出一個鈍角時,學生馬上回答這是個鈍角三角形;當露出一個銳角時,學生就自然而然地回答這是個銳角三角形。這時教師拿出的卻不是銳角三角形,這樣,學生就有了懸念:為什麼有一個直角的是直角三角形,有一個鈍角的是鈍角三角形?而一個角是銳角的三角形就不一定是銳角三角形了呢?這時學生強烈的求知慾已經成為一種求知的「自我需要」,學生的學習興趣得到了激發,使興趣成為學生學習的動力,為教學新概念創造良好的學習氣氛,使學生在獲得概念的整個過程中感到學習的快樂。

三、動手操作,引入概念
低段小學生他們愛擺弄東西,什麼都想嘗試。但若遇到困難而無法解決時,操作的積極性就會下降。所以利用學生這種心理適當安排動手嘗試的學習內容可以激發起學生的學習興趣,更好得形成概念。
例如,在教學《米和厘米》時,在認識了「厘米」以後我安排學生通過測量,看看你身體上哪個部位的長度最接近一厘米。學生的積極性很高,先是拿出尺子不停的比劃,然後三五成群的議論開了,積極主動地去尋求答案。在交流想法時,小朋友不僅給出了我想要的答案,更讓我收獲了不少的驚喜。
學生在操作、實踐中獲得感性認識,經歷「充分感知-豐富表象-領悟內涵」的過程,在頭腦中切實、清楚地建立了1厘米的實際長度和空間觀念,突出了本節課的教學重點。

四、巧用多媒體,引入概念
應用多媒體輔助教學,充分激活課堂教學中的各個要素,全方位地調動和發揮教師在課堂教學中的主導作用和學生學習的主體作用,建立合理的教與學的關系,
例如,在教學《認識分數》時,我設計了這樣一個動畫:周末,同學們去野餐,在優美的音樂的聲中,一群活潑可愛的小朋友來到了郊外,貼近生活化的情境一下子就吸引了學生的注意力。跟著提出問題:「把8個蘋果和4瓶果汁平均分給2人,每人分得多少」?學生回答後動畫演示分得的結果,非常直觀地顯示出「平均分」,加強了學生對「平均分」這個概念的理解。接著提出:「把一個生日蛋糕平均分成2份,每人分得多少」?演示「一半」,提出「一半」用什麼數來表示?自然地引出本節課要研究的認識分數。
我們在教學中,要結合概念的特點和學生的實際,靈活掌握使用,優化數學概念教學,提高概念教學的有效性,更好地進行概念教學。

⑹ 怎樣進行小學數學概念教學

(希望以下我轉載的文章對你有些許幫助)
怎樣讓這些枯燥、抽象的概念變得生動有趣,使課堂教學更有效,減輕孩子們的學習負擔,讓概念在孩子們心中得到完美內化呢?或許我們可以從以下幾方面入手。
一、概念的引入講述宜直觀形象
針對第一學段孩子的抽象思維能力較弱,對數學語言描述的概念理解較為困難,我們在教學中應該多用形象的描述,創設有趣的問題情境,打些合理的比方等,努力讓孩子們理解所學概念,可以採用以下一些方式來進行教學。
誇張的手勢,豐富的肢體語言,理解運算所蘊含的意義,區分概念的差別。在讓一年級的孩子認識加減法的時候,我舉起雙手像音樂指揮家一樣,左邊一部分,右邊一部分,兩部分合在一起就用加號,加號就是橫一部分,豎一部分組起來的,減法則反過來展示。孩子們看得有趣,記得形象,不但記住了加減號還明白了加減號的用法。在教二年級孩子感受厘米和米時,我讓孩子們學會用手勢來表示1厘米和1米,使得孩子們在估計具體物體的長度時有據可依。形象生動的講解,讓孩子們自然接受數學符號。教師的語言講解也要力求符合學生實際,特別是第一次描述時,教師一定要斟字酌句地用孩子能理解的語言盡可能用數學語言簡潔地描述。因為對於第一次接觸新概念的孩子們來說,第一印象是最為深刻的。當然在適當的時候我們也可以選擇讓孩子們根據自己的理解來說一說來試著對概念進行解釋,一方面同齡人的解釋會讓孩子們概念的理解更為容易;另一方面也可以鍛煉一下孩子的數學語言表達能力。我們要記住:孩子們的數學概念應該是逐級遞進、螺旋上升的(當然要避免不必要的重復),以符合學生的數學認知規律。很多時候第一學段的孩子對於部分數學概念,只要能意會不必強求定要學會言傳。
二、概念的學習宜多感官參與
心理學家皮亞傑指出:「活動是認識的基礎,智慧從動作開始。」書上的數學概念是平面的,現實卻是豐富多彩的,照本宣科,簡單學習自然無法讓這些數學概念成為孩子們數學知識的堅固基石。如果我們能夠讓孩子們的多種感官參與學習,讓平面的書本知識變得多維、立體,讓孩子們的感覺和思維同步,相信能取得很好的教學效果。
教學《認識鍾表》時,鑒於時間是一個非常抽象的概念,時間單位具有抽象性,時間進率具有復雜性,所以在教學時我以學生已有生活經驗為基礎,幫助學生通過具體感知,調動孩子的多種感官參與學習,在積累感性認識的基礎上,建立時間觀念,安排了以下一些教學環節。1.動耳聽故事,調動情感引入。講了一個發生在孩子們身邊的故事:豆豆由於不會看時間,結果錯過了最愛看的動畫片。2.動眼看鍾面,聽介紹,初步了解鍾面,形成「時、分」概念。動畫是孩子們的最愛,讓鍾表爺爺來介紹鍾面、時針、分針,生動有趣的講解,讓孩子們的心立刻專注地進行於課堂上。3.動嘴說時間,喜好分明。4.動手撥時間。5.動腦畫時間(此時在前幾項練習的基礎上增加了一定難度,如出示一些沒有數字的鍾面,只有12、3、6、9四點的鍾面,讓孩子們對時針、分針的位置進行估計)。
通過這些活動,使孩子們口、手、耳、腦並用,自主地鑽入到數學知識的探究中去,讓時間從孩子們的生活中伶伶俐俐地變成數學知識,形成了數學概念。同時也讓學生充分展示自己的思維過程,展現自己的認識個性,從而使課堂始終處於一種輕松、活躍的狀態。
另外,教師在教學的過程中也應該對所教概念的知識生長點,今後的發展(落腳點)有一個全面、系統的認識,才能使得所教概念不再那麼單薄,變得厚重起來。孩子對概念的來龍去脈有一個更清晰完整的了解,理解起來也就變得輕松。
如果我們能讓一個概念變得豐滿,變得多彩,讓它能從書的平面描述中凸現出來,那麼孩子們掌握概念的過程便也會變得立體、多維,他們的學習過程也就變得積極、主動,而這不正是我們數學學習所需要的嗎?
三、概念的練習宜生動有趣
第一學段初期的孩子從心理狀態上來說較難適應學校的教學生活,在學習中總是會感到疲勞乏味,碰到相對枯燥的概念教學時這種疲憊更是由內而外。德國教育家福祿培爾在其代表作《幼兒園》中認為,游戲活動是兒童活動的特點,游戲和語言是兒童生活的組成因素,通過各種游戲,組織各種有效的活動,兒童的內心活動和內心生活將會變為獨立的、自主的外部自我表現,從而獲得愉快、自由和滿足。將游戲用於教學,將能使兒童由被動變為主動,積極地汲取知識。
游戲、活動是孩子們的最愛,讓他們在游戲活動中獲取知識,這樣的知識必定是美好而快樂的。有了這樣的感覺,孩子們學習數學的興趣一定是濃厚的,我們再讓數學的魅力適度展示,讓他們感覺到學習數學不但是一件輕松、快樂的事更是一件有意義的事。我想他們繼續進行探索、學習新知的動力就來自於此了。
四、概念的拓展宜實在有效
美國實用主義哲學家、教育家杜威從他的「活動」理論出發,強調兒童「從做中學」「從經驗中學」,讓孩子們在主動作業中運用思想、產生問題、促進思維和取得經驗。確實,在一些親力親為的數學小實驗中,孩子們表現出了一種自然的主動的學習情緒。他們以充沛的精力在這些小實驗、小研究中主動地討論所發生的事,想出種種方案去解決問題,使智力獲得了充分的應用和發展。在數學概念的教學中,設計一些孩子能力所能致的小研究活動,可以讓孩子對這些抽象的數學概念得到進一步體驗、內化,得到課堂教學所不能抵達的效果。
孩子對於較大的單位比如說「千米」「噸」等,由於其經驗的限制往往沒有什麼概念。只是,教師這樣說了,他也便這樣記了,對他而言也僅僅只是一個簡單的字元而已。僅僅通過課堂教學,那麼「千米」在孩子們的印象中便是「1千米=1000米」是一個不能用手丈量的長度;「噸」在孩子們的印象中便是「1噸=1000千克」是一個拿不動的質量。至於「1千米」到底有多長,「1噸」到底有多重?孩子們心中並無底,才使得經常會出現:一幢居民樓高約20(千米);一節火車車廂載重量為60(千克)這樣的笑話。如果我們能讓孩子們來進行切身的體驗再附以一些小實驗,這些問題便能迎刃而解了。
概念是枯燥的、乏味的,但卻是重要的。對於第一學段的孩子們我們不能假定他們都非常清楚學習數學概念的重要性,指望他們能投入足夠的時間和精力去學習數學概念,也不能單純地依賴教師或家長的「權威」去迫使孩子們這樣做。那麼就需要我們積極地引領他們,使之學得輕松,學得扎實,讓他們體會到數學所散發出的無窮魅力,讓概念深入心中,為數學學習服務。

⑺ 簡答題:如何進行數學概念的教學

教學蹦來就是一個繁雜的過程,哪裡能答得簡啊,如果要簡單的話就四字:認真負責。我不教數學,但找了篇相關的文章;參參考給你。嘿嘿~~很長的;參考里的網站有很多教學論文去看看吧。
所謂數學概念,就是事物在數量關系和空間形式方面的本質屬性,是人們通過實踐,從數學所研究的對象的許多屬性中,抽出其本質屬性概括而形成的。就是指那些數學名詞和術語。(在小學數學中反映數和形本質屬性的數字、圖形、符號、名詞術語和定義、法則等都是數學概念。)
數學概念是進行數學推理、判斷的依據,是建立數學定理、法則、公式的基礎,也是形成數學思想方法的出發點。因此學好數學的基礎關鍵是數學概念的學習,數學概念教學是數學教學是一個重要的組成部分。

一、數學概念的意義和定義方式

數學概念形成是從大量的實際例子出發,經過比較、分類從中找出一類事物的本質屬性,然後再通過具體的例子對所發現的屬性進行檢驗與修正,最後通過概括得到定義並用符號表達出來。實際上應包含兩層含義:其一,數學概念代表的是一類對象,而不是個別的事物。例如"三角形"可用符號"△"來表示。這時凡是像"△"這樣具有三個角和三條邊的圖形,則不論大小,統稱為三角形,也就是說三角形的概念,就是指所有的三角形:等邊的、等腰的、不等邊的、直角的、銳角的、鈍角......;其二,數學概念反映的是一類對象的本質屬性,即該類對象的內在的、固有的屬性,而不是那些表面的非本質的屬性。例如,"圓"這個概念,它反映的是"平面內到一個定點的距離等於定長的點的集",我們根據這些屬性,就能把"圓"和其他概念區分開。
我們把某一概念反映的所有對象的共同本質屬性的總和叫做這個概念的內涵,把適合於這個概念的所有對象的范圍稱為這個概念的外延。通常說,給概念下定義,就是提示內涵或外延。一般說,定義數學概念有以下幾種方式:
1.約定式定義
由於數學自身發展的需要,有時也通過規定給術語以特定的意義。如"不等於零的數的零次冪等於1",規定了零指數冪的意義,但要注意,約定式不能隨心所欲,必須符合客觀規律。
2.描述性定義
數學是一門嚴謹的科學,每個新概念總要用一些已知的概念來定義,而這些用於定義的已知概念又必須用另一些已知的概念來刻畫,從而構成了一個概念的系列。在概念的系列中,是不允許有循環的。因此總有些概念是不能用別的概念來定義。這樣的概念,叫做數學中的基本概念,又稱為"原名"(或不定義概念、原始概念),它們的意義只能藉助於其他術語和它們各自的特徵予以形象地描述。如:幾何中的點、直線、平面,代數中的集合、元素等。
3.構造式定義
這種定義是通過概念本身發生、形成過程的描述來給出的。如橢圓的定義"平面內與兩個定點的距離的和等於定長的點的規跡叫做橢圓"。
4.屬加種差定義
如果某一概念從屬於另一個概念,則後者叫做前者的屬概念,而前者叫做後者的種概念。如實數是有理數的屬概念,而有理數是實數的種概念。
在同一個屬概念下,各個概念所含屬性的差別叫種差。如對於四邊形這個屬概念,平行四邊形和梯形都是它的種概念,它們的種差是:"兩組對邊分別平行"和"一組對邊平行,另一組對邊不平行"。
用屬加種差來定義概念,"就是把某一概念放在另一更廣泛的概念里"來刻畫它的意義,通常的方法是用鄰近的屬加種差來進行表述。如:平行四邊形的定義,它的鄰近的屬概念是四邊形,種差是兩組對邊分別平行,因而平行四邊形的定義表述成"兩組對邊分別平行的四邊形叫做平行四邊形"。
另外,在教材里,還會遇到一些通過揭示概念的外延的方式給概念下定。如實數的定義:"有理數和無理數統稱為實數"。
最後,還需聲明:定義是數學概念的方式,以上分析是相對的、不嚴格的。例如,"異面直線所成角"定義,我們既可以認為它是約定式的,即規定"把經過空間任意一點所作的兩條異面直線的平行線所成的銳角或直角叫做異面直線所成的角",也可以把它理解為發生式的:即通過取點、作平行線構成兩對對頂角,把其中的銳角或直角叫做異面直線所成的角。總之,我們理解定義並不在於區分它是屬於哪種定義方式,而是要明確概念的外延與內涵,然後應用它們去解決問題。

二、怎樣進行數學概念教學

對數學概念,即使是那些原始概念,都不能望文生義。在教學中,既要把握它的內涵,這是掌握概念的基礎;又要了解它的外延,這樣才有利於對概念的理解和擴展;同時,對於概念中的各項規定、各種條件,都有要逐一認識,綜合理解,從而印象更深,掌握更牢。
一般來說,圍繞一個數學概念,應當力求清楚下列各個方面的問題:
①揭示本質屬性。這個概念討論的對象是什麼,有何背景?此概念中有哪些規定和條件?它們與過去學過的知識有什麼聯系?這些規定和條件的確切含義又是什麼?
給出概念的定義、名稱和符號,揭示概念的本質屬性。例如學習二次函數的概念,先學習它的定義:"y=ax2+bx+c(a、b、c、是常數。a≠0)那麼y叫做x的二次函數"。又如,一位教師教學"長方體和正方體的認識"時,在指導學生給不同形體的實物分類引入"長方體"和"正方體"的概念後,及時引導學生先把"長方體"或"正方體"的各個面描在紙上,並仔細觀察描出的各個面有什麼特點,再認識什麼叫"棱",什麼叫"頂點",然後,指導學生分組填好領料單,根據領料單領取"頂點"和"棱",製作"長方體"或"正方體"的模型,邊觀察邊討論長方體與正方體的頂點和棱有什麼特點,最後指導學生自己歸納、概括出"長方體"和"正方體"的特徵,從而使學生充分了解"長方體"和"正方體"這兩個概念的內涵和外延。
②討論反例與特例。對概念進行特殊的分類,討論各種特例,突出概念的本質屬性。例如二次函數的特例是:y=ax2,y=ax2+c,y=ax2+bx,等等。
③新舊知識聯系。此概念中有哪些規定和條件?它們與過去學過的知識有什麼聯系?使新概念與原有認知結構中有關觀念建立聯系,把新概念納入到相應的概念體系中,同化新概念。例如把二次函數和一次函數、函數等聯系起來,把它納入函數概念的體系中。
④實例確認。辨認正例和反例,確認新概念的本質屬性,使新概念與原有認知結構中有關概念精確分化。例如舉出y=2x+3,y=3x2-x+5,y=-5x2-6等讓學生辨認。
⑤具體運用。根據概念中的條件和規定,能夠歸納出哪些基本性質?這些性質在應用中有什麼作用?通過各種形式運用概念,加深對新概念的理解,使有關概念融會貫通成整體結構。
以上,我們只是介紹了概念教學過程的一般模式。把這個全過程可歸結為三個階段:
(一)引進概念途徑
數學概念本身是抽象的,所以,新概念的引入,一定要堅持從學生的認識水平出發,要密切聯系生產、生活實際。不同的概念的引進方法也不盡相同。對於一些原始概念和一些比較抽象的概念,教師應通過一定數量的感性材料來引入,要密切聯系生活實際,使學生"看得見,摸得著"。引用實例時一定要抓住概念的本特徵,要著力於揭示概念的真實含義。如"平面"的概念,可讓學生觀察生活中一些如桌面、平靜的水面等,通過自己的探索和與同學們的交流得出結論。但是,教師一定要想辦法讓學生自己得到"無限延伸性和沒有厚度"的本質特徵。
(二)形成概念的方法
認識一個特殊的心理過程,由於每個學生之間存在一些差異,那麼完成這個過程所需的時間也不一定相同。但是就認識過程而言,卻不能跳躍。教學中,引入概念、並使學生初步把握了概念的定義以後,還不等於形成了概念,還必須有一個去粗取精、去偽存真、由此及彼、由表及裡的改造、製造,必須在感性認識的基礎上對概念作辯證的分析,用不同的方式進一步提示不同概念的本質屬性。

1.在掌握了概念的本質屬性之後,要引導學生作一些練習。例如,引入分解因式的概念後,可選下列一類練習讓學生回答。
下列由左到右的變形,哪些是屬於分解因式?哪些不是?為什麼?
①(x+2)(x-2)=x2-4;
②(a2-9)=(a+3)(a-3);
③a3-9a=a(a2-9);
④x2-y2+1=(x+y)(x-y)+1;
⑤x2y+x=x2(y+1)
通過回答問題,特別是說明理由,可以初步培養學生運用概念作簡單判斷的能力。同時,每做一次判斷,概念的本質屬性就會在大腦里重現一次。因而,對於促進概念的形成是行之有效的。
2.通過變式或圖形,深化對概念的理解。又如學習梯形這個概念時,可提供如下圖形讓學生觀察:
這里,要注意三點:第一,所提供的感性材料(梯形)要足量,不可太少,也沒有必要太多。太少不利於學生從中悟出規律,形成表象;太多會造成時間和精力上的浪費。第二,要引導學生對每一個材料加以分析和綜合。第
三,要注意變式,全部材料要能反映出本要領的全部本質屬性。
3.抓住概念之間的內在聯系,通過新舊概念的對比,形成正確的概念。又如教學約數和倍數的概念時,可從"整除"這一概念入手,引出概念。
(三)概念的發展
學生掌握某一概念後,並不等於概念教學的結束,要用發展的眼光教概念。
1.不失時機地擴展延伸概念的含義。一個概念總是嵌在一些概念的群體之中。它們之間有縱橫交錯的內在聯系,必須揭示清楚。如學習比的意義之後,就要及時地把"比"、"分數"、"除法"三者聯系在一起,找出三者的聯系和區別後,使學生居高臨下,在一個廣闊的背景下審視"比"這個概念,加深對概念的理解。
2.在一定的階段形成一定的認識。抽象概念不要超越教材要求,否則會超越學生的承受能力。如一年級學習加法,只讓學生認識到,加法表示"合並在一起","把兩個數合並在一起"要用加法即可,而不能告訴學生確切的定義:"把兩個數合並成一個數的運算,叫做加法"。
總之,提高中小學數學概念教學的水平,在概念教學實踐中,教師要有意識地訓練學生的數學思維方式、品質、能力和方法。加深學生對於數學概念的理解,是使學生融會貫通地掌握數學知識、增強能力的前提和關鍵,是把知識學好學活的必由之路。

⑻ 怎樣進行高中數學概念教學

進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。
一、 高中數學與初中數學特點的變化
1、數學語言在抽象程度上突變
初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。
3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。
4、知識的獨立性大
初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。
二、如何學好高中數學
1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成 「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再
犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課
外題,加大自學力度,拓展自己的知識面。
及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。
經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學
思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。
無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,這是學好數學的重要問題。怎樣學好數學
首先要有學習數學的興趣。兩千多年前的孔子就說過:「知之者不如好之者,好之者不如樂之者。」這里的「好」與「樂」就是願意學、喜歡學,就是學習興趣,世界知名的偉大科學家、相對論學說的創立者愛因斯坦也說過:「在學校里和生活中,工作的最重要動機是工作中的樂趣。」學習的樂趣是學習的主動性和積極性,我們經常看到一些同學,為了弄清一個數學概念長時間埋頭閱讀和思考;為了解答一道數學習題而廢寢忘食。這首先是因為他們對數學學習和研究感興趣,很難想像,對數學毫無興趣,見了數學題就頭痛的人能夠學好數學,要培養學習數學的興趣首先要認識學習數學的重要性,數學被稱為科學的皇後,它是學習科學知識和應用科學知識必 的工具。可以說,沒有數學,也就不可能學好其他學科;其次必須有鑽研的精神,有非學好不可的韌勁,在深入鑽研的過程中,就可以 略到數學的奧妙,體會到學習數學獲取成功的喜悅。長久下去,自然會對數學產生濃厚的興趣,並激發出學好數學的高度自覺性和積極性。
有了學習數學的興趣和積極性,要學好數學,還要注意學習方法並養成良好的學習習慣。
知識是能力的基礎,要切實抓好基礎知識的學習。數學基礎知識學習包括概念學習,定理公式學習以及解題學習三個方面。學習數學概念,要善於抓住它的本質屬性,也就是區別於這個概念和其他概念的屬性;學習定理公式,要緊緊抓住定理方向的內在聯系,抓住定理公式適用的范圍及題型,做到得心應手地應用這些定理公式,數學解題實№上是在熟練掌握概念與定理公式的基礎上解決矛盾,完成從「未知」向「已知」的轉化。要著重學習各種轉化方式,培養轉化的能力。總而言之,在學習數學基礎知識中,要注意把握知識的整體精髓, 悟其中的規律和實質,形成一個緊密聯系的整體認識體系,以促進各種形式間的相互遷移和轉化。同時,還要注意知識形成過程無處不隱含著人們在教學活動中解決問題的途徑、手段和策略,無處不以數學思想、方法為指南,而這也是我們學習知識時最希望要學到的東西。
數學思想方法是知識、技能轉化為能力的橋粱,是數學結構中強有力的支柱,在中學數學課本里滲透了函數的思想,方程的思想,數形結合的思想,邏輯劃分的思想,等價轉化的思想,類比歸納的思想,介紹了配方法、消元法、換元法、待定系數法、反證法、數學歸納法等,在學好數學知識的同時,要下大力氣理解這些思想和方法的原理和依據,並通過大量的練習,掌握運用這些思想和方法解決數學問題的步驟和技巧。
在數學學習中,要特別重視運用數學知識解決實№問題能力的培養。數學社會化的趨勢,使得「大眾數學」的口號席捲整個世界,有人認為未來的工作崗位是為已作好數學准備的人才提供的,這里所說的「已作好了數學准備」並不僅指懂得了數學理論,更重要的是學會了數學思想,學會了將數學知識靈活運用於解決現實問題中。培養數學應用能力,首先要養成將實№問題數學化的習慣;其次,要掌握將實№問題數學化的一般方法,即建立數學模型的方法,同時,還要加強數學與其他學科的聯系,除與傳統學科如物理、化學聯系外,可適當了解數學在經濟學、管理學、工業等方面的應用。
如果我們在數學學習中,既扎扎實實地學好了數學知識和技能,又牢固地掌握了數學思想和方法,而且能靈活應用數學知識和技能解決實№問題,那麼,我們就走在了一條數學學習成功的大道上。一.人人都能學好數學
數學對很多人來說是枯燥的、深奧的、抽象的,這是不爭的事實,但不等於說就是難學的。有位數學名人說過:「掌握數學,就是善於解題,但不完全在於解題的多少,還在於解題前的分析、探索和解題後的深思窮究。」也就是說,解數學題不是要把自己當成解題的機器、解題的奴隸,而應該努力成為解題的主人,是要從解題中吸取解題的方法、思想,鍛煉自己的思維,這就是所謂的「數學題要考查考生的能力」。那麼解題前後該如何「分析探索」與「深思窮究」呢?實際上,世間萬事萬物都是相通的,不知道同學們是否喜歡語文?要想寫一篇優秀的作文,必須審題、創意,要有寫作提綱,這種創意須是來源於自己的生活,是自己親身經歷、所感所想的,靠杜撰絕對寫不出好文章。那麼解決一道數學題,也必須審題,要弄清題目的已知是什麼?待求的是什麼?這叫「有的放矢」。「的」就是要打開「已知」與「待求」之間的通道,就是「創意」,就是要利用自己現有的數學知識、解題方法溝通這種聯系,或將問題化整為零、或將問題化為比較熟悉的問題。這種「創意」是一種長期數學思維的積淀,是自己解題經驗的總結,是解題之後的感悟。因此,解題之後的總結是最不容忽視的。記得從小學開始,語文老師總是要求我們在閱讀一篇文章之後說出它的中心思想,目的何在?我們做完一道數學題,也要想著總結它的中心思想:題目涉及到哪些知識點;解題中用到哪些解題方法或思想,以此與命題人「溝通」,才能達到「領悟」的境界。當然,解題後的總結,還應該考慮:問題是否可以有其它解法;是否可以進行推廣用來解決與之相似的問題。只有做到「舉一反三」,才能真得會「觸類旁通」。總之,做任何學問都不能貪大求全,而應精益求精。
二.注意改進學習習慣
1.知識掌握過程中的三種不良習慣
忽略理解,死記硬背:認為只要記住公式、定理就萬事大吉,而忽略了知識導出過程的理解,既造成提取應用知識的困難,更一次又一次地失去了對知識推導過程中孕含的思想方法的吸取。如三角公式「常記常忘,屢記不會」的根本原因就在於此,進而也談不上用三角變換解題的自覺性了。
注重結論,輕視過程:數學命題的特點是條件和結論之間緊密相聯的因果關系,不注意條件的掌握,常會導致錯誤的結果,甚至是正確的結果、錯誤的過程。如學習中看不出何時需討論、如何討論。原因之一在於數學知識的前提條件模糊(如指對數函數的單調性,不等式的性質,等比數列求和公式,最值定理等知識)
忽略及時復習和強化理解:「溫故而知新」這一淺顯的道理誰都懂,但在學習過程中持之以恆地應用者不多。由於在老師的精心誘導教誨下,每節課的內容好像都「懂」,因此也就捨不得花八至十分鍾的「寶貴」時間回顧當天的舊知。殊不知課上的「懂」是師生共同參與努力的結果,要想自己「會」,必須有一個「內化」的過程,而這個過程必須從課內延伸到課外。切記從「懂」到「會」必須有一個自身「領悟」的過程,這是誰也無法取締的過程。
2.解決問題過程中的四種不良心態
缺乏對已學習過的典型題目及典型方法的積累:部分同學做了大量的習題,但收效甚微,效果不佳。究其原因,是迫於壓力為完成任務而被動做題,缺乏必要的總結和積累。在積累的基礎上增強「題性」、「題感」,逐步形成「模塊」,不斷吸取其中的智育營養,方可感悟出隱藏於模式中的數學思想方法。這就是從量的積累到質的變化的過程,只有靠「積累—消化—吸收」才能「升華」。
在解決新問題時,缺乏探索精神:「學數學不做題目,等於入寶山而空返」(華羅庚語)。我們面對的社會,新的問題不斷出現,無處不在,信息時代尤為如此。學習數學,需要在解決問題的實踐中不斷探索。怕困難、過份依賴老師,久而久之便會形成不積極鑽研的習慣。我們在課堂教學中採用「先思後講,先做後評」的方法,正是為激發學習者的積極主動的探索熱情。希望同學們增強自信、勇於猜想、主動配合教師,使數學課堂教學成為學習者的思維活動的交流過程。
忽視解題過程的規范化,只追求答案:數學解題的過程是一個化歸與轉化的過程,當然離不開規范嚴謹的推理與判斷。解題中跳躍太大、亂寫字母、徒手作圖,如此態度對待稍難的問題,是難以產生正確答案的。我們說解題過程的規范不只是規范書寫,更主要是規范「思考方法」,同學們應該學會不斷調控自己的思維過程,力爭使解題盡善盡美。
不注重算理,忽視對運算途徑的選擇與實施:數學運算是按規則進行的,通用的規則和通行的方法當然要牢固掌握。但靜止的相對性和運動的絕對性又決定了數學解題中的通法不可能一成不變。因此,在運用通性、通法、通則解決問題時,不能忽視算理,更應注重對合理簡捷運算途徑的猜想、推斷與選擇,那種不假思索、順水推舟的做題方法必須改進。用「看」題或「想」題代替「做」題的學習方法,是引起運算能力差、導致運算繁冗的根本原因。
3.復習鞏固中的三種錯誤認識
認為多做題可以代替復習理解:學好數學,做大量的配套練習是必要的。但只練不想、不思、不總結,未必有好結果。只會埋頭做題,不會抬頭思考的同學,雖然做了大量的題目,以往所學的知識也難以保持隨機提取的狀態,只有靠滾動式的總結,才能使知識永遠「保態」,並且實現階段性知識層次的飛躍。我們平時復習中的練習,階段性的測試與月考,正是為了引導同學們多層次、全方位、多角度的復習理解,使知識連點成線構成網路。因此,善思考、勤總結是復習過程中必須的,也是知識和方法不斷積累的有效途徑。
不注意知識間的聯系和知識的系統性:高考數學科命題常在知識的交匯處考查學生綜合應用知識的能力。如果我們僅靠單一的知識掌握,缺乏對知識間的聯系與知識系統性的充分認識,必然會導致認識膚淺,綜合能力差,當然很難取得良好的成績。我們平時教學中的「前後兼顧」和「解題規律的總結」等均是為了強化知識間的聯系,望引起同學們足夠的重視。
不善於糾正已犯過的錯誤:糾正錯誤的過程就是學習進步的過程,人類社會也是在與錯誤作斗爭的過程中發展的。因此,善於糾錯,及時總結經驗教訓也是學習的重要環節。部分同學對老師批改的作業常停留在「√」和「×」上,甚至熟視無睹;對試卷只問得分的多少,而不關心或很少關心為什麼「錯」。須知:回憶,不管是甜、是苦,總是有益的、美好的,總能鼓勵自己更有信心地面向未來!改正錯誤的過程就是學習進步的過程。
總之,課前預習做好心理准備;課上腦、耳、手、口協調作戰,提高45分鍾的吸取效益;課後復習總結,充分思考與內化。相信通過同學們積極主動的學習,一定會成為數學的主人。
如何學好數學1
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
如何學好數學2
高中生要學好數學,須解決好兩個問題:第一是認識問題;第二是方法問題。
有的同學覺得學好教學是為了應付升學考試,因為數學分所佔比重大;有的同學覺得學好數學是為將來進一步學習相關專業打好基礎,這些認識都有道理,但不夠全面。實際上學習教學更重要的目的是接受數學思想、數學精神的熏陶,提高自身的思維品質和科學素養,果能如此,將終生受益。曾有一位領導告訴我,他的文科專業出身的秘書為他草擬的工作報告,因為華而不實又缺乏邏輯性,不能令他滿意,因此只得自己執筆起草。可見,即使將來從事文秘工作,也得要有較強的科學思維能力,而學習數學就是最好的思維體操。有些高一的同學覺得自己剛剛初中畢業,離下次畢業還有3年,可以先松一口氣,待到高二、高三時再努力也不遲,甚至還以小學、初中就是這樣「先松後緊」地混過來作為「成功」的經驗。殊不知,第一,現在高中數學的教學安排是用兩年的時間學完三年的課程,高三全年搞總復習,教學進度排得很緊;第二,高中數學最重要、也是最難的內容(如函數、立幾)放在高一年級學,這些內容一旦沒學好,整個高中數學就很難再學好,因此一開始就得抓緊,那怕在潛意識里稍有鬆懈的念頭,都會削弱學習的毅力,影響學習效果。
至於學習方法的講究,每位同學可根據自己的基礎、學習習慣、智力特點選擇適合自己的學習方法,我這里主要根據教材的特點提出幾點供大家學習時參考。
l、要重視數學概念的理解。高一數學與初中數學最大的區別是概念多並且較抽象,學起來「味道」同以往很不一樣,解題方法通常就來自概念本身。學習概念時,僅僅知道概念在字面上的含義是不夠的,還須理解其隱含著的深層次的含義並掌握各種等價的表達方式。例如,為什麼函數y=f(x)與y=f-1(x)的圖象關於直線y=x對稱,而y=f(x)與x=f-1(y)卻有相同的圖象;又如,為什麼當f(x-l)=f(1-x)時,函數y=f(x)的圖象關於y軸對稱,而 y=f(x-l)與 y=f(1-x)的圖象卻關於直線 x=1對稱,不透徹理解一個圖象的對稱性與兩個圖象的對稱關系的區別,兩者很容易混淆。
2『學習立體幾何要有較好的空間想像能力,而培養空間想像能力的辦法有二:一是勤畫圖;二是自製模型協助想像,如利用四直角三棱錐的模型對照習題多看,多想。但最終要達到不依賴模型也能想像的境界。
3、學習解析幾何切忌把它學成代數、只計算不畫圖,正確的辦法是邊畫圖邊計算,要能在畫圖中尋求計算途徑。
4、在個人鑽研的基礎上,邀幾個程度相當的同學一起討論,這也是一種好的學習方法,這樣做常可以把問題解決得更加透徹,對大家都有益。
答一送一:
如何在學習上占第一
學習上占第一,每個同學都可以做到。之所以你占不了第一,主要有兩個原因:第一、生活方式、學習方法不正確,第二、沒有堅強的毅力。在這裡面毅力是第一重要的,學習方法是第二重要的。在現實生活中,全中國仍有70%以上的占第一的學生雖然佔了第一,但他們並不是毅力最強的,或者說學習方法生活方式不是最好的。他們也許今天是第一,明天就不是了。也就是說,你如果按占第一的方法去學習、去鍛煉,一般都會超過現有的第一。
輝煌的第一是不是要經過艱苦的努力才能得到呢?說它艱苦是因為「培養堅強的毅力」是世上最艱苦的工作,只有你具有了堅強的毅力才可能成為第一,當然正確的生活方式和學習方法也是特別重要的。在這里什麼是堅強的毅力呢,只要你能按下面幾點要求去做,而且每天都做記錄,持之以恆,每天都不間斷地堅持一個學期、一年、三年,那麼你的毅力就足以達到占第一的要求了。在這項鍛煉中就怕你中間有間斷,風雨、心情、疾病、家務等等都不是你中斷鍛煉的理由。你要記住,學好學業是你學生生活中最重要的,沒有什麼工作的重要性會超過它。除了堅強的毅力,正確的學習方法和生活方式也是很重要的。
第一人人可以占,原來占第一的同學也不一定就比你更聰明多少,腦細胞也不一定比你多。愛迪生不是說過「天才是百分之九十九的汗水加上百分之一的靈感」嗎?!所以你第一要過心理關,就是說:要堅信你一定能成功,一定會超過現有的第一,包括現在是第一的你自已。
第二、你要天天鍛煉。沒有一個健康的身體,你什麼事也做不好,即使偶爾做好了,也不能長久。每天30分鍾左右的鍛煉一定要天天堅持。鍛煉的形式多種多樣,跑步、打乒乓球、打籃球、俯卧撐、立定跳遠等等都可以。有些同學好面子,見到別人不跑步,怕自已跑別人看見了不好意思,那就錯了,真正不好意思的是辛苦了幾年考不上大學,是上了幾年大學還要下崗。如果將來自已養活不了自已,那才是真正不好意思的。
第三、學習態度要端正。每次上課前,一定要把老師准備講的內容預習好,把不好理解的、不會的內容做好標記,在老師講到該處時認真聽講。如果老師講了以後還不會,一定要再問老師,直到明白為止。當一個問題問了兩遍三遍還不會時,一般的同學就不好意思問了,千萬別這樣,老師們最喜歡「不問明白誓不罷休」的性格了。上課時要認真聽講,認真思考,做好筆記。做筆記時一定要清楚,因為筆記的價值比課本還,將來的復習主要靠它。
課下首先要做的不是做作業,而是把筆記、課本上的知識點先學好,該記的內容一定把它背熟。這樣會大大提高你做作業的速度,即平常說的「磨刀不誤砍柴功」。做作業時應該獨立思考,實在不能解決的問題,再和同學、老師商量。問同學時,不要問這道題結果是什麼,而是要問「這道題究竟怎麼做?」「這道題為什麼這樣做?」
第四、正確面對錯誤和失敗。當有的知識你沒有在課上學會、當你的練習做錯時或者在考試中成績太差時,你既不要報怨,也不要氣餒,你應該正視這自已不願得到的現實。沒有學會不要緊,把該知識寫到你的《備忘錄》中,然後問同學問老師,再把正確的解釋或結果,寫到其它頁上。錯了題也是這樣,考試失利不就是錯的題多點嗎,正確的方法是把原題抄到《備忘錄》中,把正確的做法學會後,把做法和結果寫到其它頁上,如果能註上做該類題的注意事項,就會把你的學習效率又提高30%-60%。之所以把答案或解釋寫到其它頁上,就是為了下次看知識點或錯誤的題目時,再動動腦筋,想想該知識點的理解和解釋情況,再練練該題的做法和答案。錯誤和失敗並不可怕,只要你能正視它,一切都會成為你成功的動力。
第五、記帳。你的學習一定要有一本帳,你什麼時候做得好,記下來,什麼時候錯了題,記下來(註:帳本上只記「今天錯題為《備忘錄》××頁×題」。)

參考資料:網路

⑼ 如何有效做好小學數學課程的拓展延伸

《課程標准》指出,數學課程「不僅要考慮數學自身的特點,更應遵循學生學習數學的心理規律,強調從從學生已有的生活經驗出發……數學教學活動必須在學生的認知發展水平和已有的知識經驗基礎之上」。這充分說明,數學教學活動要以學生的發展為本,要把學生的個人知識、直接經驗和現實世界作為數學教學的重要資源,要加強數學與現實生活中學生感興趣的問題來結合,做好小學數學課程的拓展與延伸。在課堂學習中,學生側重於規范性系統知識的學習,掌握數學知識,學習數學方法。課外學習則應該適當補充一些延伸性、實踐性和探索性的學習內容。將課內與課外學習有機結合,根據教學內容設計有針對性的課外拓展題,將會有效地調動學生參與學習的積極性,使學生獲得最大程度的發展,更利於培養學生的創新意識與能力。在課堂教學中,教師如何進行行之有效的引導,注重知識的延伸與拓展呢?現就自己在數學課堂教學中的拓展延伸談談幾點體會:
一、利用拓展延伸,引領學生體驗生活中的數學。

《標准》指出「人人學有價值的數學……,有價值的數學應該與學生現實生活有密切的關系,是對他們有吸引力,能使他們產生興趣的內容。比如在認識了長度單位厘米、分米、米以後,我留給學生足夠的時間和空間,讓學生去測量周圍事物的長度,自己的書桌、身高,到教室、黑板的長寬,父母的腰圍等;在認識了元角分後,讓學生課後模擬超市購物活動,既鞏固了學生所學的知識,又加強了學生間的合作與交流;學習比的知識時,讓學生學生在實際生活中搜集了各種形式的比,並在課堂教學中成為有效的學習資源,很好地幫助學生理解了數學中的比的實際意義。
二、利用拓展延伸,培養學生動手實踐操作能力。
數學內容相對比較抽象,在有限的教學時空中,學生不可能都有機會動手實踐,而課外則有更多的時間與機會,在數學相關知識的學習後如能及時設計實踐性的拓展作業,將能很好地培養學生的動手實踐能力。如教學《可能性的大小》,可以設計這樣的實踐題:自己做一個轉盤,塗上紅色、黃色和綠色,要使指針轉動後偶爾落在綠色區域,而落在紅色、黃色區域的次數差不多,應怎樣塗色?先試著塗一塗,再轉動若干次,看看結果怎樣?這樣的實踐性作業可以使學生自覺地將數學知識運用於動手實踐中,而且學生可以根據的自己的想法進行富有個性的設計。
三、利用拓展延伸,帶領學生進入數學新時空。
教師要利用拓展延伸,鼓勵學生讀一些數學課本以外的科普讀物、數學網站等的閱讀思考活動,以引起思想共鳴和模仿實踐,可以提高學生數學的學習興趣、引發學生的求知慾。向學生提供好的課外讀物,訂閱一些數學刊物,如《小學生數學報》等,幫助和鼓勵他們利用課外時間積極地閱讀,可以使他們開闊知識視野,提高他們獨立獲取知識的能力。還可以讓學生寫數學日記,數學日記是學生在日常生活中運用數學知識解決實際問題的真實寫照。讓學生通過隨筆或日記的方式記錄下來,能夠加深學生對數學知識的理解,密切數學與現實生活的聯系,提高學生學以致用的能力。通過數學日記,使學生,家長、教師之間得到了很好的互動,孩子們也能把平時不敢說的話在日記中表達出來,彼此之間更多了一份了解。開展數學小調查活動,讓學生進行社會實踐,促進學生的學習興趣,提升學生的活動能力,擴展學生的視野。
小學數學課程的拓展延伸應注意的問題:
不適時機與過度拓展延伸,往往帶來較差的效果,所以應該注意以下幾個問題:
一,拓展延伸活動的內容要適量。
拓展延伸活動的內容太少了,作用不大,太多了,又會喧賓奪主。合適的量度需要根據教學目標和所教學生認知需要來定。每項活動都有明確的目標,拓展延伸活動是為達成教學目標服務的,過量的拓展延伸活動會無端增加學生學習負擔,減弱學習興趣。
二,拓展延伸活動的內容的難度要適當。
拓展延伸一定要根據數學學科特點、學生的年齡特徵、認知特點及知識經驗進行適度的拓展延伸。不要因拓展延伸需要而忽略學生的認識理解程度。需要教師要根據教學目標,分析各種教輔資料,多角度、多層面地刪選與補充有價值的資源,更好地幫助學生構建良好的認知結構。
三、拓展延伸活動的內容不能忽視教材體系。
很多教師在進行教學設計時,往往對教學拓展延伸進行了預設,尤其在新課學習環節。但部分教師僅從教的角度考慮問題,為了完成預設的教學流程,忽視學生的主體參與,忽視學生的主動探究,更忽視忽視教材體系。每節數學課都有學習主題,根據學生的學習基礎與相關的知識經驗,教師總會制定課時教學目標。但很多教師的教學拓展延伸活動忽視了教學重點,偏離了學習主題,游離了教材,有點喧賓奪主,成了無效勞動。拓展延伸活動的內容要充分樹立教材觀,從整個小學數學教學內容來整體分析,有目的、有層次地系統地培養學生學習數學的方法,培養學生對於數學的探究和合作交流的能力。
數學學習拓展延伸活動為我們的數學課堂打開了通向大千世界的窗口,讓學生在更廣闊的數學天地中獲取信息,整合信息,豐富知識,感悟思想,創生思維,提升學習品質。有價值的課外拓展延伸活動是對課堂數學學習的有效補充,只要我們認真解讀教材,客觀分析學情,對課堂教學進行有效拓展延伸,克服隨意性、盲目性,提高針對性、有效性,凸顯自主性,創新性。可以激發學生的研究熱情,同時也可以使學生養成用數學、做數學的良好習慣,只有注重知識的延伸與拓展,才能夠讓學生更好地探索與發現、鞏固與提高,創新意識與能力也能得到有效培養。

閱讀全文

與如何對數學概念進行拓展和延伸相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:744
乙酸乙酯化學式怎麼算 瀏覽:1409
沈陽初中的數學是什麼版本的 瀏覽:1360
華為手機家人共享如何查看地理位置 瀏覽:1051
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:891
數學c什麼意思是什麼意思是什麼 瀏覽:1418
中考初中地理如何補 瀏覽:1309
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:707
數學奧數卡怎麼辦 瀏覽:1398
如何回答地理是什麼 瀏覽:1032
win7如何刪除電腦文件瀏覽歷史 瀏覽:1061
大學物理實驗干什麼用的到 瀏覽:1491
二年級上冊數學框框怎麼填 瀏覽:1710
西安瑞禧生物科技有限公司怎麼樣 瀏覽:991
武大的分析化學怎麼樣 瀏覽:1253
ige電化學發光偏高怎麼辦 瀏覽:1342
學而思初中英語和語文怎麼樣 瀏覽:1662
下列哪個水飛薊素化學結構 瀏覽:1428
化學理學哪些專業好 瀏覽:1491
數學中的棱的意思是什麼 瀏覽:1068