A. 高中數學必修一二所有公式定理
高中的數學公式定理大集中
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 �
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d wc呁/S∕?
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值
乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b^2-4ac=0 註:方程有兩個相等的實根
b^2-4ac>0 註:方程有兩個不等的實根 �
b^2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA �
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) �
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) �
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)^2+(y-b)^2=^r2 註:(a,b)是圓心坐標
圓的一般方程 x^2+y^2+Dx+Ey+F=0 註:D^2+E^2-4F>0
拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h �
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r �
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的 兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r) �
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公*弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
____________________________________________________
這些公式是高中數學所有公式,我建議你還是自己整理一下。
B. 高一數學必修一字母表示什麼整數……記憶方法
數集就是數的集合,數學中一些常用的數集及其記法: 數集全體非負整數組成的集合稱為非負整數集(或自然數集),記作N;
除零以外所有正整數組成的集合稱為正整數集,記作N*或N+(「+」標在右下角);
全體整數組成的集合稱為整數集,記作Z;
全體有理數組成的集合稱為有理數集,記作Q;
全體實數組成的集合稱為實數集,記作R。
全體虛數組成的集合稱為虛數集,記作C:
另外還有無理數集等。
點集是點的集合。你應該知道點用(x,y)表示。許多點的放在一起就組合成了點集。如{(2,4), (10,-5), (0,0), (3,4)}指(2,4), (10,-5), (0,0), (3,4)這些點放在一起組成的集合。{(x,y)|y=3x-7}指在直線y=3x-7上的所有點的集合。這是高中數學必修一第一章的內容。
C. 高中數學必修1是什麼意思
高中數學人教版有十本,高一學的第一本是必修一。
《高中數學必修1》即《普通高中課程標准實驗教科書·數學必修1·A版》的簡稱。
D. 數學集合中的所有符號及其意義是什麼
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素.,集合可以用符號來表示,集合中的符號和意義如下:
∪ 並
∩ 交
⊂ A⊂B, A屬於B
⊃ A⊃B, A包括B
∈ a∈A,a是A的元素
⊆ A⊆B,A不大於B
⊇ A⊇B,A不小於B
Φ 空集
R 實數
N 自然數
Z 整數
Z+正整數
Z- 負整數
(4)數學必修一中131什麼意思擴展閱讀:
集合有關概念 :
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
(1)元素的確定性;
(2)元素的互異性;
(3)元素的無序性
相關知識:
1、對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
2、任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
3、集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
集合的分類:
1、有限集 含有有限個元素的集合
2、無限集 含有無限個元素的集合
3、空集 不含任何元素的集合 例:{x|x2=-5}
集合的表示方法:
1、列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
2、描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
E. 高中的必修一必修二必修三,這些是什麼意思,高一新生想買資料預習,應該買哪些
你好,很高興為你解答:必修 [bì xiū]
一種課程類型必修是新課程標准改革中的一個名詞,是課程結構調整中的一種課程類型。和必修相對的是選修。新課標術語
必修和選修,這是從課程計劃中對課程實施的要求來區分的兩種類型。其中,必修的主導價值在於培養和發展學生的共性,而選修的主導價值在於滿足學生的興趣、愛好,培養和發展學生的個性。
普通高中語文、數學、英語、日語、俄語、思想政治、歷史、地理、物理、化學、生物、技術、音樂、美術、藝術、體育與健康、德語、法語、西班牙語的課程標准對下列對應必修課程分別有明確的規定。
高中語文必修-人教版等(5本)
必修上冊
必修下冊
選擇性必修上冊
選擇性必修中冊
選擇性必修下冊
高中數學必修-人教版等(5本)
必修第一冊
必修第二冊
選擇性必修第一冊
選擇性必修第二冊
選擇性必修第三冊
高中英語必修-人教版等(7本)
必修第一冊
必修第二冊
必修第三冊
選擇性必修第四冊
選擇性必修第五冊
選擇性必修第六冊
選擇性必修第七冊
高中物理必修-人教版等(6本)
必修第一冊
必修第二冊
必修第三冊
選擇性必修第一冊
選擇性必修第二冊
選擇性必修第三冊
高中化學必修-人教版等(5本)
必修第一冊
必修第二冊
選擇性必修第一冊 化學反應原理
選擇性必修第二冊物質結構與性質
選擇性必修第三冊有機化學基礎
高中生物必修-人教版等(5本)
必修第一冊分子與細胞
必修第二冊 遺傳與進化
選擇性必修第一冊 穩態與調節
選擇性必修第二冊 生物與環境
選擇性必修第三冊 生物技術與工程
高中思想政治必修-人教版(7本)
必修第一冊 中國特色社會主義
必修第二冊經濟與社會
必修第三冊政治與法治
必修第四冊 哲學與文化
選擇性必修第一冊當代國際政治與經濟
選擇性必修第二冊 法律與生活
選擇性必修第三冊 邏輯與思維
高中歷史必修-人教版(5本)
必修上冊
必修下冊
選擇性必修第一冊 國家制度與社會治理
選擇性必修第二冊 經濟與社會生活
選擇性必修第三冊 文化交流與傳播
高中地理必修-人教版等(5本)
必修第一冊
必修第二冊
選擇性必修第一冊 自然地理基礎
選擇性必修第二冊 區域發展
選擇性必修第三冊 資源、環境與國家安全
高中信息技術必修-中圖版等(8本)
必修第一冊 數據與計算
必修第二冊 信息系統與社會
選擇性必修第一冊 數據與數據結構
選擇性必修第二冊 網路基礎
選擇性必修第三冊 數據管理與分析
選擇性必修第四冊 人工智慧初步
選擇性必修第五冊 三維設計與創意
選擇性必修第六冊 開源硬體項目設計
高中通用技術必修-蘇教版等(13本)
必修第一冊技術與設計1
必修第二冊技術與設計2
選擇性必修第一系列 技術與生活
選擇性必修第一冊 現代家政技術
選擇性必修第二冊 服裝及其設計
選擇性必修第三冊 智能家居應用設計
選擇性必修第二系列 技術與工程
選擇性必修第四冊 工程設計基礎
選擇性必修第五冊 電子控制技術
選擇性必修第六冊 機器人設計與製造
選擇性必修第三系列 技術與職業
選擇性必修第七冊 技術與職業探索
選擇性必修第八冊 技術與職業基礎
選擇性必修第四系列 技術與創造
選擇性必修第九冊 創造力開發與技術發明
選擇性必修第十冊 產品三維設計與製造
選擇性必修第十一冊 科技人文融合創新專題
高中日語必修-人教版(7本)
必修第一冊
必修第二冊
必修第三冊
選擇性必修第四冊
選擇性必修第五冊
選擇性必修第六冊
選擇性必修第七冊
高中俄語必修-人教版(7本)
必修第一冊
必修第二冊
必修第三冊
選擇性必修第四冊
選擇性必修第五冊
選擇性必修第六冊
選擇性必修第七冊
高中音樂必修-人音版等(12本)
必修第一冊 音樂鑒賞
必修第二冊 歌唱
必修第三冊 演奏
必修第四冊 音樂編創
必修第五冊 音樂與舞蹈
必修第六冊 音樂與戲劇
選擇性必修第一冊 合唱
選擇性必修第二冊 合奏
選擇性必修第三冊 舞蹈表演
選擇性必修第四冊 戲劇表演
選擇性必修第五冊 音樂基礎理論
選擇性必修第六冊 視唱練耳
高中美術必修-人教版等(7本)
必修全一冊 美術鑒賞
選擇性必修第一冊 繪畫
選擇性必修第二冊 中國書畫
選擇性必修第三冊 雕塑
選擇性必修第四冊 設計
選擇性必修第五冊 工藝
選擇性必修第六冊 現代媒體藝術
高中藝術必修-粵教版等(41本)
必修第一系列 藝術與生活
1-1 藝術之源
1-2 時代映象
1-3 四級抒情
1-4 民族節慶
1-5 用藝術設計生活
必修第二系列 藝術與文化
2-1 線的韻味
2-2 生命節奏
2-3 符號象徵
2-4 山水情懷
2-5 絲綢之路
2-6 個性表現
2-7 劇場藝術
2-8 影視藝術
2-9 走進博物館
必修第三系列 藝術與科學
3-1 秩序與混沌之美
3-2 藝術與科學的互動
3-3 互聯網時代
3-4 多媒體藝術
選擇性必修第四系列 美術創意實踐(此系列包括以下四個系列選題均為舉例)
4-1 繪畫
4-2 雕塑
4-3 建築
4-4 設計
4-5 工藝
4-6 書法篆刻
選擇性必修第五系列 音樂情境表演
5-1 歌唱
5-2 演奏
5-3 戲曲唱腔
5-4 音樂劇
選擇性必修第六系列 舞蹈創編與表演
6-1 中外民間舞
6-2 古典舞
6-3 現代舞
6-4 街舞
6-5 健身舞的創編與表演
選擇性必修第七系列 戲劇創編與表演
7-1 戲劇游戲
7-2 經典戲劇
7-3 戲曲表演
7-4 小品創編與表演
選擇性必修第八系列 影視與數字媒體藝術實踐
8-1 數碼攝影
8-2 微電影創作
8-3 計算機音樂製作
8-4 數字動漫創作
高中體育與健康必修-人教版(1本)
全一冊
高中德語必修(7本)
必修第一冊
必修第二冊
必修第三冊
選擇性必修文化與科學第一冊
選擇性必修文化與科學第二冊
選擇性必修文化與科學第三冊
選擇性必修文化與科學第四冊
高中法語必修(7本)
必修第一冊
必修第二冊
必修第三冊
選擇性必修第一冊
選擇性必修第二冊
選擇性必修第三冊
選擇性必修第四冊
高中西班牙語必修(7本)
必修第一冊
必修第二冊
必修第三冊
選擇性必修第一冊
選擇性必修第二冊
選擇性必修第三冊
選擇性必修第四冊
F. 高中數學必修一~三公式
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
實用工具:常用數學公式
公式分類 公式表達式
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
希望對你有幫助,祝愉快。
G. 高中數學必修一總結
1集合
一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集,其中各事物叫做集合的元素或簡稱元。如(1)阿Q正傳中出現的不同漢字(2)全體英文大寫字母
集合的分類:
並集:以屬於A或屬於B的元素為元素的集合稱為A與B的並(集),記作A∪B(或B∪A),讀作「A並B」(或「B並A」),即A∪B={x|x∈A,或x∈B}
交集: 以屬於A且屬於B的元素為元素的集合稱為A與B的交(集),記作A∩B(或B∩A),讀作「A交B」(或「B交A」),即A∩B={x|x∈A,且x∈B}
差:以屬於A而不屬於B的元素為元素的集合稱為A與B的差(集)
注:空集包含於任何集合,但不能說「空集屬於任何集合
注:空集屬於任何集合,但它不屬於任何元素.
某些指定的對象集在一起就成為一個集合,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。
集合的性質:
確定性:每一個對象都能確定是不是某一集合的元素,沒有確定性就不能成為集合,例如「個子高的同學」「很小的數」都不能構成集合。
互異性:集合中任意兩個元素都是不同的對象。不能寫成{1,1,2},應寫成{1,2}。
無序性:{a,b,c}{c,b,a}是同一個集合
集合有以下性質:若A包含於B,則A∩B=A,A∪B=B
常用數集的符號:
(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記作N
(2)非負整數集內排除0的集,也稱正整數集,記作N+(或N*)
(3)全體整數的集合通常稱作整數集,記作Z
(4)全體有理數的集合通常簡稱有理數集,記作Q
(5)全體實數的集合通常簡稱實數集,級做R
集合的運算:
1.交換律
A∩B=B∩A
A∪B=B∪A
2.結合律
(A∩B)∩C=A∩(B∩C)
(A∪B)∪C=A∪(B∪C)
3.分配律
A∩(B∪C)=(A∩B)∪(A∩C)
A∪(B∩C)=(A∪B)∩(A∪C)
2函數
函數的單調性:設函數f(x)的定義域為I.
如果對於屬於定義域I內某個區間上的任意兩個自變數的值x1,x2,當x1<x2時:
(1)若總有f(x1)<f(x2),則稱函數y=f(x)在這個區間上是增函數;
(2)若總有f(x1)>f(x2),則稱函數y=f(x)在這個區間上是減函數。
如果函數y=f(x)在某個區間上是增函數或減函數,則稱函數y=f(x)在這一區間上具有嚴格的單調性,這一區間叫做函數y=f(x)的單調區間。
函數的奇偶性:在函數y=f(x)中,如果對於函數定義域內的任意一個x.
(1)若都有f(-x)=-f(x),則稱函數f(x)為奇函數;
(2)若都有f(-x)=f(x),則稱函數f(x)為偶函數。
如果函數y=f(x)在某個區間上是奇函數或者偶函數,那麼稱函數y=f(x)在該區間上具有奇偶性。
1.作法與圖形:通過如下3個步驟(1)列表;(2)描點;(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與x軸交點的坐標總是(0,b)正比例函數的圖像總是過原點。
3.k,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
自變數x和因變數y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
當b=0時,y是x的正比例函數。
即:y=kx (k為常數,k≠0)
3基本初等函數
指數函數的一般形式為y=a^x(a>0且不=1) ,從上面我們對於冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得
如圖所示為a的不同大小影響函數圖形的情況。
在函數y=a^x中可以看到:
(1) 指數函數的定義域為所有實數的集合,這里的前提是a大於0且不等於1,對於a不大於0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮,
同時a等於0一般也不考慮。
(2) 指數函數的值域為大於0的實數集合。
(3) 函數圖形都是下凹的。
(4) a大於1,則指數函數單調遞增;a小於1大於0,則為單調遞減的。
(5) 可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函數的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6) 函數總是在某一個方向上無限趨向於X軸,永不相交。
(7) 函數總是通過(0,1)這點
(8) 顯然指數函數無界。
(9) 指數函數既不是奇函數也不是偶函數。
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M) (n屬於R)
4立體幾何初步
1.1.1 構成空間幾何體的基本元素柱
1.1.2 棱、棱錐和稜台的結構特徵
1.1.3 圓柱、圓錐和圓台的結構特徵
1.1.4 投影與直觀圖
1.1.5 三視圖
1.1.6 稜柱、棱錐和稜台的表面積
1.1.7 柱、錐和台的體積
點線面位置關系
公理一:如果一條線上的兩個點在平面上則該線在平面上
公理二:如果兩個平面有一個公共點則它們有一條公共直線且所有的公共點都在這條直線上
公理三:三個不共線的點確定一個平面
推論一:直線及直線外一點確定一個平面
推論二:兩相交直線確定一個平面
推論三:兩平行直線確定一個平面
公理四:和同一條直線平行的直線平行
異面直線定義:不平行也不相交的兩條直線
判定定理:經過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,且方向相同,那麼這兩個角相等
線線平行→線面平行 如果平面外一條直線和這個平面內的一條直線平行,那麼這條直線和這個平面平行。
線面平行→線線平行 如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那麼這條直線就和交線平行。
線面平行→面面平行 如果一個平面內有兩條相交直線都平行於另一個平面,那麼這兩個平面平行。
面面平行→線線平行 如果兩個平行平面同時和第三個平面相交,那麼它們的交線平行。
線線垂直→線面垂直 如果一條直線和一個平面內的兩條相交直線垂直,那麼這條直線垂直於這個平面。
線面垂直→線線平行 如果連條直線同時垂直於一個平面,那麼這兩條直線平行。
線面垂直→面面垂直 如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
線面垂直→線線垂直 線面垂直定義:如果一條直線a與一個平面α內的任意一條直線都垂直,我們就說直線a垂直於平面α。
面面垂直→線面垂直 如果兩個平面互相垂直,那麼在一個平面內垂直於它們交線的直線垂直於另一個平面。
三垂線定理 如果平面內的一條直線垂直於平面的血現在平面內的射影,則這條直線垂直於斜線。
5平面解析幾何初步
兩點距離公式:根號[(x1-x2)^2+(y1-y2)^2]
中點公式:X=(X1+X2)/2 Y=(Y1+Y2)/2
直線的斜率
傾斜角不是90°的直線`,它的傾斜角的正切,叫做這條直線的斜率.通常用k來表示,記作:
k=tga(0°≤a<180°且a≠90°)
傾斜角是90°的直線斜率不存在,傾斜角不是90°的直線都有斜率並且是確定的.
點斜式:y-y1=k(x-x1);
斜截式:y=kx+b;
截距式:x/a+y/b=1
直線的標准方程:Ax+Bx+C=0
圓的一般方程:
x2+y2+Dx+Ey+F=0
圓的標准方程
(x-a)2+(y-b)2=r2 《2表示平方》
圓與圓的位置關系:
1 點在圓上(點到半徑的距離等於半徑)
點在圓外(點到半徑的距離大於半徑)
點在圓內(點到半徑的距離小於半徑)
2 (1)相切:圓心到直線的距離等於半徑
(2)相交:圓心到直線的距離小於半徑
(3)相離:圓心到直線的距離大於半徑
3 圓的切線是指 垂直於半徑,直線到圓心距離等於半徑的直線,垂足叫切點
4 圓心距為Q 大圓半徑為R 小圓半徑為r
兩圓外切 Q=R+r
兩圓內切 Q=R-r (用大減小)
兩圓相交 Q<R-r
兩圓外離 Q>R+r
兩圓內含 Q<R-r
直線與圓的位置關系有三種:相離,相交,相切.
有如下關系
相離則d>r,反之d>r則相離,
相切則d=r,反之d=r則相切,
相交則d<r,反之d<r則相交.
空間直角坐標系的定義
ABCD – A′B′C′O是長方體,以O為原點,分別以射線OB、OA』、OB』為正方向,以線段OB、
OA』、OB』建立三條坐標軸:x軸、y軸、z軸,這樣就建立了一個空間直角坐標系O – xyz,點O叫做坐標
原點,x、y、z軸叫做坐標軸,由兩條坐標軸組成的平面叫做坐標平面, 分別叫做xOy平面、yOz平zOx平面,這種坐標系叫做右
空間直角坐標系內點的坐標表示方法
設點M為空間的一個定點,過點M分別作垂直於x、y、z軸的平面,依次交x、y、z軸於點P、Q、R設點P、Q、R在x、y、z軸上的坐標分別為x、y、z,那麼就得到與點M對應惟一確定的有序實數組(x,y,z),有序實數組(x,y,z)叫做點M的坐標,記作M(x,y,z),其中x、y、z分別叫做點M的橫坐標、縱坐標、豎坐標。
空間內兩點之間的距
空間中兩點P1(x1,y1,z1)、P2(x2,y2,z2)的距離|P1P2|=√[(x1 - x2)^2 + (y1 - y2)^2 + (z1 - z2)^2
空間中點公式
空間中兩點P1(x1,y1,z1)、P2(x2,y2,z2),中點P坐標[(x1+x2)/2,(y1+y2)/2,(z1+z2)/2]