㈠ 如何在數學教學中突破重難點
一、所謂教學重點,就是「在整個知識體系中處於重要地位和有突出作用的內容」.也就是學生必須掌握的基本知識和技能,如意義、法則、性質、計算方法還包括數量關系、解決問題的策略等.
教學難點,一般指對於大多數學生來說是理解和掌握起來感覺比較困難的關鍵性的知識點或容易出現混淆、錯誤的問題.\x0d教學重點來自於知識本身,是由於數學知識內在的邏輯結構而客觀存在的;教學難點依賴於學生自身的理解和接受能力,二者都是由同一教學內容的教學目標所決定的.
二、研究教學重難點的意義何在\x0d可以用這樣一句話概括:落實教學重點是學生掌握知識的前提,突破難點是教學成功的關鍵.而教師在教學過程中突破重難點的方法,往往是學生思維活躍、激發興趣的催化劑.
三、突破重點、難點的幾條主要策略
1.把握好教材是前提\x0d引導學生學會走路,首先自己要識途.要想在教學中做到突出重點、突破難點,第一是深鑽教材,從知識結構上,抓住每節課的重點和難點.第二是備足學生,根據學生實際的認知水平,並考慮到不同學生認知結構的差異,把握好教學重點和難點.課前的精心准備、准確定位,就為教學時突出重點和突破難點提供了有利條件.
重點內容抓住主要特徵一是應用廣泛,二是與以後學習的關系最直接、最密切.這就是通常所說的新知識的生長點或新舊知識的連接點.
確定難點時,應注意兩點:首先要設身處地地為學生著想,認真分析學生理解、掌握知識過程中的難處;其次要充分考慮學生認識和心理過程中可能出現的種種障礙.因此,我確定本節課的教學重點是認識銳角三角形、直角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點;教學難點是理解並掌握各種三角形的特徵.
找准知識的生長點是條件
小學數學是系統性很強的學科.數學教學就是要藉助於數學的邏輯結構,引導學生由舊入新,組織積極的遷移,促成由已知到未知的推理,認識簡單與復雜問題的聯系,不斷完善認知結構.因此,新知識的形成都有其固定的知識生長點,找准知識的生長點,才能突出重點、突破難點.
我們可以依據以下3點找准知識生長點:(1)有的新知識與某些舊知識屬同類或相似,要突出「共同點」,如除數是兩、三位數的除法,是以除數是一位數的除法為基礎的,後者是除數由一位變為兩位、三位,出現了從被除數的哪一位除起,先看被除數的前幾位的問題.但無論除數是幾位數,試商方法都是一致的,即有共同點,就是教學中應抓住的;(2)有的新知識由兩個或兩個以上舊知識組合而成,要突出「連接點」,如「異分母分數加減法」是由同分母加減法的計算方法和通分兩個舊知識組成的,它的關鍵問題是因為分數單位不同不能直接相加減,通分則成為兩個舊知識的連接點;(3)有的新知識由某舊知識發展而來的,要突破「演變點」,如「有餘數除法的驗算」這部分知識,要以前面能整除的除法驗算為基礎,兩類驗算都要用「商和除數相乘」,後者演變的是「還要加上余數」.
本節課是在學生初步認識了三角形的基礎上的進一步學習,所以教師始終抓住角和邊的特徵深入認識各種三角形這一「演變點」,開展教學活動,進而不斷突破.\x0d3、採用合適的教學方法是關鍵\x0d《課程標准》指出:教師的教學應該以學生的認知發展水平和已有的經驗為基礎,面向全體學生,注重啟發式和因材施教.教師要發揮主導作用,處理好講授與自主學習的關系,通過有效的措施,引導學生獨立思考、主動探索、合作交流,使學生理解和掌握基本的數學知識與技能、數學思想和方法,得到必要的數學思維訓練,獲得基本的數學活動經驗.\x0d因此根據學生實際,採用合適的教學方法是突出重點、突破難點的關鍵.常用的教學方法有:溫故知新法(遷移法)、動手實踐法、直觀演示法、啟發引導法、聯系生活法、嘗試法、比較法、發現法、轉化法、求證法、游戲法等.
本課主要採用的是動手實踐法、直觀演示法、啟發引導法、比較法、發現法、求證法、游戲法.如在找分類標准上,「剛才我們將屋子裡的這些人按照不同的標准進行了分類,你打算按什麼標准給這些三角形分類呢?」採用的是啟發引導法;在自主探索、小組合作進行三角形分類活動時,採用的是動手實踐法、比較法、發現法;認識各類三角形時,採用的是直觀演示法、發現法、比較法、求證法和游戲法,特別是在突破「理解並掌握各種三角型特徵」這一難點時,重點採用的是比較法、求證法和游戲法.在學生直觀演示匯報中,老師發現學生在預習的基礎上,雖已知道各種三角形名稱及概念,但分類卻不準確,說明學生根本沒有理解其特徵.於是老師以學定教,改變了預先的設計思路,順應學生的思維,先讓學生說出各種三角形的概念,再引導學生運用多種方法如比較法、求證法等進行驗證,最後歸納、記憶.在這一過程中,學生通過看一看、找一找、分一分、議一議、比一比、量一量、說一說等,多種感官積極主動參與活動.由於經歷體驗的比較充分,因而從課堂學習效果來看,教師已經突破了教學重點和難點.但因在組織直觀演示時耽擱了時間,又因學生的思維能力、表達能力不強,致使「活動體驗,探究新知」的教學環節時間較長.
合理設計板書是途徑\x0d板書是課堂教學的縮影,是揭示教學重點難點的示意圖,也是把握重點、難點的輻射源,板書起著提綱挈領的作用,它是在吃透教材的基礎上,根據教學要求、特點和學生的實際情況設計出來的,把提綱性、藝術性、直觀性融為一體,既起到綱舉目張的作用,又收到激發興趣、啟迪思維的效果.
精心設計練習是保障
精心設計課堂練習是提高教學質量的重要保證,學生通過練習進一步理解和鞏固知識的,把知識轉化成技能技巧,從而提高綜合運用知識的能力.所謂精心設計練習,關鍵在於「精」,精就是指要突出重點——新知識點、強化難點——易混淆、難理解處.因此在備課時,要認真鑽研教材上的習題,理解編排意圖,明確習題的目的和作用,從而設計有層次、有坡度、有針對性的練習題.
本節課由於在探究過程中,有相應的即時練習內容和游戲活動,因此我在全課練習環節中,設計了三個層次的練習內容,分別是基本練習填空、變式練習判斷、拓展練習解決問題.但因時間關系,所以只完成了即時練習,未能更好的體現這一環節的教學目的.
此外,處理重難點內容只靠教學的方式、方法和手段還不夠,還須注意:第一,教師確定的難點不宜預先告訴或暗示學生.這樣容易造成學生的心理壓力.比如「這節課的內容很困難,不容易學懂,同學們要專心」「這個問題難,不要緊張」這類「話與願違」的話不要說.第二,教學節奏宜緩慢,適當調整語速、語調和語氣.特別是講解難點內容時還要密切注視學生的表情,如果發現多數學生蹙眉茫然,或提出的問題無人作答、舉手人數寥寥無幾時,教師一方面要舒緩節奏,放慢語速,留出充分的時間讓學生思考,並及時設台階,給鋪墊.另一方面用激勵與信任的語氣及時給以鼓勵,幫助他們迎難而上.化難為易後要還原節奏,繼續講解非難點內容.
㈡ 初中數學教學中如何落實重難點
1、初中 數學教學中如何落實重難點
初中數學教學中如何落實重難點?教師的教服務於學生的學,我們教師在備課時,都要認真研究課程標准,深鑽教材內容,並結合學生實際,把握教材內容,弄清難點所在,深刻理解教材意圖,合理安排教學環節,精心設計課堂形式,方可找出突破難點的方法和技巧。今天,朴新小編給大家帶來數學教學的技巧.
引導學生動手操作實驗突破難點
由於學生數學知識的局限和思維能力的局限,有些數學問題,尤其是幾何問題,單憑紙上談兵,學生還是很難明白。我們可以讓學生動手操作實驗,寓教學於活動之中。例如在「勾股定理」教學中,教師可讓學生操作實驗:用四個直角三角形拼成一個正方形。學生在動手操作活動中,顯然已經明確了勾股定理的發生過程,同時又掌握了證明方法;又如教學「鑲嵌」時,當學生弄清了「鑲嵌」的概念後,我就讓學生以學習小組形式,用幾種正多邊形紙片來拼圖,得到哪幾種正多邊形可以單獨鑲嵌,哪幾種正多邊形可以一起鑲嵌,有什麼規律。在剪、折、拼中,難點的神秘面紗隨之盪然無存,教師的教和學生的學都感覺輕松愉快,何樂而不為呢?
導入的有效性是實現有效課堂的開端
課堂導入是指在講解新知或數學教學活動開始之時,教師有意識、有目的的引導學生進行數學學習的一種方式。有效的導入能營造濃厚的學習氛圍,提高學生參與學習的熱情,化解學習內容的難度,實現由舊知向新知的自然過渡,從而達到優化數學教學的目的。例如「巧設懸念法 」就是一種有效的導入法。巧設問題留下懸念,能夠引起學生對課堂教學的興趣,使學生產生刨根問底的急切心情,在探究的心理狀態下接受教師發出的信息。上課伊始,可根據所教內容的性質及教學目標,把所要講授的問題設為懸念,把學生的注意力引導到教學目標上來。
例如在教學初一數學「用字母表示數」一課,我先組織猜年齡的游戲:「同學們,老師能猜中你們中每一個人的年齡。」學生們異口同聲地說:「我不信!」「那就試試看,只要你們把自己的年齡除以2再減去4,把計算後的結果告訴我,老師就能猜出你們的年齡是多少。」一位同學很快說出一個數字3,我馬上猜出這位同學的年齡是14歲,這位同學馬上說:「老師猜得對!」另一位學生報上一個數字2.5,我脫而出:「是13歲!」這時同學們議論開了,「老師是怎麼猜出來的呢?」接著讓同學們相互試著猜,很快他們找到了「訣竅」。
3、培養學生數學學習興趣
要了解學生,尊重學生,平等、民主的對待學生
辨證唯物主義告訴我們,事物變化的決定因素是內因,外因只能通過內因才能起作用。培養學生的學習興趣,必須首先弄清學生的實際,懂得學生在想什麼、干什麼,希望老師為他們做些什麼;必須弄清學生現有認知水平、對基礎知識的掌握程度;通過座談、提問、檢測、問卷調查等渠道了解學生的知識現狀和學法現狀,根據學生現有的能力和水平進行教學;必須掌握學生的思想動態,幫助他們樹立起學習數學的信心,培養起他們熱愛學習、酷愛學習的品格;讓他們充分認識到學習是自己的權利,把自己培養成為有理想、有道德、有文化、有紀律的一代新人更是每一個青年學生的光榮義務;
要關心和愛護每個學生,培養學生對老師的親近感,建立融洽、親密、和諧、平等、朋友式的師生關系。調查表明,學生對課程是否感興趣,老師的因素是其它諸多因素之首。[2]一些學生之所以對數學課程不感興趣是因為老師曾有意或無意地傷害過他,他感受不到老師的關愛,因而疏遠了數學老師也疏遠了數學課程。而對於哪些備受學生尊敬的老師,學生是永遠不會忘記的,們帶著惟恐不能取得好成績而有負於老師培養的心理,會自覺學好數學課程。
用和諧師生關系,調動學習情感
作為數學教師,在教數學知識的同時,更應教會學生學習數學的方法。引導學生養成良好的學習習慣。人常說,習慣決定性格,性格決定人生,沒有好的學習習慣是造成初中數學後進生的一個重要原因。後進生多半不會學習,對數學概念、公式、定理、法則死記硬背,不願動腦筋,一遇到問題就靠別人,甚至扔在一邊不管。因此,在教學實踐中,教師應注重培養學生自覺學習、善於探討、善於觀察、善於小結等方面的好習慣。如在解答問題時,要注重啟發引導學生思考,教師只是隨時糾正他們在分析解答中出現的錯誤,逐步培養他們自覺思考的能力。
在布置作業時,給後進生設計較簡單的題目,使後進生經過思考能獨立完成,養成他們認真獨立完成作業的好習慣。還要求後進生每周末將本周學習的內容總結一次,使所學知識系統化。建立一種穩定和諧的師生關系是調動學生學習興趣的關鍵。在建立良好的師生關系基礎上,課堂教學要充分發揮"情感場"的作用。正如德國教育學家第斯多惠所說:教學的藝術不在於傳授的本領,而在於激勵、喚醒、鼓舞。試想:沒有生氣勃勃的精神怎麼能鼓舞人呢?沒有興奮的情緒怎麼能激勵人?每一個人都渴望成功,渴望別人和社會對自己的承認。後進生也不例外,他們有強烈的上進心,渴望學習進步,渴望得到教師的表揚。因此,教師更應關注後進生的學習狀況,從教學目標、教學內容、課後練習、輔導、檢測等方面分層設計,實施差異教學;對後進生降低目標要求,教學內容由易到難,緩步上升,課堂上把簡單問題留給後進生回答;當後進生通過自己的獨立思考做出數學題時,教師要及時地給於肯定和鼓勵,使後進生體會到成功的喜樂,從而增強學習數學的自信心,漸漸從"要我學"變成"我要學",達到自覺學習的目的。
4、數學思維能力的培養
一、利用學生好奇心,激發學習興趣。
好奇心是對新異事物進行探索的一種心裡傾向,是創造思維的內部動力,是個體遇到新奇事物或處在新的外界條件下所產生的注意、操作、提問的心理傾向。是個體學習的內在動機之一、個體尋求知識的動力,是創造性人才的重要特徵。當這種好奇心轉化為求知慾時就可產生積極的思維。有助於點燃思維的火花。例如:進行三角形的內角和是180°一節教學時,首先讓每個學生都用紙片剪好一個三角形,量出每個內角的度數並標好,然後讓學生報出一個三角形任意兩個內角的度數,教師就能回答出另外一個內角的度數。學生開始有些懷疑,但當教師的回答准確無誤時,學生十分好奇,老師怎麼這么快就能知道第三個內角的度數呢?課堂很活躍,學生都被吸引住了,開始產生要探索問題的迫切願望。
二、精心設計課堂練習,發展學生的思維能力
培養學生的思維能力同學習計算方法、掌握解題方法一樣,也必須通過練習。而且思維與解題過程是密切聯系的。培養思維能力的有效的辦法是通過解題的練習來實現的。因此設計好練習題就成為能否促進學生思維能力發展的重要一環。一般地說,課本中都安排了一定數量的有助於發展學生練習題。但是不一定都能滿足教學的需要,而且由於班級的情況不同,課本中的練習題也很難做到完全適應各種情況的需要。因此教學中往往要根據具體情況做一些調整或補充,在課堂練習中努力創造活躍思維的條件。因為材料是訓練思維能力的必要條件,能引起學生去思考,所以在學習的過程中要給學生創造靈活解題的情境,教給學生正確的思維方法,引導正確的思維方向,使學生逐步形成從多方面、多角度的認識事物、解決問題的能力,培養學生數學的創造思維能力。
三、注意溝通聯系,形成知識網路。
在教學實踐中,注意溝通知識聯系、形成知識網路是培養學生創造思維能力的重要條件,因此每學完一部分知識,都要安排和上好復習課和綜合練習課,以溝通知識的內在聯系,使知識系統化、深刻化,從不同角度來加深對概念的理解,並使新舊知識逐步形成緊密的鎖鏈,形成知識網路。如分數的意義與除法和比有著密切的聯系。分數的基本性質與比的基本性質、商不變的性質有許多相似之處。教師在講完比的基本性質後,就可以把這些知識溝通起來,加以練習,使學生了解它們之間的內在聯系。
㈢ 高中數學重難點怎樣學好
和初中數學相比,高中數學的內容多,抽象性、理論性強,因為不少同學進入高中之後很不適應,特別是高一年級,進校後,代數里首先遇到的是理論性很強的函數,再加上立體幾何,空間概念、空間想像能力又不可能一下子就建立起來,這就使一些初中數學學得還不錯的同學不能很快地適應而感到困難,以下就怎樣學好高中數學談幾點意見和建議。
一、首先要改變觀念。
初中階段,特別是初中三年級,通過大量的練習,可使你的成績有明顯的提高,這是因為初中數學知識相對比較淺顯,更易於掌握,通過反復練習,提高了熟練程度,即可提高成績,既使是這樣,對有些問題理解得不夠深刻甚至是不理解的。例如在初中問|a|=2時,a等於什麼,在中考中錯的人極少,然而進入高中後,老師問,如果|a|=2,且a<0,那麼a等於什麼,既使是重點學校的學生也會有一些同學毫不思索地回答:a=2。就是以說明了這個問題。
又如,前幾年北京四中高一年級的一個同學在高一上學期期中考試以後,曾向老師提出"抗議"說:"你們平時的作業也不多,測驗也很少,我不會學",這也正說明了改變觀念的重要性。
高中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。
二、提高聽課的效率是關鍵。
學生學習期間,在課堂的時間佔了一大部分。因此聽課的效率如何,決定著學習的基本狀況,提高聽課效率應注意以下幾個方面:
1、課前預習能提高聽課的針對性。
預習中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助於提高思維能力,預習後把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養自己的自學能力。
2、聽課過程中的科學。
首先應做好課前的物質准備和精神准備,以使得上課時不至於出現書、本等物丟三落四的現象;上課前也不應做過於激烈的體育運動或看小書、下棋、打牌、激烈爭論等。以免上課後還喘噓噓,或不能平靜下來。
其次就是聽課要全神貫注。
全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。
耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結,另外,還要聽同學們的答問,看是否對自己有所啟發。
眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢和演示實驗的動作,生動而深刻的接受老師所要表達的思想。
心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。
口到:就是在老師的指導下,主動回答問題或參加討論。
手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有創新思維的見解。
若能做到上述"五到",精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。
3、特別注意老師講課的開頭和結尾。
老師講課開頭,一般是概括前節課的要點指出本節課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。
4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。
此外還要特別注意老師講課中的提示。
老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。
最後一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。
三、做好復習和總結工作。
1、做好及時的復習。
課完課的當天,必須做好當天的復習。
復習的有效方法不是一遍遍地看書或筆記,而是採取回憶式的復習:先把書,筆記合起來回憶上課老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然後打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
2、做好單元復習。
學習一個單元後應進行階段復習,復習方法也同及時復習一樣,採取回憶式復習,而後與書、筆記相對照,使其內容完善,而後應做好單元小節。
3、做好單元小結。
單元小結內容應包括以下部分。
(1)本單元(章)的知識網路;
(2)本章的基本思想與方法(應以典型例題形式將其表達出來);
(3)自我體會:對本章內,自己做錯的典型問題應有記載,分析其原因及正確答案,應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
四、關於做練習題量的問題
有不少同學把提高數學成績的希望寄託在大量做題上。我認為這是不妥當的,我認為,"不要以做題多少論英雄",重要的不在做題多,而在於做題的效益要高。做題的目的在於檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那麼多做題的結果,反而鞏固了你的缺欠,因此,要在准確地把握住基本知識和方法的基礎上做一定量的練習是必要的。而對於中檔題,尢其要講究做題的效益,即做題後有多大收獲,這就需要在做題後進行一定的"反思",思考一下本題所用的基礎知識,數學思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養成善於思考的好習慣,這將大大有利於你今後的學習。當然沒有一定量(老師布置的作業量)的練習就不能形成技能,也是不行的。
另外,就是無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數學的重要問題。
最後想說的是:"興趣"和信心是學好數學的最好的老師。這里說的"興趣"沒有將來去研究數學,做數學家的意思,而主要指的是不反感,不要當做負擔。"偉大的動力產生於偉大的理想"。只要明白學習數學的重要,你就會有無窮的力量,並逐步對數學感到興趣。有了一定的興趣,隨之信心就會增強,也就不會因為某次考試的成績不理想而泄氣,在不斷總結經驗和教訓的過程中,你的信心就會不斷地增強,你也就會越來越認識到"興趣"和信心是你學習中的最好的老師。
㈣ 怎樣把握數學教學重難點
小學數學這門學科有著極強的抽象性與系統性,各類知識有機構成完善的知識體系,如果其中一個重點或者難點知識,學生沒有把握,就會影響其整體知識的構建,因此,在小學數學中,不僅要重視基礎知識的傳授,還要把握好重點與難點。
一、從全局角度把控重點與難點
要把握重點、突破難點,必須要搞清楚什麼是重點、什麼是難點,只有掌握這一問題,教學活動才能夠具備針對性。教學重點,就是教學內容中具有突出地位的教學內容,在後續的知識點中,應用十分廣泛,如各種法則、概念、策略、性質等;難點就是根據學生的認知水平與知識知識來看,多數學生理解起來都存在困難的知識。
重點是客觀存在的,而教學重點則根據學生的實際情況,主觀存在,作為教師,必須要明確具體的難點和重點知識。
首先,把握教材,處理好各類知識點的聯系。教材是重點和難點的起源,也是學生學習和教師教學的重點依據,作為教師,要深入研讀教材,挖掘出教材中的核心知識點,從全局上把握重點,做到胸有成竹,這樣才能夠提高小學數學的教學有效性。
其次,根據學生具體情況來確定重點。
每一個學生都是獨立存在的個體,他們的生活背景不同,學習能力、認知能力都有所差異,因此,我們必須要了解每個班級學生的基礎知識水平,嚴格按照因材施教的原則開展教學。在具體的教學活動中,要注意觀察學生的表現,建立成長備案,查看學生的知識接收能力與學習變化,滿足每一個層次學生的學習需求,及時根據學生的學習狀態調整重點和難點。
二、注重數學知識之間的遷移
每一個數學知識點之間,都不是獨立存在的,而是具有客觀的聯系,如果將其割裂開來,數學課堂無疑是低效的,也會影響學生的知識掌握情況。
小學階段的認知活動是一個從簡到繁的過程,需要基於特定的知識基礎上,要幫助學生突破重點和難點知識,必須要注重數學知識的遷移。
新知識的教學要以舊知識作為基礎,找到兩者的銜接之處,促進知識之間的遷移,有了以往學習過的知識作為鋪墊,學生學習起來就容易得多。
如,在關於《平行四邊形面積》的教學中,其中的重點和難點就是面積的推導,在學習時,可以先復習長方形、三角形面積求解方式,引導學生思考,看平行四邊形與自己以前學習過的哪個圖形相似,將其轉化為自己學習過的一個圖形。經過對比與分析後,學生就可以知道,平行四邊形與自己以前學習過的長方形有著很多相似之處,這樣推導起來就變得更加容易了,教學難點與重點也得到了很好的突破。
三、藉助多媒體突破難點與重點知識
多媒體技術的應用為小學數學教學帶來了全新的生機,合理應用多媒體教學,
可以改變傳統課堂中粉筆+教材+黑板的教學模式,將知識點用形象趣味的視頻、圖片、聲音、文字來展示出來,讓學生的各類感官都可以參與進來,將抽象的數學知識形象化,將靜止的圖象生動形象的為學生展示出來。如,在關於《長方體旋轉》這一課的教學中,可以利用多媒體播放關於長方體展開的樣子,讓學生認識到,一個長方體是由六個面組成的,且這六個面之間是兩兩相對的,這樣,學生就會對這一圖形形成全面的認識,更好的解決了難點和重點知識,鍛煉了學生的空間思維能力,讓他們不再懼怕幾何知識。
四、利用生長點來解決重點與難點
實施證明,任何一個新知識的產生,都有著一定的知識生長點,新知識和就知識之間,有著一些相似之處,在教學時,要突出兩者之間的「共同點」與「連接點」,在講解時,注意與學生已有的生活相聯系,讓學生調動起自己頭腦中的認知概念,
以此來更好的理解數學難點和重點。
例如,在《平均分》的教學中,可以提前准備一些物品,將其平均分為數份,讓學生參與到「平均分」的具體實踐中,最後,讓學生採用不同的練習方法,強化對相關知識點的理解。
此外,在日常教學中,要重視對比,利用類比和分析來辨析容易混淆的知識點,避免新知識的學習對原有知識產生干擾。
例如,在《化簡分》的教學中,可以與《求比值》進行對比,前者是為了得到整數比,而後者可以寫成小數和分數,這樣對比下來,學生就很容易理解了。作為教師,要發揮主導作用,處理好講授與自主學習的關系。
通過有效的措施,引導學生獨立思考、主動探索、合作交流,使學生理解和掌握基本的數學知識與技能、數學思想和方法,得到必要的數學思維訓練,獲得基本的數學活動經驗。
在小學數學學科中,有大量的重點和難點知識,關於重點與難點知識的教學,並非是一成不變的,在日常教學中,我們要留心觀察,在備課方面多動腦筋,鑽研教材,結合學生的具體情況把握重點、突破難點,科學安排教學活動,精心設計提問,找到解決重點和難點知識的關鍵點。
㈤ 數學教學如何突破重難點
1、所謂教學重點,就是「在整個知識體系中處於重要地位和有突出作用的內容」。也就是學生必須掌握的基本知識和技能,如意義、法則、性質、計算方法還包括數量關系、解決問題的策略等。 2、教學難點,一般指對於大多數學生來說是理解和掌握起來感覺比較困難的關鍵性的知識點或容易出現混淆、錯誤的問題。 教學重點來自於知識本身,是由於數學知識內在的邏輯結構而客觀存在的;教學難點依賴於學生自身的理解和接受能力,二者都是由同一教學內容的教學目標所決定的。 二、研究教學重難點的意義何在 可以用這樣一句話概括:落實教學重點是學生掌握知識的前提,突破難點是教學成功的關鍵。而教師在教學過程中突破重難點的方法,往往是學生思維活躍、激發興趣的催化劑。 三、突破重點、難點的幾條主要策略 1.把握好教材是前提 引導學生學會走路,首先自己要識途。要想在教學中做到突出重點、突破難點,第一是深鑽教材,從知識結構上,抓住每節課的重點和難點。第二是備足學生,根據學生實際的認知水平,並考慮到不同學生認知結構的差異,把握好教學重點和難點。課前的精心准備、准確定位,就為教學時突出重點和突破難點提供了有利條件。 重點內容抓住主要特徵一是應用廣泛,二是與以後學習的關系最直接、最密切。這就是通常所說的新知識的生長點或新舊知識的連接點。 確定難點時,應注意兩點:首先要設身處地地為學生著想,認真分析學生理解、掌握知識過程中的難處;其次要充分考慮學生認識和心理過程中可能出現的種種障礙。 因此,我確定本節課的教學重點是認識銳角三角形、直角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點;教學難點是理解並掌握各種三角形的特徵。 2.找准知識的生長點是條件 小學數學是系統性很強的學科。數學教學就是要藉助於數學的邏輯結構,引導學生由舊入新,組織積極的遷移,促成由已知到未知的推理,認識簡單與復雜問題的聯系,不斷完善認知結構。因此,新知識的形成都有其固定的知識生長點,找准知識的生長點,才能突出重點、突破難點。 我們可以依據以下3點找准知識生長點:(1)有的新知識與某些舊知識屬同類或相似,要突出「共同點」,如除數是兩、三位數的除法,是以除數是一位數的除法為基礎的,後者是除數由一位變為兩位、三位,出現了從被除數的哪一位除起,先看被除數的前幾位的問題。但無論除數是幾位數,試商方法都是一致的,即有共同點,就是教學中應抓住的;(2)有的新知識由兩個或兩個以上舊知識組合而成,要突出「連接點」,如「異分母分數加減法」是由同分母加減法的計算方法和通分兩個舊知識組成的,它的關鍵問題是因為分數單位不同不能直接相加減,通分則成為兩個舊知識的連接點;(3)有的新知識由某舊知識發展而來的,要突破「演變點」,如「有餘數除法的驗算」這部分知識,要以前面能整除的除法驗算為基礎,兩類驗算都要用「商和除數相乘」,後者演變的是「還要加上余數」。 本節課是在學生初步認識了三角形的基礎上的進一步學習,所以教師始終抓住角和邊的特徵深入認識各種三角形這一「演變點」,開展教學活動,進而不斷突破。 3、採用合適的教學方法是關鍵 《課程標准》指出:教師的教學應該以學生的認知發展水平和已有的經驗為基礎,面向全體學生,注重啟發式和因材施教。教師要發揮主導作用,處理好講授與自主學習的關系,通過有效的措施,引導學生獨立思考、主動探索、合作交流,使學生理解和掌握基本的數學知識與技能、數學思想和方法,得到必要的數學思維訓練,獲得基本的數學活動經驗。 因此根據學生實際,採用合適的教學方法是突出重點、突破難點的關鍵。常用的教學方法有:溫故知新法(遷移法)、動手實踐法、直觀演示法、啟發引導法、聯系生活法、嘗試法、比較法、發現法、轉化法、求證法、游戲法等。 本課主要採用的是動手實踐法、直觀演示法、啟發引導法、比較法、發現法、求證法、游戲法。如在找分類標准上,「剛才我們將屋子裡的這些人按照不同的標准進行了分類,你打算按什麼標准給這些三角形分類呢?」採用的是啟發引導法;在自主探索、小組合作進行三角形分類活動時,採用的是動手實踐法、比較法、發現法;認識各類三角形時,採用的是直觀演示法、發現法、比較法、求證法和游戲法,特別是在突破「理解並掌握各種三角型特徵」這一難點時,重點採用的是比較法、求證法和游戲法。在學生直觀演示匯報中,老師發現學生在預習的基礎上,雖已知道各種三角形名稱及概念,但分類卻不準確,說明學生根本沒有理解其特徵。於是老師以學定教,改變了預先的設計思路,順應學生的思維,先讓學生說出各種三角形的概念,再引導學生運用多種方法如比較法、求證法等進行驗證,最後歸納、記憶。在這一過程中,學生通過看一看、找一找、分一分、議一議、比一比、量一量、說一說等,多種感官積極主動參與活動。由於經歷體驗的比較充分,因而從課堂學習效果來看,教師已經突破了教學重點和難點。但因在組織直觀演示時耽擱了時間,又因學生的思維能力、表達能力不強,致使「活動體驗,探究新知」的教學環節時間較長。 4、合理設計板書是途徑 板書是課堂教學的縮影,是揭示教學重點難點的示意圖,也是把握重點、難點的輻射源,板書起著提綱挈領的作用,它是在吃透教材的基礎上,根據教學要求、特點和學生的實際情況設計出來的,把提綱性、藝術性、直觀性融為一體,既起到綱舉目張的作用,又收到激發興趣、啟迪思維的效果。 5、精心設計練習是保障 精心設計課堂練習是提高教學質量的重要保證,學生通過練習進一步理解和鞏固知識的,把知識轉化成技能技巧,從而提高綜合運用知識的能力。所謂精心設計練習,關鍵在於「精」,精就是指要突出重點——新知識點、強化難點——易混淆、難理解處。因此在備課時,要認真鑽研教材上的習題,理解編排意圖,明確習題的目的和作用,從而設計有層次、有坡度、有針對性的練習題。 本節課由於在探究過程中,有相應的即時練習內容和游戲活動,因此我在全課練習環節中,設計了三個層次的練習內容,分別是基本練習填空、變式練習判斷、拓展練習解決問題。但因時間關系,所以只完成了即時練習,未能更好的體現這一環節的教學目的。 此外,處理重難點內容只靠教學的方式、方法和手段還不夠,還須注意:第一,教師確定的難點不宜預先告訴或暗示學生。這樣容易造成學生的心理壓力。比如「這節課的內容很困難,不容易學懂,同學們要專心」「這個問題難,不要緊張」這類「話與願違」的話不要說。第二,教學節奏宜緩慢,適當調整語速、語調和語氣。特別是講解難點內容時還要密切注視學生的表情,如果發現多數學生蹙眉茫然,或提出的問題無人作答、舉手人數寥寥無幾時,教師一方面要舒緩節奏,放慢語速,留出充分的時間讓學生思考,並及時設台階,給鋪墊。另一方面用激勵與信任的語氣及時給以鼓勵,幫助他們迎難而上。化難為易後要還原節奏,繼續講解非難點內容。
㈥ 小學數學教學中如何抓住重點突破難點
數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.
(同學們開講)
學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.
㈦ 數學教學重難點
教學重點
所謂教學重點,就是教學的最重要之處。稱得上最重要的,就是指一節課的教學中,某個(或幾個)教學目標的實現,能在學生知識體系建構、數學技能形成、思維能力發展、活動經驗積累等一個(或幾個)方面,發揮至關重要的作用。這樣的教學目標達成點,就可以叫做教學重點。
比如,「長方體的認識」一課中,「掌握長方體面、棱、頂點的特徵」是「長方體和正方體」整個單元的基礎——後續的棱長總和、表面積計算、體積計算等,都離不開這個最基礎的知識。因此,它就是「長方 體的認識」這節課的教學重點。再如,「乘法分配律」一課,學生在四年級學了這個運算定律之後,無論是在五、六年級還是初、高中的數學學習,無論是在將來的生活中還是工作中,相關的計算情境會經常遇到,而這一定律則將隨時隨地幫助他們解決問題。同時,學生學習這一定律時所感悟到的數學建模的思想方法,更能夠在他們今後思維能力的發展過程中發揮重要的作用。因此,「經歷數學建模的過程,掌握乘法分配律的結構」,自然就是該課的教學重點。(註:對乘法分配律的靈活運用是下一課時的重要目標)
所以,更直接地講,一個教學目標點是否應確定為教學重點,我們只要對照以下標准:它是不是單元教材的核心,是不是學生後繼學習的基礎,是不是將來要被學生經常運用,是不是在學生思維發展中起重要作用……
從上也可見,教學重點可從不同的層面來闡述,有些指向於雙基(如掌握長方體的特徵),有些指向於思想方法(如經歷數學建模的過程),這樣的情況在實際教學中很常見。再舉一例。「平行四邊形面積」一課,「面積計算公式的理解和運用」就是教學的重點——雙基層面;「轉化思想的滲透」——思想方法層面,毫無疑問也是教學的重點。我們在制定教案時,不同層面的教學重點都應該予以呈現,並以此來指引教學的具體實施。
需要說明的是,教學的重點是教材根據課標的要求,根據學生的能力,有意識地、科學地分置於整個教材體系中。因此,教學重點的形成,跟教材體系和數學知識內在的邏輯結構有關,是客觀存在的,對每一位學生而言都是一致的。
教學難點
所謂教學難點,是指對於大多數學生來說,理解和掌握起來比較困難的知識點,或是容易出現混淆、錯誤的問題。大而言之,如數論的知識、代數的知識;小而言之,如抽屜原理的理解、三角形畫高方法的掌握等。
教學難點的形成與學生的認知緊密相關。我們知道,在學習中,要把新知識納入原有的認知結構,從而擴大原有的認知結構,這個過程叫做同化(即以舊的觀點處理新的情況)。如面對三位數乘兩位數筆算的新問題,學生可調用兩位數乘兩位數筆算方法的老經驗來應對,這就是同化,能同化的內容往往不難。但是,在學習中,經常會遇到新知識不能被原有認知結構同化的情況,此時,我們就要調整乃至改造原有的認知結構,以適應新的學習內容的需要,這就叫做順應(即改變舊觀點以適應新的情況)。
比如,學生在學習「除數是一位數的筆算除法」時,因為以前的經驗是依據口訣直接想到商(如25÷3),「造一層樓」(豎式只有一步)就可完成豎式計算。因此,當遇到42÷3,需要先算十位再算個位,豎式要「造兩層樓」(分兩步計算)時,學生就束手無策了。他們要麼只寫一步就難以寫下去(圖1),要麼沒有過程就直接寫出了答案(圖2)——這就是他們原有認知結構的直觀體現。此時,若要學習順利進行下去,學生唯有改變已有的認知結構,以順應新的情況。
可見,需要通過順應來學習的內容,跟學生已有認知結構沖突比較大,學生往往需要費周折來應對,這樣的內容就應當作為教學的難點,如上例中演算法的掌握。
因此,要找教學難點,一般我們可以對某個知識(技能)加以分析,看學生是否有可能用已有經驗來解決。如果是學生不可能(或很難)用已有經驗來解決的,這個知識(技能)通常就是教學的難點。
當然,有些知識、技能,包括思想方法,不一定是學生要改變認知結構來學習的,但也會是教學的難點,因為這個知識、技能或者思想方法,實在是比較復雜。比如,除數是兩位數除法中的試商,「植樹問題」中各種實際問題的解決等。
需要我們注意的是,有些課不一定有教學難點,因為它的知識(技能)並沒有符合上述的特徵。實際上,教學的重點也不是每節課都有的,有些課內容非常簡單,那就談不上教學重點。另外可以想見,教學重點和難點有時會發生重疊,即教學的重點也就是教學的難點,如前面講到的「掌握乘法分配律的結構」。這時,我們就可以用「教學重難點」一並表述。
㈧ 如何運用信息技術解決突破數學課堂教學重難點
《小學數學課程標准》指出:「現代信息技術的發展對數學教育的價值、目標、內容以及學與教的方式產生了重大的影響、數學課程的設計與實施應重視運用現代信息技術、特別要充分考慮計算器、計算機對數學學習內容和方式的影響,大力開發並向學生提供更為豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有更多的精力投入到現實的、探索性的數學活動中去。」又指出「人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展。」這一提法使我們深刻地體會到,運用現代信息技術,促進數學教學的有效性在課堂上是多麼的重要。
一、豐富生活素材,突破教學內容,抽象形成的重難點
小學四年級開始,學生接觸代數初步知識,用字母表示數對於四年級學生而言比較抽象,因為四年級學生大多數同學年齡是9—10歲,處於直觀形象思維向初步的抽象邏輯思維轉變的關鍵期,如果在這個問題上學生能得到好的引導,學生充分理解了字母表示數的含義,那麼他們將對方程的認識和以後初中的數學學習充滿興趣和信心。教學中,我使用多媒體課件製作了生活中許多與字母有關的信息,引導學生觀察,增強感性認識,積累經驗,又出示老師本人及孩子年齡數量關系的圖片,激發孩子的興趣,理解字母表示數的意義更加深刻。
二、展示動態效果,突破靜態思維,形成教學重難點
比如,小學四年級數學中的《小數點搬家》,小數點的位置移動引起小數的大小變化,一直是學生理解的難點,為了解決這一問題,我設計了ppt課件,動態演示小數點的移動變化情況,學生在輕松的氣氛中掌握了這一知識點,從課後學生的作業和老師的反映來看,都比較有成效。
老師普遍反映這節課課件應用較好,很好地突破了難點,課件製作生動形象,易於理解,在小數點移動中理解了小數大小變化的規律。
三、突顯關鍵所在,突破復雜、抽象的關系形成的重難點
不少老師會有這樣的經歷:正當你講得非常興奮的時候,卻發現不少學生已經茫然地望著你,不知什麼時候他們已經迷失了方向,你的全力講解可能還不如多媒體資源里一張小小的幻燈片,如在教學《時、分的認識》時,學生對於「1小時=60分」的概念很模糊,於是我用CAI課件向學生演示時針走一小格,分針剛好走一圈的動畫,使抽象的時間概念清晰起來,學生清楚地看清時針、分針的變化,輕松地理解「1時=60分」的概念,縮短了課堂教學內容與學生之間的距離,為學生迅速掌握知識架起了橋梁。對抽象的概念教學起到了超語言的引導作用,使數學教學更加生動、更加多元化,有效突破教學重難點。
四、創設生動情境,突破內容枯燥形成的重難點
如何提高學生學習數學的興趣,變枯燥的數學內容為形象直觀,是我們數學教師在教學中普遍關注的問題。教學中,不少學生因為數學內容枯燥而產生了不少難點,甚至對數學產生畏懼和厭學心理,對自己學好數學失去信心。我們利用多媒體教學技術,將教材中的概念、定理等多種教學信息通過文字、圖像、動畫、視頻等手段直觀再現或模擬出來,刺激了學生的感官,引起了學生的興趣,使學生主動參與到教學活動中去,提高了學生對知識的汲取速度和攝取知識的效率。例如在教學這節課時,傳統教學多以講授的方式為主,學生會感覺較為枯燥且不易理解,學習興趣不高,教學效率低下,教師的語言表達顯得蒼白無力,難以取得理想教學效果,我們可以製作FLASH動畫,再現情境,不僅增強了本節課的趣味性,也有利於學生理解有理數加法的法則,很好地突破了本節課的教學重難點。
綜上所述,計算機多媒體技術在教學中的運用已經成為時代發展的必然趨勢,它有著巨大的發展潛能。多媒體教學在數學教學中以文字為基礎,配合圖像、聲音、動畫等手段,以多元化的教學方式,從多方面刺激學生的感官,調動學生學習數學的興趣,使數學教學化枯燥為生動,變繁難為簡易,有力地突破教學重難點,大大提高了教學質量,合理優化了數學課堂。
㈨ 如何在初中數學教學中突破重點和難點
初中的數學知識雖然不會太過深奧,但是知識點瑣碎,能夠將瑣碎的知識點靈活地應用到題目的解答中是初中數學教師們共同努力的目標。下面結合自己的教學經驗以及數學的中考試題簡要談一下初中數學教學中知識點的把握技巧。一、把握細節,細化知識要點知識,本是瑣碎之點,對於各類問題知識點的細致深化有利於培養學生敏銳、嚴謹的思維,無論是生活上,還是考試中都能應對較為細微的問題,老師在教學過程中要有意地將知識點細致的講解與練習,仔細剖析其中容易忽略的問題,提醒學生們平常不仔細的做題習慣,以便於應對考試中的題目「陷阱」。數學知識中的細節要點主要表現為圖形的特點,比如三角形的性質,角平分線定理的應用條件,中心對稱,軸對稱知識;公式的應用條件,比如二元一次方程兩個根的判斷;切線定理的具體應用,都是學生需要把握的細節,也是知識的要點。例如在中心對稱的知識點中,學生們知道中心對稱的定義是:將圖形繞著某一點旋轉180度,如果它能與另一個圖形重合,那麼就說這兩個圖形關於這個點中心對稱。但是在做題之中更應重視旋轉180度是什麼概念,許多學生在做題中沒有將這一知識點細化,造成答題時概念混淆,下面我們結合一道中考題進行講解:例:下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()。本題中,出題者有意選取富有新意的圖形來考察學生日常學習到的知識點,尤其是比較容易混淆的圖形來考察學生們對旋轉180度的認識,通過細節的變換來提醒學生們真正地掌握知識的每一個方面,這樣才能應對每一個細節方面的問題。根據題目,B、C兩個選項都是軸對稱圖形,所以排除兩個選項。根據中心對稱的定義A和D中,只有A繞180度後才能夠與原圖形重合,所以答案選A。通常情況下,人們會對D產生誤解,認為它同樣是中心對稱圖形,這就是沒有注意到第四個圖形的旋轉周期為120度,並不是所有的能夠旋轉的圖形都是中心對稱圖形,本題目的另類設置充分體現了對知識點的細化,深入到知識的每一個方面,讓學生全面了解知識的構架。二、靈活教學方法,善於應用知識要點對於知識要點的現實應用是我們教學的終極目標,但一般的老師會認為數學這種理論性偏強的學科更適合將知識要點在課堂上言傳身授比較實用,這樣的教學方法無形之中會給學生們的學習造成壓力與負擔,而將數學知識要點與日常生活相關聯,更能夠使學生們感受到數學的實用價值,將知識要點應用到實際中去,可以提升學生對該知識點的印象。比如:在學習三角形相似性時,可以通過三角形相似性的特點讓學生測量生活中一些距離的長度,通過實踐,讓學生掌握三角形相似性的判定條件,計算細節;學習概率時,可以自行拋硬幣,通過統計正面與反面的次數,以此來預見所拋硬幣的正反面情況,以此來驗證概率論的正確性。如圖,為估算某河的寬度,在河對岸邊選定一個目標點A,在近岸取點B,C,D,使得AB┴BC,CD┴BC,點E在BC上,並且點A,E,D在同一條直線上。若測得BE=20cm,EC=10m,CD=20m,則河的寬度AB等於()。本題即是運用三角形的一些知識點來解決生活中的實際問題。根據三角形的相似性可知△ABE與△DCE是相似三角形,所以BE:CE=AB:CD,所以能夠得出AB的距離是40m,即河寬為40m。這樣的實際問題有意在引導同學們將所學數學知識點應用到現實生活之中,使枯燥的數字與圖形變得實用起來,而教師在教學過程中就要適應這一趨勢,通過應用知識點的方式將數學知識變得能夠解決實際問題,同學們能夠意識到所學知識的重要性,無論是對數學的學習熱情還是今後的生活工作都能將數學變得活起來。三、提高效率,歸納總結知識要點對數學知識點的歸納與整理是學習數學的關鍵環節,學生一定要把基礎知識夯實,這樣才能夠在此基礎上變換各種學習方法。老師要做的是要提高自己的教學效率,注重知識點的歸納和總結,讓學生全面掌握知識點,在做題之中能靈活運用。比如,幾何圖形的證明與運算中有關於邊與角的關系有許多瑣碎的知識點;關於平行四邊形類題型的解答步驟;輔助線的添加;三角形中心的應用;中位線定理的應用等等,這些知識點,稍不注意就容易忘掉或混淆,老師應幫助學生,以具體的題目為依託,整理出各類問題的知識要要點。四、結語初中數學教學在新課程標准改革的背景下變得更加富有創造性,更能吸引學生們認真學習,對於數學知識要點的著重把握還需各位一線老師的不懈鑽研與分享。本文只是針對初中數學教學知識點的把握進行簡要闡述,更深的學問還有待同仁們的共同努力。