Ⅰ 新課改給數學課堂帶來哪些變化
1、課改把課堂還給了學生。課堂教學永遠是課改的主陣地,只有將課改的新思想、新理念融入課堂教學的每一個環節,獲得師生積極的、創造性的參與,才能綻放絢麗的花朵,才能使我們的課堂永遠充滿著活力。
2、課改縮短了師生的距離。如果要讓學生真正做到脫離束縛,主動探索,那麼,教師首先要放下架子,走近學生,努力創設一種和諧、寬松的教學氛圍,使學生感覺到教師是自己的親密朋友。教師與學生、學生與學生可以相互暢通交流,教師要成為名副其實的組織者、合作者和參與者。
3、課改讓學生擁有更多的學習自主權。學生在自主的學習、理解、感悟中獲得獨特的感受,這極大地滿足了學生自身的學習需求。課堂教學是學生生命活力煥發、生命價值不斷體現的生活過程,這就要求教師善於營造良好的教學情境,將所要學習的內容貫穿於學生喜愛的氛圍中,引導學生自主學習。
Ⅱ 小學數學發展歷史有哪些內容
古希臘學者畢達哥拉斯(約公元約前580~約前500年)有這樣一句名言:「凡物皆數」。的確,一個沒有數的世界不堪設想。
今天,人們對從1數到10這樣的小事會不屑一顧,然而上萬年以前,這事可讓人們煞費苦心。在7000年以前,他們甚至連2以上的數字還數不上來,如果要問他們所捕的4隻野獸是多少,他們會回答:「很多隻」。如果當時要有人能數到10,那一定會被認為是傑出的天才了。後來人們慢慢地會把數字和雙手聯系在一起。每隻手各拿一件東西,就是2。數到3時又被難住了,於是把第3件東西放在腳邊,「難題」才得到解決。
就這樣,在逐步摸索中,華夏民族的祖先從混混沌沌的世界中走出來了。
先是結繩記數,然後又發展到「書契」,五六千年前就會寫1~30的數字,到了2000多年前的春秋時代,祖先們不但能寫3000以上的數學,還有了加法和乘法的意識。在金文周<※鼎>中有這樣一段話:「東宮乃曰:償※禾十秭,遺十秭為廾秭,來歲弗償,則付秭。」這段話包含著一個利滾利的問題。說的是,如果借了10捆粟子,晚點還,就從借時的10捆變成20捆。如果隔年才還,就得從借時的10捆漲到40捆。用數學式子表達即:
10+10=20
20×2=40
除了在記數和演算法上有了較大的進步外,華夏民族的祖先還開始把一些數字知識記載在書上。春秋時代孔子(公元前551~前479)年修改過的古典書籍之一<周易>中,就出現了八卦。這神奇的八卦至今在中國和外國仍然是人們努力研究和對象,它在數學、天文、物理等多方面都發揮著不可低估和作用。
到了戰國時期,數學知識已遠遠超出了會數1~3000的水平。這一階段他們在算術、幾何,甚至在現代應用數學的領域,都開始了耕耘播種。算術領域,四則運算在這一時期內得到了確立,乘法中訣已經在<管子>、<荀子>、<周逸書>等著作中零散出現,分數計算也開始被應用於種植土地、分配糧食等方面。幾何領域,出現了勾股定理。代數領域,出現了負數概念的萌芽。最令後人驚異的是,在這一時期出現了「對策論」的萌芽,對策論是現代應用數學領域的問題。它是運籌學的一個分支,主要是用數學方法來研究有利害沖突的雙方,在競爭性的活動中,是否存自己制勝對方的最優策略,以及如何找出這些策略等問題。這一數學分支是在本世紀第二次世界大戰期間或以後,才作為一門學科形成的,可是早在2000多年前,戰國時期著名的軍事家孫臏(公元前360~前330年)就提出過「斗馬術」問題,而這一問題的內容,正反映了對策論中爭取總體最優的數學思想。「斗馬術」問題說的是,齊威王要和大將田忌賽馬,他們每人各有上、中、下等馬各1匹,田忌那3匹馬比起齊威王的來,都要略遜一籌,如果用同等級的對應較量法,田忌必輸無疑,田忌為此急得不知如何是好。這時,孫臏從旁點撥,田忌用了孫臏的辦法,以2:1取勝齊威王。
孫臏用的是什麼方法呢?請看下面的示意圖:
田忌 齊威王
下等馬 上等馬
上等馬 中等馬
中等馬 下等馬
看到這,你不覺得我們的祖先實在是很聰明嗎?
當歷史推進到秦漢時期,祖先們不再往骨頭上刻字了。他們把需要記的事都用毛筆寫在竹片上、木片上,這種寫了字的竹、木片被稱為「簡」或「牘」。這種簡或牘以西漢時期的流傳下來最多。
從那些漢簡中,我們發現,秦漢時期在算術方面乘除法算例明顯增多,還出現了多步乘除法和趨於完整的九九乘法中訣。在幾何方面,對於長方形面積的計算以及體積計算的知識也具備了。
這個時期最值得一提的,要算是算籌和十進位制系統了。有了它們,祖先們就不再為沒有合適的計算手段而發愁了。在我國古代,直到唐朝以前,一直用著這一套計算系統。
算籌的確切起源時間至今還不清楚,只知道,大約在秦漢時期,算籌已經形成制度了。
要明白算籌是怎麼回事,先得知道什麼叫籌。籌就是一些直徑1分、長6分的小棍兒,這些小棍兒的質料有竹、木、骨、鐵、銅等。它們的功用同算盤珠相仿。目前,籌的實物已出土多批,1971年在陝西千陽縣出土的一座長方形男女合墓中發現,那具男屍的胯部系著一個絲絹帶囊,囊內裝有一把骨籌。1980年在石家莊南郊出土的一批早期骨籌,也是掛在死者的腰部。由引可見,算籌在漢代知識分子中已經通用。關於如何使用籌,根據記載是這樣的:在計算時,將籌擺於特製的案子上,或隨便擺放都可。對於5以下的數字,是幾就放幾根籌,而對6~9這4個數字,則需要用一根橫放或豎放的算籌當5,餘下的數則仍是有幾擺幾根算籌。
為了計算方便,古人規定了縱橫表示法。縱表示法用於個、百、萬位數字;橫表示法用於十、千位數字,遇到零時,則空一位。
十進位制系統,正是我們今天日常生活中常用的逢十進一法。就是說,對正整數或正小數而言,以十為基礎,逢十進一,逢百進二,逢千進三等等。十進位制系統的產生,為四則運算的發展創造了良好的條件。
發展繁榮時期
編輯
中國數學發展繁榮時期大約在西漢末期至隋朝中葉。這是中國數學理論的第一個高峰期。這個高峰的標志就是數學專著<九章算術>的誕生。至少有1800年的《九章算術》,其作者是誰?由誰編纂?至今無從考證。史學家們只知道,它是中國秦漢時期一二百年的數學知識結晶,到公元1世紀時開始流傳使用。
這本書全書共分為九章:
①方田(分數四則演算法和平面形求面積法)。
②粟米(糧食交易的計算方法)。
③衰分(分配比例的計算方法)。
④少廣(開平方和開立方法)
⑤商功(立體形求體積法)
⑥均輸(管理糧食運輸均勻負擔的計算方法)。
⑦盈不足(盈虧類問題解法,也涉及能夠用這種解法處理的其他類型問題)。
⑧方程(一次方程組解法和正負術)。
⑨勾股(勾股定理的應用和簡單的測量問題的解法)。
全書收錄了246道數學應用題,每道題都分為問、答、術(解法。有的一題一術,有的一題多術)三部分,而且每章的內容都與社會生產有著密不可分的聯系。
這本書的誕生,不僅說明中國古代完整的數學體系已經形成,而且在世界上,當時也很難找到另一本能同媲美的數學專著。
在這一數學理論發展的高峰期,除了《九章算術》這部巨著之外,還出現了劉徽注的《九章算術》以及他撰寫的<海島算經>、<孫子算經>(作者不詳)、<夏侯陽算經>、<張丘建算經>和祖沖之的<綴術>等數學專著。
這一時期,創造數學新成果的傑出人物是:三國人趙爽、魏晉人劉徽和南朝人祖沖之。
全盛時期
編輯
中國數學的全盛時期是隋中葉至元後期。
任何一個國家科學的發達,都有離不開清平開明的社會環境和雄厚的經濟基礎。從隋朝中葉到元代末年,由於統治者總結了歷代王朝傾覆的教訓,採取一系列開明政策,經濟得到了迅速發展,科學技術也得到了很大提高,而作為科學技術一部分的數學,也在此時進入了它的全盛時期。
在這一時期,數學教育的正規化和數學人才輩出,是最主要的特點。
隋以前,學校里的教育並不重視數學,因此,沒有數學專業一說。而到了隋朝,這一局面被打破了,在相當於大學的學校里,開始設置算學專業。到了唐朝,最高學府國子監,還添設了算學館,其中博士、助教一應俱全,專門培養數學人才。這時,數學教育的受重視,還反映到了選官問題上。據古書<唐闕史>記載,有這么一個故事:唐代有個大官,名叫楊損。他讓手下的人推薦一個優秀的辦事員加以提升。手下的人經過千篩百選,最後剩下兩個人時,拿不定去掉哪一位好。因為這兩個辦事員各方面的條件太一樣了:職位相同,「工齡」一樣,評語類似……選誰好呢?沒辦法,只好把矛盾上交了。楊損得知這個消息之後,也費了不少心思,斟酌再三,最後決定出一道數學題來考考他們。他對這兩位候選人說:「作為辦事員,職業決定你們應該有算得快的能力,我出一道題,誰先答對就提升誰。」後來,先答對的人,理所當然地得到了升遷,而另一個人也心悅誠服地回到了原位。由此可見,唐代對數學的重視程度。
有了數學專業。就少不了好教材。這個時期,有唐朝數學家李淳風(?~公元714年)等人奉政府的命令,經過研讀、篩選,規定出了國子監算館專用教科書。這套教科書名叫<算經十書>,全套共十部:<周髀算經>、《九章算經>、<孫子算經>、<五曹算經>、<夏侯陽算經>、<張丘建算經>、<海島算經>、<五經算術>、<綴術>和<緝古算經>。
對這套專業教材,國子監還規定了學習年限,建立了每月一考的制度。數學教育從這時開始走向逐步完善。
在日趨完善的數學教育制度下,涌現出了一代名垂青史的數學泰斗,他們是:王孝通、劉焯、一行、沈括、李冶、賈憲、楊輝、秦九韶、郭守敬、朱世傑……
科學歷來是全人類共同的財富,當時中國的數學水平很快引起了朝鮮、日本的注意,他們開始往中國派留學生、書商。經過一段學習,在演算法引進了關於田畝、交租、穀物交換等知識;在辦學中吸取了國子監的課程設置和考試制度。由此看來,在這一階段,中國已處於世界數學發展的潮頭。
緩慢發展時期
編輯
接下來在元後期至清中期,中國數學的發展緩慢,和上面講的數學盛世相比,這一階段幾乎黯然失色。
從宋朝末年到元朝建立中央集權制,中國大地上烽火連年,科學技術不受重視,大量寶貴的數學遺產遭受損失。
明朝建立以後,生產曾在一個短暫時期里有所發展,但馬上又由於封建統治的腐敗,走向了衰落,直到清朝初年才緩過一口氣來。
處在這樣一種政治腐敗、經濟落後、農民起義此起彼伏的環境中,數學跌入低谷也是情理之中的事。
然而世界發展的潮流歷來是不等人的,乘中國數學衰落的功夫,西方數學悄悄地追上來,並且反過來滲透進中國。
當西方資本主義開始萌芽的時候,為了尋求發展,天主教傳教士、海盜、商人紛紛涌進中國。他們除了從中國帶走了原料、市場、廉價勞動力,也帶來了一些文化知識。
16世紀~18世紀來華的傳教士中,以義大利人利瑪竇(公元1552~公元1610年)影響最大。在1583~1599年,當他活動於中國肇慶、韶州、南昌、南京等地時,結識了不少中國著名學者,如李贄、徐光啟、李之藻等人。這些人正處於不滿空談理學,渴望富國強兵的思想狀態中,為此他們迫切希望世界上的最新科技成果。而利瑪竇的到來,無疑是起了一拍即合的作用。
利瑪竇與徐光啟和李之藻分別合譯了兩部數學著作:<幾何原本>、<同文算指>。
其中《幾何原本》文字通俗,很少疏漏。盡管當時原著中的拉丁文沒有現成的中國詞彙可對照,但是徐光啟仍是克服困難,創造出許多恰當的譯名,使全書達到信、達、雅的水平。
從利瑪竇與中國學者合譯專著開始,西學東漸的勢頭越來越大。
那麼這個時期中國自己的數學「特產」是什麼呢?是珠算。
在隋唐時期,人們已經開始在改進籌算上打主意了。他們想辦法簡化籌算方法、編口訣……然而,在迅速發展的數學領域中,籌演算法必然會被其他演算法所代替。
元朝末期,小巧靈便的算盤出現了。人們看著這計算簡捷、攜帶方便的新工具欣喜異常,甚至有人把它編到了俗語、詩歌、唱詞中。
算盤的出現,很快就引出了珠算口訣和珠演算法書籍,16、17世紀,在中國大量的有關珠算的書籍中,最有名的是程大位的《直指演算法統宗》。珠算普及以後,籌算便自動銷聲匿跡了。
就在中國人發明珠算後不久,1642年,19歲的法國數學家巴斯加(公元1623~1662年)推出了世界上最早的計算機。目前,雖然世界已進入了計算機時代,然而珠算仍有它的一席之地。有人試過,在加減法運算中,它的速度甚至超過小型計算器。
中西合流期
編輯
在中國數學發展緩慢的時候,西方數學已大跨步超前,於是在中國數學發展史上出現了一個中西數學發展的合流期,這一時期約為公元1840年~1911年之間。
前面講到,16世紀前後,西方傳教士帶來了一些新的數學知識。盡管有些洋人懷有個人目的,但不管怎麼說,新知識能傳進來,這對中國的數學進展總是有好處的。然而,1723年清朝雍正皇帝登基時,有人就提出大批傳教士在華,對他們的統治不利。皇帝一想,也是。於是馬上下令,除了少數在中國編制新歷法的外國人之外,其他傳教士一律不留。
這一命令產生的後果是,在以後大約100年的時間里,西方的數學知識也很難「進口」;中國數學家只好把眼光從學習西方新知識,轉回到研究自己的舊成果了。
古代數學迴光返照的局面沒持續多久,鴉片戰爭失敗了,閉關自守的局面被打開了,帝國主義列強紛紛進來瓜分中國,中國一時間淪為半殖民地、半封建的社會。
19世紀60年代開始,曾國藩、李鴻章等為了維護腐敗的清政府,發起了「洋務運動」。這時以李善蘭、徐壽、華蘅芳為代表的一批知識分子,作為數學家、科學家和工程師參加了引進西學、興辦工廠、學校等活動,經過他們的不懈努力,奠定了近代科技、近代數學在中國的發展基礎。
當1894年「洋務運動」以軍事失敗而告終時,工廠、鐵路、學校卻保留了下來,科技知識也在一定的范圍內傳播了開來。
這一時期的特點是中西合流。所謂中西合流,並不是全盤西化,數學工作者們在研究傳統數學的同時吸收新的方法,一時間,出現了人才濟濟、著述如林的好勢頭。
這時,中國數學家在冪級數、尖錐術等方面已獨立地得到了一些微積分成果,在不定分析和組合分析方面也獲得了出色的成績。然而,即使是這樣,在世界的同行們之中,中國也仍然沒達到領先的地位。
現代數學開端
編輯
近代數學的開端主要集中在公元1911年~1949年這一時期。
到了19世紀末20世紀初,中國數學界發生了很大的變化,派出大批留學生,創辦新式學校,組織學術團體,有了專門的期刊,中國從此進入了現代數學研究階段。
從1847年,以容閎為代表的第一批學生出國後,形成了一個出國留學的高潮。當時出國留學人數每年要達到數千人之多,他們學成回國後,在中國形成了一支不可忽視的現代科學隊伍。
早期出國留學的人中,學數學的人不多,其中做出突出成就的有:蘇步青、陳建功、陳省身、周煒良、許寶、華羅庚、林家翹等人。
這樣一批海外學子歸來之後,在科研、教育、學術交流等方面都有了新轉變。
科研上,1949年以前共發表652篇論文,盡管數量不多,范圍也僅限於純數學方面,但是其水平卻不低於世界上的同行們。要知道,就是這點微薄的成果還是在克服了政治、經濟等多方面難以想像的困難下取得的。
教育上,建立了正規的課程設置,數學的學時多於文科,對教科書也進行了更新。到1932年為止,中國國內各大學已有一支約155人的數學教師隊伍,可以開5至10門以上的專業課。
學術交流上,1935年7月成立「中國數學會」,創辦<中國數學會學報>和<數學雜志>。1932年至1936年召開的第9、10次國際數學會議,中國均有人參加。這時,應邀到華講學的各國數學家也紛至沓來,給過去閉關自守的數學領域,帶來了現代的氣息。
建國後的發展
編輯
1949年,新中國成立之初,國家雖然正處於資金匱乏、百廢待興的困境,然而政府卻對科學事業給予了極大關注。1949年11月成立了中國科學院,1952年7月數學研究所正式成立,接著,中國數學會及其創辦的學報恢復並增創了其他數學專刊,一些科學家的專著也競相出版,這一切都為數學研究鋪平了道路。
解放後的18年間,發表論文的篇數占解放前總篇數的3倍多,其中不少論文不但填補了中國過去的空白,有的還達到了世界先進水平。
正當數學家們奮起直追,力圖恢復中國數學在世界上的先進地位時,一場無情的風暴席捲了中國。在文化大革命的十年中,社會失控,人心混亂,科學衰落。在數學的園地里,除了陳景潤、華羅庚、張廣厚等幾個數學家掙扎著開了幾朵花,幾乎是滿目凋零,一片空白。
當10年政治災難過去之後,人們抬頭一看,別的國家數學研究早已是高峰迭起,要想追上又需花費不少力氣。
中華民族歷來就有自強不息的光榮傳統和堅韌不拔的耐力。浩劫以後,隨著郭沫若先生那篇文采橫溢的《科學的春天》的發表,數學園地里又迎來了萬物復甦的春天。1977年,在北京制訂了新的數學發展規劃,恢復數學學會工作,復刊、創刊學術雜志,加強數學教育,加強基礎理論研究……
盡管中國目前在世界數學的賽場上已處落後地位,然而,路遙識馬力,今後鹿死誰手,仍然是個「x」。
古代成就
編輯
在中國古代數學發展史中,祖先摘到的金牌足可以開一座陳列館,這里只開一個「清單」,使讀者有一個直觀印象。
(1)十進位制記數法和零的採用。源於春秋時代,早於第二發明者印度1000多年。
(2)二進位制思想起源。源於《周易》中的八卦法,早於第二發明者德國數學家萊布尼茲(公元1646~1716)2000多年。
(3)幾何思想起源。源於戰國時期墨翟的《墨經》,早於第二發明者歐幾里德(公元前330~前275)100多年。
(4)勾股定理(商高定理)。發明者商高(西周人),早於第二發明者畢達哥拉斯(公元前580~前500)550多年。
(5)幻方。我國最早記載幻方法的是春秋時代的《論語》和《書經》,而在國外,幻方的出現在公元2世紀,我國早於國外600多年。
(6)分數運演算法則和小數。中國完整的分數運演算法則出現在《九章算術》中,它的傳本至遲在公元1世紀已出現。印度在公元7世紀才出現了同樣的法則,並被認為是此法的「鼻祖」。我國早於印度500多年。
中國運用最小公倍數的時間則早於西方1200年。運用小數的時間,早於西方1100多年。
(7)負數的發現。這個發現最早見於《九章算術》,這一發現早於印度600多年,早於西方1600多年。
(8)盈不是術。又名雙假位法。最早見於《九章算術》中的第七章。在世界上,直到13世紀,才在歐洲出現了同樣的方法,比中國晚了1200多年。
(9)方程術。最早出現於《九章算術》中,其中解聯立一次方程組方法,早於印度600多年,早於歐洲1500多年。在用矩陣排列法解線性方程組方面,我國要比世界其他國家早1800多年。
(10)最精確的圓周率「祖率」。早於世界其他國家1000多年。
(11)等積原理。又名「祖暅」原理。保持世界紀錄1100多年。
(12)二次內插法。隋朝天文學家劉焯最早發明,早於「世界亞軍」牛頓(公元1642~1727)1000多年。
(13)增乘開方法。在現代數學中又名「霍納法」。我國宋代數學家賈憲最早發明於11世紀,比英國數學家霍納(公元1786~1837)提出的時間早800年左右。
(14)楊輝三角。實際上是一個二項展開式系數表。它本是賈憲創造的,見於他著作《黃帝九章演算法細草》中,後此書流失,南宋人楊輝在他的《詳解九章演算法》中又編此表,故名「楊輝三角」。
在世界上除了中國的賈憲、楊輝,第二個發明者是法國的數學家帕斯卡(公元1623~1662),他的發明時間是年,比賈憲晚了近600年。
(15)中國剩餘定理。實際上就是解聯立一次同餘式的方法。這個方法最早見於《孫子算經》,1801年德國數學家高斯(公元1777~1855)在《算術探究》中提出這一解法,西方人以為這個方法是世界第一,稱之為「高斯定理」,但後來發現,它比中國晚1500多年,因此為其正名為「中國剩餘定理」。
(16)數字高次方程方法,又名「天元術」。金元年間,我國數學家李冶發明設未知數的方程法,並巧妙地把它表達在籌算中。這個方法早於世界其他國家300年以上,為以後出現的多元高次方程解法打下很好的基礎。
(17)招差術。也就是高階等差級數求和方法。從北宋起中國就有不少數學家研究這個問題,到了元代,朱世傑首先發明了招差術,使這一總是得以解決。世界上,比朱世傑晚近400年之後,牛頓才獲得了同樣的公式。
我也是網上查的,希望能幫到你!
Ⅲ 小學數學領域的改革與發展動態有哪些
小學數學課程改革與發展趨勢 第一節:
幾個發達國家小學數學課程改革簡介, 科學技術迅猛發展,特別是計算機技術的飛速發展,使得數學的應用領域得到了極大的拓展。各行各業都用到數學,就像今天識字、閱讀一樣,數學成為公民必需的文化素養,數學教育大眾化是時代的要求。這一切構成了當前國際數學教育改革的基礎。下面介紹一下幾個發達國家小學數學課程改革的情況。
一、美國的數學課程改革
1989年,美國國家研究委員會(NRC)發表了《休戚與共──關於數學教育失敗向全國所作的報告》,文件提出了數學課程必須作出重大的改革。國家數學教師協會(NCTM)作為美國數學教育的改革倡導者,先後建立了教學、教師、考核三個方面的標准,為改進數學課程作出了很大的貢獻。
2:年級學生的具體要求如下:①要讓兒童在接觸物質世界和接觸其他兒童的過程中去建立、修改和發展數學概念;
②數學教學內容必須拓廣和加寬;③要強調數學的應用;④要強調數學理解,發展兒童的數學思維和推理能力;⑤要適當地使
用計算器和計算機。
Ⅳ 數與代數在01版與11版課標內容有哪些變化
1.將「人人學有價值的數學,人人獲得必需的數學,不同的人在數學上得到不同的發展」,改為「人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展」。 2.將「數學學習」和「數學教學」兩條合並成一條「教學活動」,整體上闡述數學教學活動的特徵。表述為:「教學活動是師生積極參與、交往互動、共同發展的過程。有效的數學教學活動是學生學與教師教的統一,學生是數學學習的主體,教師是數學學習的組織者、引導者與合作者。」 二、「設計思路」的修改 1.對「數與代數」,「圖形與幾何」,「統計與概率」,「綜合與實踐」四個方面的課程內容做了明確的闡述。 2.將「空間與圖形」改為「圖形與幾何」、「實踐與綜合應用」改為「綜合與實踐」。確立了「數感」、「符號意識」、「運算能力」、「模型思想」、「空間觀念」、「幾何直觀」、「推理能力」、「數據分析觀念」等八個關鍵詞,並給出具體描述。並專門闡述了「應用意識」和「創新意識」。 三、「課程目標」的修改 1.明確提出「四基」,即基礎知識、基本技能、基本思想和基本活動經驗。 2.提出了發現和提出問題的能力:在原分析和解決問題能力的基礎上,進一步提出培養學生發現和提出問題的能力。 3.完善了一些具體目標的描述:比如對於學習習慣,明確指出使學生養成「認真勤奮、獨立思考、合作交流、反思質疑等學習習慣」。 4.規范了課程目標的若干術語。並在學段目標中使用這些術語。 四、「課程內容」(原「內容標准」)的修改 1.對「數與代數」,「圖形與幾何」,「統計與概率」和「綜合與實踐」四個方面的內容及要求進行了適當的調整,使用規定的課程目標術語,對某些課程目標的表述進行了修改。 2.從總體結構上看,「幾何與圖形」領域發生了一些變化,另外三個領域的結構基本沒變。「幾何與圖形」結構的變化表現在:將實驗稿中分四個方面對內容進行的要求(即「圖形的認識」、「圖形與變換」、「圖形與坐標」、「圖形與證明」)改為從三個方面展開內容要求,即「圖形的性質」、「圖形的變化」、「圖形與坐標」,這三部分中的「圖形的性質」基本上是整合了實驗稿中的第一和第四部分而成,而其他兩個部分與原來的兩部分對應。 3.四個領域中一些具體的內容的變化主要表現在以下幾個方面,一個是刪除了一些條目,第二是新增了一些內容(包括必學和選學內容),第三是對相同內容的要求不同(包括程度上的不同以及要求的進一步細化
Ⅳ 現在數學發展到什麼程度了
數學是怎麼發展到現在的(規模)?
一個偶然引起一個猜想,然後無數個偶然建立無數個門,那數學是怎麼從僅僅用來計量的「東西,成為這么龐大的體系
我盡量避開特別專業的東西,簡單的說一下數學發展史。
首先數學的發展分為四個時期:
第一時期
數學形成時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算術、幾何、代數。
第三時期
變數數學時期
變數數學時期。變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期
現代數學時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵,分支開始變的極其復雜,發展速度奇快。
數學之所以能發展到現在的規模,其中很大一部分原因是因為數學的發展程度限制了當下的技術發展程度,很多情況下都是,我要解決問題,但是沒有能夠滿足我解決問題需求的數學工具,數學除了自己推動自己,很多都是靠其他學科來推動的,例如物理 , 物理和數學兩者一直是相輔相成,共同推動發展的。
在簡潔一點,籠統一點:
推動數學發展的主要原因,是各種技術的實際需求以及人類對未知技術和學術方面的猜想來推動的。
Ⅵ 20世紀我國數學教學觀有什麼重要變化
20世紀90年代以前,我國數學教育研究的成果,主要體現在教育部歷次頒布的數學教學大綱之中.自從國家提出素質教育和創新教育的理念以後,數學教育研究開始走上學術研究的道路.與此同時,國際上的數學教育理論和經驗,也先後介紹到國內來.數學教育研究呈現蓬勃發展的態勢,研究領域大為開闊.數學教學大綱、數學課程、數學知識本身對教師的數學觀會產生很大的影響.
一、由關心教師的「教」轉向也關注學生的「學」
二、從「雙基」與「三大能力」觀點的形成、發展到更寬廣的能力觀和素質觀
三、從聽課、閱讀、演題,到提倡實驗、討論、探索的學習方式
四、從看重數學的抽象和嚴禁,到關注數學文化、數學探索和數學應用
Ⅶ 從數學的發展歷史來看,數學的研究對象各個階段有哪些
數學發展具有階段性,因此根據一定的原則把數學史分成若干時期。目前通常將數學發展劃分為以下五個時期:
1.數學萌芽期(公元前600年以前);
2.初等數學時期(公元前600年至17世紀中葉);
3.變數數學時期(17世紀中葉至19世紀20年代);
4.近代數學時期(19世紀20年代至第二次世界大戰);
5.現代數學時期(20世紀40年代以來)
在數學萌芽期這一時期,數學經過漫長時間的萌芽階段,在生產的基礎上積累了豐富的有關數和形的感性知識。到了公元前六世紀,希臘幾何學的出現成為第一個轉折點,數學從此由具體的、實驗的階段,過渡到抽象的、理論的階段,開始創立初等數學。此後又經過不斷的發展和交流,最後形成了幾何、算術、代數、三角等獨立學科。世界上最古老的幾個國家都位於大河流域:黃河流域的中國;尼羅河下游的埃及;幼發拉底河與底格里斯河的巴比倫國;印度河與恆河的印度。這些國家都是在農業的基礎上發展起來的,因此他們就必須掌握四季氣候變遷的規律。
現在對於古巴比倫數學的了解主要是根據巴比倫泥版,這些數學泥版表明,巴比倫自公元前2000年左右即開始使用60進位制的記數法進行較復雜的計算了,並出現了60進位的分數,用與整數同樣的法則進行計算;已經有了關於倒數、乘法、平方、立方、平方根、立方根的數表;藉助於倒數表,除法常轉化為乘法進行計算。巴比倫數學具有算術和代數的特徵,幾何只是表達代數問題的一種方法。這時還沒有產生數學的理論。對埃及古代數學的了解,主要是根據兩卷紙草書。從這兩卷文獻中可以看到,古埃及是採用10進位制的記數法。埃及人的數學興趣是測量土地,幾何問題多是講度量法的,涉及到田地的面積、谷倉的容積和有關金字塔的簡易計演算法。但是由於這些計演算法是為了解決尼羅河泛濫後土地測量和穀物分配、容量計算等日常生活中必須解決的課題而設想出來的,因此並沒有出現對公式、定理、證明加以理論推導的傾向。埃及數學的一個主要用途是天文研究,也在研究天文中得到了發展。由於地理位置和自然條件,古希臘受到埃及、巴比倫這些文明古國的許多影響,成為歐洲最先創造文明的地區。
希臘的數學是輝煌的數學,第一個時期開始於公元前6世紀,結束於公元前4世紀。泰勒斯開始了命題的邏輯證明,開始了希臘偉大的數學發展。進入公元前5世紀,愛利亞學派的芝諾提出了四個關於運動的悖論,柏拉圖強調幾何對培養邏輯思維能力的重要作用,亞里士多德建立了形式邏輯,並且把它作為證明的工具;德謨克利特把幾何量看成是由許多不可再分的原子所構成。第二個時期自公元前4世紀末至公元1世紀,這時的學術中心從雅典轉移到了亞歷山大里亞,因此被稱為亞歷山大里亞時期。這一時期有許多水平很高的數學書稿問世,並一直流傳到了現在。公元前3世紀,歐幾里得寫出了平面幾何、比例論、數論、無理量論、立體幾何的集大成的著作幾何原本,第一次把幾何學建立在演繹體繫上,成為數學史乃至思想史上一部劃時代的名著。之後的阿基米德把抽象的數學理論和具體的工程技術結合起來,根據力學原理去探求幾何圖形的面積和體積,奠定了微積分的基礎。阿波羅尼寫出了《圓錐曲線》一書,成為後來研究這一問題的基礎。公元一世紀的赫倫寫出了使用具體數解釋求積法的《測量術》等著作。二世紀的托勒密完成了到那時為止的數理天文學的集大成著作《數學匯編》,結合天文學研究三角學。三世紀丟番圖著《算術》,使用簡略號求解不定方程式等問題,它對數學發展的影響僅次於《幾何原本》。希臘數學中最突出的三大成就--歐幾里得的幾何學,阿基米德的窮竭法和阿波羅尼的圓錐曲線論,標志著當時數學的主體部分--算術、代數、幾何基本上已經建立起來了。
羅馬人征服了希臘也摧毀了希臘的文化。公元前47年,羅馬人焚毀了亞歷山大里亞圖書館,兩個半世紀以來收集的藏書和50萬份手稿競付之一炬。
從5世紀到15世紀,數學發展的中心轉移到了東方的印度、中亞細亞、阿拉伯國家和中國。在這1000多年時間里,數學主要是由於計算的需要,特別是由於天文學的需要而得到迅速發展。古希臘的數學看重抽象、邏輯和理論,強調數學是認識自然的工具,重點是幾何;而古代中國和印度的數學看重具體、經驗和應用,強調數學是支配自然的工具,重點是算術和代數。
印度的數學也是世界數學的重要組成部分。數學作為一門學科確立和發展起來。印度數學受婆羅門教的影響很大,此外還受希臘、中國和近東數學的影響,特別是受中國的影響。
此外,阿拉伯數學也有著舉足輕重的作用,阿拉伯人改進了印度的計數系統,"代數"的研究對象規定為方程論;讓幾何從屬於代數,不重視證明;引入正切、餘切、正割、餘割等三角函數,製作精密的三角函數表,發現平面三角與球面三角若乾重要的公式,使三角學脫離天文學獨立出來。
在我國,春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。戰國時期的百家爭鳴也促進了數學的發展,秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。魏、晉時期趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。這之後,我國數學經過像秦九邵、祖沖之、郭守敬、程大位這樣的數學家進一步發展了我國的數學事業。
在西歐的歷史上,中世紀的黑暗在一定程度上阻礙了數學的發展,15世紀開始了歐洲的文藝復興,使歐洲的數學得以進一步發展,15世紀的數學活動集中在算術、代數和三角方面。繆勒的名著《三角全書》是歐洲人對平面和球面三角學所作的獨立於天文學的第一個系統的闡述。16世紀塔塔利亞發現三次方程的代數解法,接受了負數並使用了虛數。16世紀最偉大的數學家是偉達,他寫了許多關於三角學、代數學和幾何學的著作,其中最著名的《分析方法入門》改進了符號,使代數學大為改觀;斯蒂文創設了小數。17世紀初,對數的發明是初等數學的一大成就。1614年,耐普爾首創了對對數,1624年布里格斯引入了相當於現在的常用對數,計算方法因而向前推進了一大步。至此,初等數學的主體部分--算術、代數與幾何已經全部形成,並且發展成熟。
變數數學時期從17世紀中葉到19世紀20年代,這一時期數學研究的主要內容是數量的變化及幾何變換。這一時期的主要成果是解析幾何、微積分、高等代數等學科。
17世紀是一個開創性的世紀。這個世紀中發生了對於數學具有重大意義的三件大事。 首先是伽里略實驗數學方法的出現,它表明了數學與自然科學的一種嶄新的結合。其特點是在所研究的現象中,找出一些可以度量的因素,並把數學方法應用到這些量的變化規律中去。第二件大事是笛卡兒的重要著作《方法談》及其附錄《幾何學》於1637年發表。它引入了運動著的一點的坐標的概念,引入了變數和函數的概念。由於有了坐標,平面曲線與二元方程之間建立起了聯系,由此產生了一門用代數方法研究幾何學的新學科--解析幾何學。這是數學的一個轉折點,也是變數數學發展的第一個決定性步驟。第三件大事是微積分學的建立,最重要的工作是由牛頓和萊布尼茲各自獨立完成的。他們認識到微分和積分實際上是一對逆運算,從而給出了微積分學基本定理,即牛頓-萊布尼茲公式。17世紀的數學,發生了許多深刻的、明顯的變革。在數學的活動范圍方面,數學教育擴大了,從事數學工作的人迅速增加,數學著作在較廣的范圍內得到傳播,而且建立了各種學會。在數學的傳統方面,從形的研究轉向了數的研究,代數占據了主導地位。在數學發展的趨勢方面,開始了科學數學化的過程。最早出現的是力學的數學化,它以1687年牛頓寫的《自然哲學的數學原理》為代表,從三大定律出發,用數學的邏輯推理將力學定律逐個地、必然地引申出來。18世紀數學的各個學科,如三角學、解析幾何學、微積分學、數論、方程論,得到快速發展。19世紀20年代出現了一個偉大的數學成就,它就是把微積分的理論基礎牢固地建立在極限的概念上。柯西於1821年在《分析教程》一書中,發展了可接受的極限理論,然後極其嚴格地定義了函數的連續性、導數和積分,強調了研究級數收斂性的必要,給出了正項級數的根式判別法和積分判別法。而在這一時期,非歐幾何的出現,成為數學史上的一件大事,非歐幾何的出現,改變了人們認為歐氏幾何唯一地存在是天經地義的觀點。它的革命思想不僅為新幾何學開辟了道路,而且是20世紀相對論產生的前奏和准備。這時人們發現了與通常的歐幾里得幾何不同的、但也是正確的幾何--非歐幾何。非歐幾何所導致的思想解放對現代數學和現代科學有著極為重要的意義,因為人類終於開始突破感官的局限而深入到自然的更深刻的本質。非歐幾何的發現,黎曼和羅巴切夫斯基功不可滅,黎曼推廣了空間的概念,開創了幾何學一片更廣闊的領域--黎曼幾何學。後來,哈密頓發現了一種乘法交換律不成立的代數--四元數代數。不可交換代數的出現,改變了人們認為存在與一般的算術代數不同的代數是不可思議的觀點。它的革命思想打開了近代代數的大門。另一方面,由於一元方程根式求解條件的探究,引進了群的概念。19世紀20~30年代,阿貝爾和伽羅瓦開創了近世代數學的研究。這時,代數學的研究對象擴大為向量、矩陣,等等,並漸漸轉向代數系統結構本身的研究。19世紀還發生了第三個有深遠意義的數學事件:分析的算術化。1874年威爾斯特拉斯提出了被稱為"分析的算術化"的著名設想,實數系本身最先應該嚴格化,然後分析的所有概念應該由此數系導出。19世紀後期,由於狄德金、康托和皮亞諾的工作,這些數學基礎已經建立在更簡單、更基礎的自然數系之上。
20世紀40~50年代,世界科學史上發生了三件驚天動地的大事,即原子能的利用、電子計算機的發明和空間技術的興起。此外還出現了許多新的情況,促使數學發生急劇的變化。1945年,第一台電子計算機誕生以後,由於電子計算機應用廣泛、影響巨大,圍繞它很自然要形成一門龐大的科學。計算機的出現更是促進了數學的發展,使數學分為了三個領域,純粹數學,計算機數學,應用數學。 現代數學雖然呈現出多姿多彩的局面,但是它的主要特點可以概括如下:(1)數學的對象、內容在深度和廣度上都有了很大的發展,分析學、代數學、幾何學的思想、理論和方法都發生了驚人的變化,數學的不斷分化,不斷綜合的趨勢都在加強。(2)電子計算機進入數學領域,產生巨大而深遠的影響。(3)數學滲透到幾乎所有的科學領域,並且起著越來越大的作用,純粹數學不斷向縱深發展,數理邏輯和數學基礎已經成為整個數學大廈基礎。
Ⅷ 數學發展特點是什麼
現代數學時期是指由19世紀20年代至今,這一時期數學主要研究的是最一般的數量關系和空間形式,數和量僅僅是它的極特殊的情形,通常的一維、二維、三維空間的幾何形象也僅僅是特殊情形。抽象代數、拓撲學、泛函分析是整個現代數學科學的主體部分。它們是大學數學專業的課程,非數學專業也要具備其中某些知識。變數數學時期新興起的許多學科,蓬勃地向前發展,內容和方法不斷地充實、擴大和深入。
18、19世紀之交,數學已經達到豐沛茂密的境地,似乎數學的寶藏已經挖掘殆盡,再沒有多大的發展餘地了。然而,這只是暴風雨前夕的寧靜。19世紀20年代,數學革命的狂飆終於來臨了,數學開始了一連串本質的變化,從此數學又邁入了一個新的時期——現代數學時期。
19世紀前半葉,數學上出現兩項革命性的發現——非歐幾何與不可交換代數。
大約在1826年,人們發現了與通常的歐幾里得幾何不同的、但也是正確的幾何——非歐幾何。這是由羅巴契夫斯基和里耶首先提出的。非歐幾何的出現,改變了人們認為歐氏幾何唯一地存在是天經地義的觀點。它的革命思想不僅為新幾何學開辟了道路,而且是20世紀相對論產生的前奏和准備。
後來證明,非歐幾何所導致的思想解放對現代數學和現代科學有著極為重要的意義,因為人類終於開始突破感官的局限而深入到自然的更深刻的本質。從這個意義上說,為確立和發展非歐幾何貢獻了一生的羅巴契夫斯基不愧為現代科學的先驅者。
1854年,黎曼推廣了空間的概念,開創了幾何學一片更廣闊的領域——黎曼幾何學。非歐幾何學的發現還促進了公理方法的深入探討,研究可以作為基礎的概念和原則,分析公理的完全性、相容性和獨立性等問題。1899年,希爾伯特對此作了重大貢獻。
在1843年,哈密頓發現了一種乘法交換律不成立的代數——四元數代數。不可交換代數的出現,改變了人們認為存在與一般的算術代數不同的代數是不可思議的觀點。它的革命思想打開了近代代數的大門。
另一方面,由於一元方程根式求解條件的探究,引進了群的概念。19世紀20~30年代,阿貝爾和伽羅華開創了近世代數學的研究。近代代數是相對古典代數來說的,古典代數的內容是以討論方程的解法為中心的。群論之後,多種代數系統(環、域、格、布爾代數、線性空間等)被建立。這時,代數學的研究對象擴大為向量、矩陣,等等,並漸漸轉向代數系統結構本身的研究。
上述兩大事件和它們引起的發展,被稱為幾何學的解放和代數學的解放。
19世紀還發生了第三個有深遠意義的數學事件:分析的算術化。1874年威爾斯特拉斯提出了一個引人注目的例子,要求人們對分析基礎作更深刻的理解。他提出了被稱為「分析的算術化」的著名設想,實數系本身最先應該嚴格化,然後分析的所有概念應該由此數系導出。他和後繼者們使這個設想基本上得以實現,使今天的全部分析可以從表明實數系特徵的一個公設集中邏輯地推導出來。
現代數學家們的研究,遠遠超出了把實數系作為分析基礎的設想。歐幾里得幾何通過其分析的解釋,也可以放在實數系中;如果歐氏幾何是相容的,則幾何的多數分支是相容的。實數系(或某部分)可以用來解群代數的眾多分支;可使大量的代數相容性依賴於實數系的相容性。事實上,可以說:如果實數系是相容的,則現存的全部數學也是相容的。
19世紀後期,由於狄德金、康托和皮亞諾的工作,這些數學基礎已經建立在更簡單、更基礎的自然數系之上。即他們證明了實數系(由此導出多種數學)能從確立自然數系的公設集中導出。20世紀初期,證明了自然數可用集合論概念來定義,因而各種數學能以集合論為基礎來講述。
拓撲學開始是幾何學的一個分支,但是直到20世紀的第二個1/4世紀,它才得到了推廣。拓撲學可以粗略地定義為對於連續性的數學研究。科學家們認識到:任何事物的集合,不管是點的集合、數的集合、代數實體的集合、函數的集合或非數學對象的集合,都能在某種意義上構成拓撲空間。拓撲學的概念和理論,已經成功地應用於電磁學和物理學的研究。
20世紀有許多數學著作曾致力於仔細考查數學的邏輯基礎和結構,這反過來導致公理學的產生,即對於公設集合及其性質的研究。許多數學概念經受了重大的變革和推廣,並且像集合論、近世代數學和拓撲學這樣深奧的基礎學科也得到廣泛發展。一般(或抽象)集合論導致的一些意義深遠而困擾人們的悖論,迫切需要得到處理。邏輯本身作為在數學上以承認的前提去得出結論的工具,被認真地檢查,從而產生了數理邏輯。邏輯與哲學的多種關系,導致數學哲學的各種不同學派的出現。
20世紀40~50年代,世界科學史上發生了三件驚天動地的大事,即原子能的利用、電子計算機的發明和空間技術的興起。此外還出現了許多新的情況,促使數學發生急劇的變化。這些情況是:現代科學技術研究的對象,日益超出人類的感官范圍以外,向高溫、高壓、高速、高強度、遠距離、自動化發展。以長度單位為例、小到1塵(毫微微米,即10^-15米),大到100萬秒差距(325.8萬光年)。這些測量和研究都不能依賴於感官的直接經驗,越來越多地要依靠理論計算的指導。其次是科學實驗的規模空前擴大,一個大型的實驗,要耗費大量的人力和物力。為了減少浪費和避免盲目性,迫切需要精確的理論分機和設計。再次是現代科學技術日益趨向定量化,各個科學技術領域,都需要使用數學工具。數學幾乎滲透到所有的科學部門中去,從而形成了許多邊緣數學學科,例如生物數學、生物統計學、數理生物學、數理語言學等等。
上述情況使得數學發展呈現出一些比較明顯的特點,可以簡單地歸納為三個方面:計算機科學的形成,應用數學出現眾多的新分支、純粹數學有若乾重大的突破。
1945年,第一台電子計算機誕生以後,由於電子計算機應用廣泛、影響巨大,圍繞它很自然要形成一門龐大的科學。粗略地說,計算機科學是對計算機體系、軟體和某些特殊應用進行探索和理論研究的一門科學。計算數學可以歸入計算機科學之中,但它也可以算是一門應用數學。
計算機的設計與製造的大部分工作,通常是計算機工程或電子工程的事。軟體是指解題的程序、程序語言、編製程序的方法等。研究軟體需要使用數理邏輯、代數、數理語言學、組合理論、圖論、計算方法等很多的數學工具。目前電子計算機的應用已達數千種,還有不斷增加的趨勢。但只有某些特殊應用才歸入計算機科學之中,例如機器翻譯、人工智慧、機器證明、圖形識別、圖象處理等。
應用數學和純粹數學(或基礎理論)從來就沒有嚴格的界限。大體上說,純粹數學是數學的這一部分,它暫時不考慮對其它知識領域或生產實踐上的直接應用,它間接地推動有關學科的發展或者在若干年後才發現其直接應用;而應用數學,可以說是純粹數學與科學技術之間的橋梁。
20世紀40年代以後,涌現出了大量新的應用數學科目,內容的豐富、應用的廣泛、名目的繁多都是史無前例的。例如對策論、規劃論、排隊論、最優化方法、運籌學、資訊理論、控制論、系統分析、可靠性理論等。這些分支所研究的范圍和互相間的關系很難劃清,也有的因為用了很多概率統計的工具,又可以看作概率統計的新應用或新分支,還有的可以歸入計算機科學之中等等。
20世紀40年代以後,基礎理論也有了飛速的發展,出現許多突破性的工作,解決了一些帶根本性質的問題。在這過程中引入了新的概念、新的方法,推動了整個數學前進。例如,希爾伯特1990年在國際教學家大會上提出的尚待解決的23個問題中,有些問題得到了解決。60年代以來,還出現了如非標准分析、模糊數學、突變理論等新興的數學分支。此外,近幾十年來經典數學也獲得了巨大進展,如概率論、數理統計、解析數論、微分幾何、代數幾何、微分方程、因數論、泛函分析、數理邏輯等等。
當代數學的研究成果,有了幾乎爆炸性的增長。刊載數學論文的雜志,在17世紀末以前,只有17種(最初的出於1665年);18世紀有210種;19世紀有950種。20世紀的統計數字更為增長。在本世紀初,每年發表的數學論文不過1000篇;到1960年,美國《數學評論》發表的論文摘要是7824篇,到1973年為20410篇,1979年已達52812篇,文獻呈指數式增長之勢。數學的三大特點—高度抽象性、應用廣泛性、體系嚴謹性,更加明顯地表露出來。
今天,差不多每個國家都有自己的數學學會,而且許多國家還有致力於各種水平的數學教育的團體。它們已經成為推動數學發展的有力因素之一。目前數學還有加速發展的趨勢,這是過去任何一個時期所不能比擬的。
現代數學雖然呈現出多姿多彩的局面,但是它的主要特點可以概括如下:(1)數學的對象、內容在深度和廣度上都有了很大的發展,分析學、代數學、幾何學的思想、理論和方法都發生了驚人的變化,數學的不斷分化,不斷綜合的趨勢都在加強。(2)電子計算機進入數學領域,產生巨大而深遠的影響。(3)數學滲透到幾乎所有的科學領域,並且起著越來越大的作用,純粹數學不斷向縱深發展,數理邏輯和數學基礎已經成為整個數學大廈基礎。
以上簡要地介紹了數學在古代、近代、現代三個大的發展時期的情況。如果把數學研究比喻為研究「飛」,那麼第一個時期主要研究飛鳥的幾張相片(靜止、常量);第二個時期主要研究飛鳥的幾部電影(運動、變數);第三個時期主要研究飛鳥、飛機、飛船等等的所具有的一般性質(抽象、集合)。
這是一個由簡單到復雜、由具體到抽象、由低級向高級、由特殊到一般的發展過程。如果從幾何學的范疇來看,那麼歐氏幾何學、解析幾何學和非歐幾何學就可以作為數學三大發展時期的有代表性的成果;而歐幾里得、笛卡兒和羅巴契夫斯基更是可以作為各時期的代表人物。
Ⅸ 世界數學史分為哪四個時期
學術界通常將數學發展劃分為以下四個時期:數學形成時期、初等數學時期、變數數學時期、近現代數學時期。
一、數學形成時期;萌芽時期是最初的數學知識積累時期,是數學發展過程中的漸變階段。這一時期的數學知識是零散的、初步的、非系統的,但是這是數學發展史的源頭,為數學後續的發展奠定了基礎。
這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
中國歷史悠久,發掘出來的大量石器、陶器、青銅器、龜甲以及獸骨上面的圖形和銘文表明: 幾何觀念遠在舊石器時代就已經在中國逐步形成。早在五六千年前,古中國就有了數學符號,到三千多年前的商朝,刻在甲骨或陶器上的數字已十分常見。
這時,自然數記數都採用了十進位制。甲骨文中就有從一到十再到百、千、萬的十三個記數單位。這說明古中國也形成了數學的基本概念。
二、初等數學時期(公元前600年至17世紀中葉);初等數學時期從公元前五世紀到公元十七世紀,延續了兩千多年、由於高等數學的建立而結束。
這個時期最明顯的結果就是系統地創立了初等數學,也就是現在中小學課程中的算術、初等代數、初等幾何(平面幾何和立體幾何)和平面三角等內容。
初等數學時期可以根據內容的不同分成兩部分,幾何發展的時期(到公元二世紀)和代數優先發展時期(從二世紀到十七進紀)。又可以按照歷史條件的不同把它分成「希臘時期」、「東方時期」和「歐洲文藝復興時期」。
希臘時期正好和希臘文化普遍繁榮的時代一致。希臘是一個文明古國,但是,和四大文明古國巴比倫、埃及、印度、中國相比,在文明史上,希臘文明要晚一段時間。
三、變數數學時期(17世紀中葉至19世紀20年代);變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。
內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。
積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
四、近現代數學時期(19世紀20年代);現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎。代數、幾何、分析中的深刻變化為特徵。近代數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
17世紀,數學的發展突飛猛進,實現了從常量數學到變數數學的轉折。中國近代數學的研究是從1919年五四運動以後才真正開始的。
(9)數學領域發生了哪些變化擴展閱讀:
歷史介紹:
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。
當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
Ⅹ 數學學習評價有哪些特點以及數學新課程改革中有哪些主要變化
1、 教師觀念更新,提高認識
在課堂教學中,教師一改以往的角色,成為教學活動中的參與者、合作者、組織者,而寬松、和諧、民主、生動活潑的數學課堂使學生在沒有任何壓力下產生強烈的求知興趣,同時也能發現數學的文化價值。
首先,過去對於教師的「主導」地位問題,是課堂評價的一個論據,而在數學新課程改革中對我們理解更會有不同側面和深刻程度上的差異,所以,當教師把自己變為課堂活動的一名合作者、參與者時,也將自己和學生放在了同一水平上,才能從數學學科的特點出發,考慮到每個學生的不同背景,每個學生的現實基礎,認知水平等進行教學,從而發揮每個學生的最大潛能。
其次,在新課改理念下,教師對學生的地位也有了新的認識;教師與學生在教學中的關系是動態的,不再起什麼「主導」與「主體」性作用,這一定位,拉近了師生的距離。過去我們評價一節課只看錶象,評課者只關注教師在這節課中「戲」演得是否令觀眾滿意,再看觀眾反應如何,來評這節課的成功與否,注重了數學教學的系統結構和形式化,而較少關注從「感知數學情景、體驗數學本質、概括數學抽象、反思數學應用。」的完整數學學習過程,這種形式化教學搞得教師手忙腳亂,學生也無所適從,且看美國中學數學教學的一個案例:
在美國西雅圖一節高二數學課上,老師講的就是一個測量塔高度的問題,一上課,老師就把這個任務交給學生,說塔是高不可及的朵想辦法測量這個塔的高度。學生聽完以後就每個人拿了一個圖形計算器,分成四、五個人一個小組就開始做了。看到這道題我覺得好笑,這不正是前幾天才給學生上的一節課嗎?是初三數學中的一道應用問題,稍微差不多的學生都很快得出答案。可問題是人家高二學生卻做得津津有味,全班同學分完工以後,老師沒有做任何提示,學生就開始做這件事情,且沒有幾個學生去努力找一個公式,絕大多數都在按分工試算:這塔多高呢?有的學生就先設它為100米,找測量點,發現湊不出准確答案,就開始分工,甲把塔放高一點,已把塔變矮點兒,丙把第一個測量點往前點,丁把測量點往後變,四個人分工做,到下課全班還不到10個學生得出結果,老師說:「我們繼續去做」。