導航:首頁 > 數字科學 > 哪些數學家發現了哪些東西

哪些數學家發現了哪些東西

發布時間:2022-09-03 09:37:35

Ⅰ 七個關於數學的數學家故事和數學的資料

數學家的故事——蘇步青

蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。
那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。
楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。
17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」
這就是老一輩數學家那顆愛國的赤子之心

數學家的墓誌銘

一些數學家生前獻身於數學,死後在他們的墓碑上,刻著代表著他們生平業績的標志。
古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算 而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語

祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".

Ⅱ 數學家故事 寫誰發現了什麼

趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有數幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。
趙爽還在《勾股圓方圖注》中推導出二次方程x2+ax=A(其中a>0,A>0)的求根公式。
在《日高圖注》中利用幾何圖形面積關系,給出了'重差術'的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。

Ⅲ 是哪些數學家發現的平面圖形嗎

這是一個歷時很長的過程。古希臘的歐幾里得是最先用演繹方法系統的研究平面圖形,例如三角形四邊形,圓形,多邊形等。到了後來又有從圓錐用不同面割出來的圖形,稱為圓錐曲線,後來笛卡爾又發明了解析幾何方法,把幾何和代數結合起來。

歐幾里得是最著名的著作《幾何原本》是歐洲數學的基礎,總結了平面幾何五大公設,被廣泛的認為是歷史上最成功的教科書。歐幾里得也寫了一些關於透視、圓錐曲線、球面幾何學及數論的作品。

(3)哪些數學家發現了哪些東西擴展閱讀

《幾何原本》不僅保存了許多古希臘早期的幾何學理論,而且通過歐幾里得開創性的系統整理和完整闡述,使這些遠古的數學思想發揚光大。它開創了古典數論的研究,在一系列公理、定義、公設的基礎上,創立了歐幾里得幾何學體系,成為用公理化方法建立起來的數學演繹體系的最早典範。

在整部書的內容安排上,也同樣貫徹了他的這種獨具匠心的安排。它由淺到深,從簡至繁,先後論述了直邊形、圓、比例論、相似形、數、立體幾何以及窮竭法等內容。其中有關窮竭法的討論,成為近代微積分思想的來源。

Ⅳ 我們認識了這么多的平面圖形,你知道是哪些數學家發現的嗎

答案: 歐幾里得 畢達哥拉斯
亞歷山大里亞的歐幾里得(希臘文:Ευκλειδης ,約公元前330年—前275年),古希臘數學家,被稱為「幾何之父」。他活躍於托勒密一世(公元前323年-前283年)時期的亞歷山大里亞,他最著名的著作《幾何原本》是歐洲數學的基礎,提出五大公設,發展歐幾里得幾何,被廣泛的認為是歷史上最成功的教科書。歐幾里得也寫了一些關於透視、圓錐曲線、球面幾何學及數論的作品,是幾何學的奠基人。
畢達哥拉斯(Pythagoras)是希臘的哲學家和數學家。對正方形、三角形、圓有深刻研究

Ⅳ 初中要掌握的數學家有哪些,分別發現了哪些與數學有關

怎樣學好高中數學?首先要摘要答題技巧

現在數學這個科目也是必須學習的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些類型?

高中數學試卷

怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.

Ⅵ 十位古今中外的數學家以及他們發現的定理

趙爽 勾股定理
韋達 韋達定理
梅涅勞斯 梅涅勞斯定理
費馬 費馬大定理
哈密頓、凱萊 哈密頓--凱萊定理
托勒密 托勒密定理
西姆松 西姆松定理

Ⅶ 數學家們有什麼重要發現

近代數學發展概況 在近代,數學處在飛速發展中,取得了輝煌成就,現代數學在這個基礎上繼續以更快的速度向深度和廣度發展,成為十分活躍的科學。現代數學的發展有兩大趨勢或特點:一是數學更加理論化,所研究的數學對象更加抽象;二是數學與基它自然科學、技術、生產以及社會知識領域的關系更加密切,幾乎觸及或深入到各行各業,甚至成為它們不可分割的組成部分。這說明數學的作用更加明顯和突出,說明數學已經發展到相當高的水平,也是數學科學更加成熟的體現。

當今社會,必須把掃除「數學盲」的任務代替昔日掃除「文盲」的任務而成為現代教育的重要目標。人們可以把數學對社會的貢獻比喻為空氣和食物對生命的作用。所以,在一定意義上,人們是生活在數學時代。神通廣大的電子計算機最能反映出數學的存在。

進入20世紀,數學的研范圍迅速擴大,數學的分支猶如雨後春筍,其復雜性和抽象性也日甚一日。而數學研究的課題真可謂五花八門,不但外行人面對數學的整個領感到莫名其妙,就是在其它數學分支領域工作的數學家也會發出同樣的感嘆。不過,盡管存在著這種日益專門化的傾向,數學卻比以往任何時候都更為具體、更富有生機。

回顧20世紀數學的發展,就要追溯到19世紀末和20世紀初數學領域中的兩個重要事件:一是英國哲學家、數學家羅素(B.Bussell,1872~1970)在1901年發現的集合論「悖論」(即所有不屬於其自身的集合的集合,是屬於該集合,還是不屬該集合,都導致矛盾),令數學家們震驚。這是對數學界的一個極大的沖擊,由此產生了關於數學基礎論的危機。其後幾十年爭論激烈,至今尚未終止。其實所謂「數學危機」如同前面的「物理學危機」一樣,不是數學學科本身的危機,而只是人們尤其是數學家們認識上的危機。雖然有「數學危機」,數學的發展不僅沒有受影響,反而以更高的速度向前發展,應用范圍更廣,效果也更明顯。二是在1900年召開的第二屆國際數學家大會上,希爾伯特(D.Hilbert,1862~1943)提出著名的23個數學問題,涉及面廣,每個問題都很有難度,許多數學家為解決這些問題作了不懈努力,但至今尚有不少問題沒能解決。希爾伯特問題的提出和解決對20世紀前50年數學的發展起了承上啟下的作用。科學與技術飛速發展,對數學提出許多新課題,推動數學的發展,形成許多新的數學分支

Ⅷ 三國時期的數學家們發現了哪些重要定律

三國時的數學家趙爽對先人成果有興趣,他在注《周髀算經》的時候對勾股定理、勾股弦的關系式、二次方程的解法等都有幾何的證明。

數學家劉徽(魏國人),是這個時代出現的一顆科學明星,也是一位世界有名的古代數學家。劉徽對中國最重要的數學經典《九章算術》中的大部分演算法作了理論性的論證,首次用無限增加圓的內接正多邊形的邊數的方法(割圓術)來求圓的周長和面積,把極限概念應用到解題之中。劉徽的成就體現在他的《九章算術注》和《海島算經》兩部著作中。《九章算術注》成書的263年正是魏國大將鄧艾(197~264)攻破成都滅亡蜀國之時。《海島算經》在唐代被列入國家學校的算經十書中。

Ⅸ 數學家發明了什麼(中國)

法國:1642年法國的布萊斯·帕斯卡鈞發明計算器來幫助收稅員擺脫枯燥乏味的計算工作,但無人問津,被認為太復雜

德國:1671年德國的戈特弗里德·威廉·萊布尼茲發明機械演算機,用於加、減、乘、除 早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。 《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。 南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。 祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。 隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。 公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。 從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。 賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。 秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。 李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。 公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。 公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。 14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。 明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。 由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》﹝2卷﹞、《割圓八線表》﹝6卷﹞和羅雅谷的《測量全義》﹝10卷﹞是介紹西方三角學的著作。

閱讀全文

與哪些數學家發現了哪些東西相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:744
乙酸乙酯化學式怎麼算 瀏覽:1409
沈陽初中的數學是什麼版本的 瀏覽:1359
華為手機家人共享如何查看地理位置 瀏覽:1050
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:891
數學c什麼意思是什麼意思是什麼 瀏覽:1417
中考初中地理如何補 瀏覽:1308
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:707
數學奧數卡怎麼辦 瀏覽:1397
如何回答地理是什麼 瀏覽:1031
win7如何刪除電腦文件瀏覽歷史 瀏覽:1061
大學物理實驗干什麼用的到 瀏覽:1491
二年級上冊數學框框怎麼填 瀏覽:1709
西安瑞禧生物科技有限公司怎麼樣 瀏覽:991
武大的分析化學怎麼樣 瀏覽:1253
ige電化學發光偏高怎麼辦 瀏覽:1342
學而思初中英語和語文怎麼樣 瀏覽:1661
下列哪個水飛薊素化學結構 瀏覽:1428
化學理學哪些專業好 瀏覽:1491
數學中的棱的意思是什麼 瀏覽:1067