導航:首頁 > 數字科學 > 做數學題需要什麼過程

做數學題需要什麼過程

發布時間:2022-09-04 01:28:13

『壹』 數學題怎麼做要過程

歐拉公式(x:黑皮,y:白皮). (5x+6y)/3+(x+y)-(5x-6y)/2=2 解得:x=12
(1)先算黑皮子共有多少條邊:12×5=60條。這60條邊都是與白皮子縫合在一起的,對於白皮子來說:每塊白色皮子的6條邊中,有3條邊與黑色皮子的邊縫在一起,另3條邊則與其它白色皮子的邊縫在一起,所以白皮子所有邊的一半是與黑皮子縫合在一起的,那麼白皮子就應該一共有60×2=120條邊,120÷6=20,所以共有20塊白皮子.
(2)黑皮子12塊,先算黑皮子共有多少條邊:12×5=60條。白皮子有12×5÷3=20塊,因為有12個正五邊形,而每個正五邊形的周圍有5個正六邊形,所以便是12×5。不過我們沒有考慮每個正六邊形的周圍卻有3個正五邊形,如果這樣計算,正六邊形的數目便會重復了3次,所以最後要把答案除以3,便得出正確答案。

『貳』 做數學題的方法

1、學數學最重要的就是解題能力

要想會做數學題目,就要有大量的練習積累,知道各類型題目的解題步驟與方法,題目做多了就有手感了,再拿出類似的題目才會有解題思路。

2、其次是學會預習

解題思路不是直接就有的,也並非通過做幾道簡單的題目就能輕易獲得,而是在預習過程中不斷積累出來的。因此,預習在數學學習過程中起到了非常重要的作用。預習一方面能夠讓大家提前對數學知識有所了解,另一方面能夠培養數學獨立學習能力。

3、學數學必須多做題

理解了數學基本定義和知識點以後,就需要通過做對應習題去鞏固知識,多做多練才能更好地掌握所學知識,學數學也是看花容易綉花難的,只有真正動手去做題、經歷了實操過程能學會。

4、做完題要學會總結

對於做過的題型及做錯的題目要善於進行分類總結,再遇到類似的題目要會分析,知道哪裡容易出現問題,然後盡量去避免。同時在做題和總結過程中,要學會舉一反三,抓住考點去復習。

5、學數學要會看書和查缺補漏

數學基礎考點都來源於課本,大家之所以覺得書沒什麼可看,是因為對教材掌握程度不夠。書上的每個定義都要理解後倒背如流,深究每個詞語的含義,做懂每個例題,會推導數學公式及變形公式。

做數學題目方法不唯一,只要是邏輯合理、能一步步推導出結論的方法都可以,不必拘泥於老師講授的方法。做數學小題也可以採用畫圖、試值法、代入法等去做,只要沉下心去研究,功夫不負有心人,數學總能夠學好。

『叄』 數學解決問題的一般步驟

第一,從問題出發。解決數學問題,首先要從理解數學問題開始,沒有正確的理解就沒有正確的解答。所以說要從問題出發,分析問題的基本條件,基本要求,梳理基本脈絡,形成基本觀點。這就要求學生要特別注重語言的訓練,包括聽說讀寫等能力的訓練,以實現對題目的充分理解。

第二,從規律出發。數學問題都是有一定規律可遵循的,發現了規律可以事半功倍,發現不了規律只能一頭霧水。如何發現規律?首先要認識規律。數學的規律都是隱藏在各類問題之下的,一般很難發現。這就需要學生日常養成專心聽講的良好習慣,因為這些規律性認識都是經過老師認真備課,精心組織耐心講授出來的。課時要會做筆記,做好筆記,課下做好復習,認識,理解規律,最好能夠自主的去發現規律總結規律。

第三,從結果出發。所謂解決數學問題,在小學和中學階段就是指解決數學題目。數學題目有一個特點,就是一定有一個疑問,有一個答案。為了解答,我們需要認真分析問題,即所謂的有的放矢。從結果出發反推問題所在,從結果中發現數學沖突和矛盾,在結果中理清解題思路。

第四,從邏輯關系出發。解決數學問題的實質是邏輯關系的理順,學生需要從題目中找到各種數量,變數,並建立起這些量之間合理的邏輯關系和數學解釋。羅輯思維能力提升的方法很多,主要是專項邏輯訓練,數字規律認識,圖形類型歸納,數形結合問題等等。在具體的解題過程中,我們需要抓住變數,還要抓住不變數,通過這些量之間的變化關系得出題意中的邏輯關系,進而最終求的結果。

『肆』 做數學題的步驟

做數學題是沒有統一的步驟的。一般來說,第一步是看清題目,理解題意。然後根據已經學過的知識來分析題目,找出解題的思路,一步一步化未知為已知。

『伍』 小學數學解題步驟

一、認真讀題審題

讀題就是為了審題,弄清楚題目所講的意思,明確要求的問題,以及題目中所含的條件。平時就發現,很多孩子題目草草看一下就馬上筆做題,或者就說不會做,這時你只要叫他把題目再讀一遍,他就豁然開朗了。讀題一般讀三遍,第一遍知道大概講什麼,第二遍明確要求的問題,帶著問題要讀一遍,這時要讀慢一點,邊讀邊想,把你認為重要的地方圈出來,想想要求題目中的問題要用到哪些條件,第三遍邊讀邊分析它們之間的數量關系。

『陸』 做數學試卷的技巧

原因一:學生對數學概念理解模糊,缺乏應用意識。

備考期間,很多學生都把精力花在了難題上,而忽略了書本上的基礎題,這是不可取的。對多數孩子而言,打牢基礎是關鍵,應該從課本上找出有價值的題目訓練,切忌題海戰術。

對策:注重概念的發生發展過程,理解概念的本質。如函數、等差數列、等比數列、數學期望等,這幾個字是如何提煉的?它的內涵是什麼?如果對每個數學概念都這樣來學習,就能抓住概念的本質,產生對數學概念很強的理解能力,以後無論是獨立學習新概念,還是讓你定義一個新的數學概念,都會從容自如。

原因二:錯誤理解題意,導致解題錯誤。

對策:審題做到「三心」,解題才能放心。

審題時必須做到「耐心、細心、用心」,這是正確解題的基礎,特別是對文字較長的題目,一定要有耐心,杜絕急躁,眼睛一掃而過,常會造成審題錯誤。

原因三:運算變形能力差,低級錯誤常發生。

對策:端正態度、掌握算理、由慢到快、確保正確。

計算不僅是「算一算」的問題,還有「算理」的掌握,包括數字計算和式子的化簡變形,這種能力是人的基本能力,它貫穿於整個學習的始終。

做題時要抓住幾個要點

要點一:「六先六後」,因人因卷制宜

在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解題能力的黃金季節了,這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行「六先六後」的戰術原則。

1.先易後難。

2.先熟後生。

3.先同後異。先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。

4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間。

5.先點後面。近年的高考數學解答題多呈現為多問漸難式的「梯度題」,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面。

6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施「分段得分」。

『柒』 一般做數學題的解題技巧是什麼

做選擇題時最忌諱的就是不認真讀題,埋頭苦算,結果不但浪費了大量的時間,有時候還會選錯。所以一定要讀透題,由題迅速聯想到涉及的概念、公式、定理以及以及知識點中要注意的問題。在做選擇題的過程中,遇到關鍵性的詞語可用筆做個記號,第一遍沒做出的題也要做個記號,但要注意與其他記號區分開來,這樣不容易遺漏。
選擇題的客觀性強技巧也多。以下6種事半功倍的解題技巧可供大家採用:
1、直接法
有些選擇題是由計算題、應用題、證明題、判斷題改編而成的。這類題目比較簡單,可直接從題設的條件出發,得出正確結論。
2、排除法
在拿不準的情況下可逆向進行,從選項入手,一邊審題邊排除,一個一個地排除掉,直至得到正確選項。
3、估值法
運用一些基本定義,如定義域、值域或不等式的有關知識來確定一個足夠小的范圍,要是四個選項中有一個答案是滿足的,那麼正確答案也就有了。
4、圖形法
根據題中已知條件畫出合適的圖形,如數軸、幾何、三角函數等圖像,通過在圖像上的分析得出答案。
5、推理法
根據題目中的已知條件推理下去,找出規律,歸納出正確笞案。
6、賦值法
在一些特殊形式的選擇題中,給未知量賦一個適當的便於計算的值,就可確定正確笞案。
在解答數學選擇題時如果能夠做到准、快、巧,就既能在選擇題部分獲得高分,又能嬴得較多的時間去解答其他部分的問題,從而使得數學最終突破高分。

『捌』 數學題怎麼做要過程

解:過p做BC垂線。
由PM垂直平分AB,兩邊三角形全等,PA=PB
由PN垂直平分AC,兩邊三角形全等,PA=PC
所以PB=PC,三角形PBC等腰,過p做BC垂線即是角平分線分得兩個三角形全等
所以,過p做BC垂線即是中垂線,證明完畢

『玖』 小學數學應用題的解題步驟和方法

小學數學10道經典應用題解題思路及答題

網路網盤鏈接:https://pan..com/s/1vUkp3x_qJYZqH5Y0E394hQ

提取碼:ae3g

若資源有問題歡迎追問~

『拾』 做數學題的方法和技巧

中小學數學,還包括思維數學,在學習方面要求方法適宜,有了好的方法和思路,可能會事半功倍!那有哪些方法可以依據呢?文都教育建議家長們,培養孩子從小就習慣用這些思維和方法來解題!

形象思維方法

形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。

形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。

實物演示法

利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。

這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。

二年級數學教材中,「三個小朋友見面握手,每兩人握一次,共要握幾次手」與「用三張不同的數字卡片擺成兩位數,共可以擺成多少個兩位數」。像這樣的有關排列、組合的知識,在小學教學中,如果實物演示的方法,是很難達到預期的教學目標的。

特別是一些數學概念,如果沒有實物演示,小學生就不能真正掌握。長方形的面積、長方體的認識、圓柱的體積等的學習,都依賴於實物演示作思維的基礎。

所以,小學數學教師應盡可能多地製作一些數學教(學)具,而且這些教(學)具用過後要好好保存,可以重復使用。這樣可以有效地提高課堂教學效率,提升學生的學習成績。

圖示法

藉助直觀圖形來確定思考方向,尋找思路,求得解決問題的方法。

圖示法直觀可靠,便於分析數形關系,不受邏輯推導限制,思路靈活開闊,但圖示依賴於人們對表象加工整理的可靠性上,一旦圖示與實際情況不相符,易使在此基礎上的聯想、想像出現謬誤或走入誤區,最後導致錯誤的結果。比如有的數學教師愛徒手畫數學圖形,難免造成不準確,使學生產生誤解。

在課堂教學當中,要多用圖示的方法來解決問題。有的題目,圖畫出來了,結果也就出來的;有的題,圖畫好了,題意學生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。

列表法

運用列出表格來分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便於分析比較、提示規律,也有利於記憶。它的局限性在於求解范圍小,適用題型狹窄,大多跟尋找規律或顯示規律有關。比如,正、反比例的內容,整理數據,乘法口訣,數位順序等內容的教學大都採用「列表法」。

用列表法解決傳統數學問題:雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。

探索法

按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在兒童的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。

第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。

第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。

第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。

觀察法

通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」

小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。

如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出

乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。

「觀察」的要求:

第一、觀察要細致、准確。

第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。

驗證法

你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。

驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。

(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。

(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。

(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)

按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。

(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。

抽象思維方法

運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。

抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。

形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。

辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。

小學、中學數學要培養學生初步的抽象思維能力,重點突出在:

(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。

(2)思維方法上,應該學會有條有理,有根有據地思考。

(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。

(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地

推理。

對照法

如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。

公式法

運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。

比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。

比較法要注意:

(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

(2)找聯系與區別,這是比較的實質。

(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。

(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。

(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

排除法

排除對立的結果叫做排除法。

排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩餘的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。

解題技巧

選擇題答題攻略

1、剔除法

利用已知條件和選項所提供的信息,從四個選項中剔除掉三個錯誤的答案,從而達到正確選擇的目的。這是一種常用的方法,尤其是答案為定值,或者有數值范圍時,取特殊點代入驗證即可排除。

2、特殊值檢驗法

對於具有一般性的數學問題,在解題過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達到去偽存真的目的。

3、極端性原則

將所要研究的問題向極端狀態進行分析,使因果關系變得更加明顯,從而達到迅速解決問題的目的。極端性多數應用在求極值、取值范圍、解析幾何上面,很多計算步驟繁瑣、計算量大的題,採用極端性去分析,就能瞬間解決問題。

4、順推破解法

利用數學定理、公式、法則、定義和題意,通過直接演算推理得出結果的方法。

5、逆推驗證法

將選項代入題干進行驗證,從而否定錯誤選項而得出正確答案的方法。

6、正難則反法

從題的正面解決比較難時,可從選項出發逐步逆推找出符合條件的結論,或從反面出發得出結論。

7、數形結合法

由題目條件,做出符合題意的圖形或圖象,藉助圖形或圖象的直觀性,經過簡單的推理或計算,從而得出答案的方法。數形結合的好處就是直觀,甚至可以用量角尺直接量出結果來。

8、遞推歸納法

通過題目條件進行推理,尋找規律,從而歸納出正確答案的方法。

9、特徵分析法

對題設和選擇項的特點進行分析,發現規律,歸納得出正確判斷的方法。

10、估值選擇法

有些問題,由於題目條件限制,無法(或沒有必要)進行精準的運算和判斷,此時只能藉助估算,通過觀察、分析、比較、推算,從面得出正確判斷的方法。

填空題答題攻略

數學填空題,絕大多數是計算型(尤其是推理計算型)和概念(性質)判斷型的試題,應答時必須按規則進行切實的計算或者合乎邏輯的推演和判斷。求解填空題的基本策略是要在「准」、「巧」、「快」上下功夫。常用的方法有直接法、特殊化法、數行結合法、等價轉化法等。

1、直接法

這是解填空題的基本方法,它是直接從題設條件出發、利用定義、定理、性質、公式等知識,通過變形、推理、運算等過程,直接得到結果。

2、特殊化法

當填空題的結論唯一或其值為定值時,我們只須把題中的參變數用特殊值(或特殊函數、特殊角、特殊數列、圖形特殊位置、特殊點、特殊方程、特殊模型等)代替之,即可得到結論。

3、數形結合法

藉助圖形的直觀形,通過數形結合,迅速作出判斷的方法稱為圖像法。文氏圖、三角函數線、函數的圖像及方程的曲線等,都是常用的圖形。

4、等價轉化法

通過「化復雜為簡單、化陌生為熟悉」,將問題等價地轉化成便於解決的問題,從而得出正確的結果。

閱讀全文

與做數學題需要什麼過程相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:743
乙酸乙酯化學式怎麼算 瀏覽:1408
沈陽初中的數學是什麼版本的 瀏覽:1358
華為手機家人共享如何查看地理位置 瀏覽:1049
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:890
數學c什麼意思是什麼意思是什麼 瀏覽:1416
中考初中地理如何補 瀏覽:1307
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:706
數學奧數卡怎麼辦 瀏覽:1396
如何回答地理是什麼 瀏覽:1030
win7如何刪除電腦文件瀏覽歷史 瀏覽:1060
大學物理實驗干什麼用的到 瀏覽:1490
二年級上冊數學框框怎麼填 瀏覽:1708
西安瑞禧生物科技有限公司怎麼樣 瀏覽:990
武大的分析化學怎麼樣 瀏覽:1252
ige電化學發光偏高怎麼辦 瀏覽:1341
學而思初中英語和語文怎麼樣 瀏覽:1660
下列哪個水飛薊素化學結構 瀏覽:1427
化學理學哪些專業好 瀏覽:1490
數學中的棱的意思是什麼 瀏覽:1066