導航:首頁 > 數字科學 > 初中數學各種符號表示什麼

初中數學各種符號表示什麼

發布時間:2022-09-05 20:33:57

❶ 數學符號含義

數學符號大全及意義之運算符號

如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

數學符號大全及意義之關系符號

如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b 表示「a能整除b」,而 ||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。

數學符號大全及意義之結合符號

如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」=。

數學符號大全及意義之性質符號

如正號「+」,負號「-」,正負號「 」(以及與之對應使用的負正號「」)

數學符號大全及意義之省略符號

如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),

雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),

∵ 因為(一個腳站著的,站不住)

∴ 所以(兩個腳站著的,能站住)(口訣:因為站不住,所以兩個點;因為上面兩個點,所以下面兩個點)

總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數 (n元素的總個數;r參與選擇的元素個數),冪 等。

數學符號大全及意義之排列組合符號

C 組合數

A (或P) 排列數

n 元素的總個數

r 參與選擇的元素個數

! 階乘,如5!=5×4×3×2×1=120,規定0!=1

!! 半階乘(又稱雙階乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840

數學符號大全及意義之離散數學符號

∀ 全稱量詞

∃存在量詞

├ 斷定符(公式在L中可證)

╞ 滿足符(公式在E上有效,公式在E上可滿

初中數學常用的符號有什麼,意思又是什麼

∵(因為)
∴(所以)
∥(平行)
⊥(垂直)
⊙(圓)
∠(角)
≌(全等於)
∽(相似)
≠(不等於)
≥(大於等於)
≤(小於等於)
△(三角形)
√(根號)
|x|
(絕對值)
差不多就這些了

❸ 初中數學集合符號大全

集合是一些元素組成的總體,也簡稱集,下面整理了數學中常用的集合符號,希望能幫助到大家。

集合符號

1、N:非負整數集合或自然數集合{0,1,2,3,…}

2、N*或N+:正整數集合{1,2,3,…}

3、Z:整數集合{…,-1,0,1,…}

4、Q:有理數集合

5、Q+:正有理數集合

6、Q-:負有理數集合

7、R:實數集合(包括有理數和無理數)

8、R+:正實數集合

9、R-:負實數集合

10、C:復數集合

11、∅ :空集(不含有任何元素的集合)

集合基礎知識

1、定義:一般地,我們把研究對象統稱為元素,一些元素組成的總體叫集合,也簡稱集;

2、表示方法:集合通常用大括弧{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

3、關於集合的元素的特徵

(1)確定性:給定一個集合,那麼任何一個元素在或不在這個集合中就確定了;

(2)互異性:一個集合中的元素是互不相同的,即集合中的元素是不重復出現的;

(3)無序性:即集合中的元素無順序,可以任意排列、調換。

4、元素與集合的關系:(元素與集合的關系有「屬於」及「不屬於」兩種)

(1)若a是集合A中的元素,則稱a屬於集合A;

(2)若a不是集合A的元素,則稱a不屬於集合A。

5、集合的表示方法

(1)列舉法:把集合中的元素一一列舉出來, 並用花括弧括起來表示集合的方法叫列舉法;

(2)描述法:用集合所含元素的共同特徵表示集合的方法,稱為描述法;

(3)文氏圖法:畫一條封閉的曲線,用它的內部來表示一個集合。

❹ 數學中,各種符號表示的意思。比如R是實數、、、

太多了

數量符號
如:i,2+i,a,x,自然對數底e,圓周率π。

運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),絕對值符號「| |」,微分(dx),積分(∫),閉合曲面(曲線)積分(∮)等。

關系符號
如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」),「≤」是小於或等於符號(也可寫作「≯」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「⊆」是「包含」符號等。「|」表示「能整除」(例如a|b 表示 a能整除b),x可以代表未知數,y也可以代表未知數,任何字母都可以代表未知數。

結合符號
如小括弧「()」中括弧「[ ]」,大括弧「{ }」橫線「—」,比如(2+1)+3=6,[2.5x(23+2)+1]=x,{3.5+[3+1]+1=y性質符號如正號「+」,負號「-」,正負號「±」

省略符號
如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∠),
∵因為,(一個腳站著的,站不住)
∴所以,(兩個腳站著的,能站住)

(口訣:因為站不住,所以兩個點)總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。

排列組合符號
C-組合數
A-排列數
N-元素的總個數
R-參與選擇的元素個數
!-階乘,如5!=5×4×3×2×1=120
C-Combination- 組合
A-Arrangement-排列

離散數學符號(未全)

∀ 全稱量詞
∃ 存在量詞
├ 斷定符(公式在L中可證)
╞ 滿足符(公式在E上有效,公式在E上可滿足)
┐ 命題的「非」運算
∧ 命題的「合取」(「與」)運算
∨ 命題的「析取」(「或」,「可兼或」)運算
→ 命題的「條件」運算
↔ 命題的「雙條件」運算的
A<=>B 命題A 與B 等價關系
A=>B 命題 A與 B的蘊涵關系
A* 公式A 的對偶公式
wff 合式公式
iff 當且僅當
↑ 命題的「與非」 運算( 「與非門」 )
↓ 命題的「或非」運算( 「或非門」 )
□ 模態詞「必然」
◇ 模態詞「可能」
φ 空集
∈ 屬於 A∈B 則為A屬於B(∉不屬於)
P(A) 集合A的冪集
|A| 集合A的點數
R^2=R○R [R^n=R^(n-1)○R] 關系R的「復合」
א 阿列夫
⊆ 包含
⊂(或下面加 ≠) 真包含
∪ 集合的並運算
∩ 集合的交運算
- (~) 集合的差運算
〡 限制
[X](右下角R) 集合關於關系R的等價類
A/ R 集合A上關於R的商集
[a] 元素a 產生的循環群
I (i大寫) 環,理想
Z/(n) 模n的同餘類集合
r(R) 關系 R的自反閉包
s(R) 關系 的對稱閉包
CP 命題演繹的定理(CP 規則)
EG 存在推廣規則(存在量詞引入規則)
ES 存在量詞特指規則(存在量詞消去規則)
UG 全稱推廣規則(全稱量詞引入規則)
US 全稱特指規則(全稱量詞消去規則)
R 關系
r 相容關系
R○S 關系 與關系 的復合
domf 函數 的定義域(前域)
ranf 函數 的值域
f:X→Y f是X到Y的函數
GCD(x,y) x,y最大公約數
LCM(x,y) x,y最小公倍數
aH(Ha) H 關於a的左(右)陪集
Ker(f) 同態映射f的核(或稱 f同態核)
[1,n] 1到n的整數集合
d(u,v) 點u與點v間的距離
d(v) 點v的度數
G=(V,E) 點集為V,邊集為E的圖
W(G) 圖G的連通分支數
k(G) 圖G的點連通度
△(G) 圖G的最大點度
A(G) 圖G的鄰接矩陣
P(G) 圖G的可達矩陣
M(G) 圖G的關聯矩陣
C 復數集
N 自然數集(包含0在內)
N* 正自然數集
P 素數集
Q 有理數集
R 實數集
Z 整數集
Set 集范疇
Top 拓撲空間范疇
Ab 交換群范疇
Grp 群范疇
Mon 單元半群范疇
Ring 有單位元的(結合)環范疇
Rng 環范疇
CRng 交換環范疇
R-mod 環R的左模範疇
mod-R 環R的右模範疇
Field 域范疇
Poset 偏序集范疇

❺ 在初中數學中常見的字母或符號具體都代表什麼意思(特別是有關於三角函數的字母、符號

sinα表示正弦,cosα表示餘弦,tanα表示正切,cotα表示餘切, secα表示正割, cscα表示餘割,.共計6個函數

❻ 初中數學所有符號。意思是什麼。如+是什麼意思。

+在初中除了加,還有正數的意思,比如1,就讀作正一,+1
-除了減也還有負數的意思,-1,讀作負一
√ ̄,根號,用來開平方的符號。例如根號9,開平方開出來就等於3,3×3等於9,9是3的平方
還有做證明題要用的∵ :因為 ∴所以
嗯,還有:
∞ 無窮大

PI 圓周率

|x| 函數的絕對值

∪ 集合並

∩ 集合交

≥ 大於等於

≤ 小於等於

≡ 恆等於或同餘

ln(x) 自然對數

lg(x) 以2為底的對數

log(x) 常用對數

floor(x) 上取整函數

ceil(x) 下取整函數

x mod y 求余數

{x} 小數部分 x - floor(x)

∫f(x)δx 不定積分

∫[a:b]f(x)δx a到b的定積分

[P] P為真等於1否則等於0

∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況

如:∑[n is prime][n < 10]f(n)

∑∑[1≤i≤j≤n]n^2

lim f(x) (x->?) 求極限

f(z) f關於z的m階導函數

C(n:m) 組合數,n中取m

P(n:m) 排列數

m|n m整除n

m⊥n m與n互質

a ∈ A a屬於集合A

#A 集合A中的元素個數
這些是以後要用到的

❼ 求,各種小學,初中,高中的各種數學符號所代表的意思

符號(Symbol) 意義(Meaning)
∞ 無窮大
π 圓周率
|x| 絕對值 absolute value of X
∪ 並集
∩ 交集
= 等於 is equal to
≠ 不等於 is not equal to
< 小於 is less than
> 大於 is greater than
|| is parallel to
≥ 大於等於 is greater than or equal to
≤ 小於等於 is less than or equal to
≡ 恆等於或同餘
ln(x) 以e為底的對數
lg(x) 以10為底的對數
floor(x) 上取整函數
ceil(x) 下取整函數
x mod y 求余數
x - floor(x) 小數部分
∫f(x)dx 不定積分
∫[a:b]f(x)dx a到b的定積分
>>遠遠大於號
<<遠遠小於號
⊆ 包括
⊙ 圓
φ 直徑
β 貝塔

❽ 數學符號都表示什麼怎麼讀

運算符號:如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號||,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

關系符號:如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號。

「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於)。

「→」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號。

「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」,而||b表示r是a恰能整除b的最大冪次),x,y等任何字母都可以代表未知數。

結合符號:如小括弧「()」,中括弧「[]」,大括弧「{}」,橫線「—」,比如。

性質符號:如正號「+」,負號「-」,正負號「」(以及與之對應使用的負正號「」)。

省略符號:如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),∵因為∴所以。

總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數(n元素的總個數;r參與選擇的元素個數),冪等。

排列組合符號:C組合數、A(或P)排列數、n元素的總個數、r參與選擇的元素個數、!階乘,如5!=5×4×3×2×1=120,規定0!=1、!!半階乘(又稱雙階乘)。

例如:7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840。

離散數學符號:∀全稱量、∃存在量詞、├斷定符(公式在L中可證)、╞滿足符(公式在E上有效,公式在E上可滿足)、﹁命題的「非」運算。

如命題的否定為﹁p、∧命題的「合取」(「與」)運算、∨命題的「析取」(「或」,「可兼或」)運算、→命題的「條件」運算。

↔命題的「雙條件」運算的、p<=>q命題p與q的等價關系、p=>q命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)、A*公式A的對偶公式,或表示A的數論倒數(此時亦可寫為)。

wff合式公式:iff當且僅當、↑命題的「與非」運算(「與非門」)、↓命題的「或非」運算(「或非門」)、□模態詞「必然」、◇模態詞「可能」、∅空集、∈屬於(如"A∈B",即「A屬於B」)、∉不屬於、P(A)集合A的冪集。

|A|集合A的點數、R²=R○R[R、=R、○R]關系R的「復合」、ℵAleph,阿列夫、⊆包含、⊂(或⫋)真包含、另外,還有相應的⊄,⊈,⊉等。

∪集合的並運算:U(P)表示P的領域、∩集合的交運算、-或集合的差運算、⊕集合的對稱差運算、〡限制、集合關於關系R的等價類。

A/R集合A上關於R的商集、[a]元素a產生的循環群、I環,理想、Z/(n)模n的同餘類集合、r(R)關系R的自反閉包。

s(R)關系R的對稱閉包、CP命題演繹的定理(CP規則)、EG存在推廣規則(存在量詞引入規則)、ES存在量詞特指規則(存在量詞消去規則)、UG全稱推廣規則(全稱量詞引入規則)、US全稱特指規則(全稱量詞消去規則)。

(8)初中數學各種符號表示什麼擴展閱讀:

更多數學表達符號:

∞無窮大、π圓周率、|x|絕對值、∪並集、∩交集、≥大於等於、≤小於等於、≡恆等於或同餘、ln(x)以e為底的對數、lg(x)以10為底的對數、floor(x)上取整函數、ceil(x)下取整函數。

xmody求余數、x-floor(x)小數部分、∫f(x)dx不定積分、∫[a:b]f(x)dxa到b的定積分、f(x)函數f在自變數x處的值、sin(x)在自變數x處的正弦函數值、exp(x)在自變數x處的指數函數值,常被寫作ex、logba以b為底a的對數。

cosx在自變數x處餘弦函數的值、tanx其值等於sinx/cosx、cotx餘切函數的值或cosx/sinx、secx正割含數的值,其值等於1/cosx、cscx餘割函數的值,其值等於1/sinx、asinxy正弦函數反函數在x處的值,即x=siny。

acosxy餘弦函數反函數在x處的值,即x=cosy、atanxy正切函數反函數在x處的值,即x=tany、acotxy餘切函數反函數在x處的值,即x=coty、asecxy正割函數反函數在x處的值,即x=secy、acscxy餘割函數反函數在x處的值,即x=cscy。

❾ 初中數學符號大全有哪些

(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號( ),對數(log,lg,ln),比(∶),微分(d),積分(∫)等.(3)關系符號:如「=」是等號,「≈」或「 」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是正比例符號,「∈」是屬於符號等.(4)結合符號:如圓括弧「()」方括弧「[]」,花括弧「{}」括線「—」 (5)性質符號:如正號「+」,負號「-」,絕對值符號「‖」 (6)省略符號:如三角形(△),正弦(sin),X的函數(f(x)),極限(lim),因為(∵),所以(∴),總和(∑),連乘(∏),從N個元素中每次取出R個元素所有不同的組合數(C ),冪(aM),階乘(!)等.符號 意義 ∞ 無窮大 PI 圓周率 |x| 函數的絕對值 ∪ 集合並 ∩ 集合交 ≥ 大於等於 ≤ 小於等於 ≡ 恆等於或同餘 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 {x} 小數部分 x - floor(x) ∫f(x)δx 不定積分 ∫[a:b]f(x)δx a到b的定積分 P為真等於1否則等於0 ∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2 lim f(x) (x->?) 求極限 f(z) f關於z的m階導函數 C(n:m) 組合數,n中取m P(n:m) 排列數 m|n m整除n m⊥n m與n互質 a∈ A a屬於集合A #A 集合A中的元素個數

閱讀全文

與初中數學各種符號表示什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:743
乙酸乙酯化學式怎麼算 瀏覽:1408
沈陽初中的數學是什麼版本的 瀏覽:1358
華為手機家人共享如何查看地理位置 瀏覽:1049
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:890
數學c什麼意思是什麼意思是什麼 瀏覽:1416
中考初中地理如何補 瀏覽:1307
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:706
數學奧數卡怎麼辦 瀏覽:1396
如何回答地理是什麼 瀏覽:1030
win7如何刪除電腦文件瀏覽歷史 瀏覽:1060
大學物理實驗干什麼用的到 瀏覽:1490
二年級上冊數學框框怎麼填 瀏覽:1708
西安瑞禧生物科技有限公司怎麼樣 瀏覽:990
武大的分析化學怎麼樣 瀏覽:1252
ige電化學發光偏高怎麼辦 瀏覽:1341
學而思初中英語和語文怎麼樣 瀏覽:1660
下列哪個水飛薊素化學結構 瀏覽:1427
化學理學哪些專業好 瀏覽:1490
數學中的棱的意思是什麼 瀏覽:1066