1. 實數的定義是什麼
數學上,實數定義為與數軸上的點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母 R 表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
所有實數的集合則可稱為實數系或實數連續統。任何一個完備的阿基米德有序域均可稱為實數系。在保序同構意義下它是惟一的,常用R表示。由於R是定義了算數運算的運算系統,故有實數系這個名稱。
拓展資料:
一、實數的分類:
(1)按定義分類
(2)按正負(性質)分類:
二、從有理數擴充到實數以後,有理數中的相反數、倒數、絕對值等概念在實數范圍內具有同樣的意義
(1)實數a的相反數為-a,零的相反數是其本身;若實數a與b互為相反數,則a+b=0,反之亦然.
(2)實數a的倒數為1/a(a≠0),實數a與b互為倒數,則ab=1,反之亦然.
(3)實數a的絕對值表示為|a|,正實數的絕對值是它本身,零的絕對值是零,負實數的絕對值是它的相反數.
2. 什麼是實數
對實數有很多不同的理解方法。
初一的時候,第一次明確實數的概率,是用分類法來定義的。
解釋不清楚的原因,是我們對實數的定義還不夠具體。由此,就引出了關於實數的完備性的討論。這是一個很高深的數學理論研究,不是老黃用一篇文章就可以說得明白的。
指個例子,我們知道,在任意兩個實數之間,肯定會有第三個實數存在,道理很簡單,但是要說明白卻難上加難。因此,在關於實數的完備性定理的研究中,就得出了一個區間套定理:若{[an,bn]}是一個區間套,則在實數系中存在唯一的一點ξ,使得ξ∈[an,bn], n=1,2,…, 即an≤ξ≤bn, n=1,2,….當然,首先,還要知道什麼叫做區間套。
話題說得有點遠了。老黃的意思是說,對於一些我們看起來很簡單的東西,如果深剖它最深層的真相,未必有我們想像地那麼簡單,所以我們應該有探究的精神,去發現更多知識的真相,世界的真相。
3. 什麼是實數 實數是什麼范圍
實數由有理數和無理數組成,其中無理數就是無限不循環小數,有理數就包括整數和分數。下面是我整理的內容,供大家參考。
實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
在實數范圍內,是指對於全體實數都成立,實數包括有理數和無理數,也可以分為正實數,0和負實數,不只是大於等於0,還包括負實數。
整數和小數的集合也是實數,實數的定義是:有理數和無理數的集合。
而整數和分數統稱有理數,小數分為有限小數,無限循環小數,無限不循環小數(即無理數),其中有限小數和無限循環小數均能化為分數。
所以小數即為分數和無理數的集合,加上整數,即為整數-分數-無理數,也就是有理數-無理數,即實數。
1.基本運算:
實數可實現的基本運算有加、減、乘、除、平方等,對非負數還可以進行開方運算。
實數加、減、乘、除(除數不為零)、平方後結果還是實數。
任何實數都可以開奇次方,結果仍是實數,只有非負實數,才能開偶次方其結果還是實數。
有理數范圍內的運算律、運演算法則在實數范圍內仍適用:
交換律:a+b=b+a,ab=ba
結合律:(a+b)+c=a+(b+c)
分配律:a(b+c)=ab+ac
2.實數的相反數:
實數的相反數的意義和有理數的相反數的意義相同。
實數只有符號不同的兩個數,它們的和為零,我們就說其中一個是另一個的相反數。
實數a的相反數是-a,a和-a在數軸上到原點0的距離相等。
3.實數的絕對值:
實數的絕對值的意義和有理數的絕對值的意義相同。一個正實數的絕對值等於它本身;
一個負實數的絕對值等於它的相反數,0的絕對值是0,實數a的絕對值是:|a|
①a為正數時,|a|=a(不變)
②a為0時,|a|=0
③a為負數時,|a|=a(為a的相反數)
(任何數的絕對值都大於或等於0,因為距離沒有負的。)
4實數的倒數:
實數的倒數與有理數的倒數一樣,如果a表示一個非零的實數,那麼實數a的倒數是:1/a(a≠0)
4. 實數包括哪些
實數,是有理數和無理數的總稱。
數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
發展歷史
在公元前500年左右,以畢達哥拉斯為首的希臘數學家們認識到有理數在幾何上不能滿足需要,但畢達哥拉斯本身並不承認無理數的存在。 直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。1871年,德國數學家康托爾第一次提出了實數的嚴格定義。
根據日常經驗,有理數集在數軸上似乎是「稠密」的,於是古人一直認為用有理數即能滿足測量上的實際需要。
5. 數學里什麼是實數
數學里是有理數和無理數的總稱。
數學上,實數定義為與數軸上的點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列。在實際運用中,實數經常被近似成一個有限小數。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。
性質
(1)封閉性:實數集對加、減、乘、除(除數不為零)四則運算具有封閉性,即任意兩個實數的和、差、積、商(除數不為零)仍然是實數。
(2)有序性:實數集是有序的,即任意兩個實數、必定滿足並且只滿足下列三個關系之一ab。
(3)傳遞性:實數大小具有傳遞性,即若a>d,且b>c,則有a>c。
6. 實數是指什麼
實數指有理數和無理數的總稱。數學上,實數定義為與數軸上點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
發展歷史:
在公元前500年左右,以畢達哥拉斯為首的希臘數學家們認識到有理數在幾何上不能滿足需要,但畢達哥拉斯本身並不承認無理數的存在。直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。1871年,德國數學家康托爾第一次提出了實數的嚴格定義。
根據日常經驗,有理數集在數軸上似乎是「稠密」的,於是古人一直認為用有理數即能滿足測量上的實際需要。以邊長為1厘米的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001厘米),總可以用有理數來表示足夠精確的測量結果(比如1.414厘米)。
但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念,他們原以為:任何兩條線段(的長度)的比,可以用自然數的比來表示。
正因如此,畢達哥拉斯本人甚至有「萬物皆數」的信念,而由自然數的比就得到所有正有理數,而有理數集存在「縫隙」這一事實,對當時很多數學家來說可謂極大的打擊(見第一次數學危機)。
從古希臘一直到17世紀,數學家們才慢慢接受無理數的存在,並把它和有理數平等地看作數;後來有虛數概念的引入,為加以區別而稱作「實數」,意即「實在的數」。
在當時,盡管虛數已經出現並廣為使用,實數的嚴格定義卻仍然是個難題,以至函數、極限和收斂性的概念都被定義清楚之後,才由十九世紀末的戴德金、康托等人對實數進行了嚴格處理。
以上內容參考網路—實數
7. 實數的定義
實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
所有實數的集合則可稱為實數系或實數連續統。任何一個完備的阿基米德有序域均可稱為實數系。在保序同構意義下它是惟一的,常用R表示。由於R是定義了算數運算的運算系統,故有實數系這個名稱。
實數的分類
一、按定義分:有理數、無理數。
1、有理數為整數(正整數、0、負整數)和分數的統稱。正整數和正分數合稱為正有理數,負整數和負分數合稱為負有理數。因而有理數集的數可分為正有理數、負有理數和零。
2、無理數,也稱為無限不循環小數,不能寫作兩整數之比。若將它寫成小數形式,小數點之後的數字有無限多個,並且不會循環。 常見的無理數有非完全平方數的平方根、π和e。
二、按正負分:正數、負數、0。
1、正數是數學術語,比0大的數叫正數(positive number),0本身不算正數。正數與負數表示意義相反的量。正數前面常有一個符號「+」,通常可以省略不寫。
2、負數是數學術語,比0小的數叫做負數,負數與正數表示意義相反的量。負數用負號(Minus Sign,即相當於減號)「-」和一個正數標記,如−2,代表的就是2的相反數。於是,任何正數前加上負號便成了負數。一個負數是其絕對值的相反數。
3、0是介於-1和1之間的整數。是最小的自然數,也是有理數。0既不是正數也不是負數,而是正數和負數的分界點。0沒有倒數,0的相反數是0,0的絕對值是0,0的所有倍數都是0。0不能作為除數。
8. 什麼是實數
實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
所有實數的集合則可稱為實數系或實數連續統。任何一個完備的阿基米德有序域均可稱為實數系。在保序同構意義下它是惟一的,常用R表示。由於R是定義了算數運算的運算系統,故有實數系這個名稱。
實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後n位,n為正整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。
9. 實數是什麼
實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
實數可以分為有理數和無理數兩類,或代數數和超越數兩類。實數集通常用黑正體字母R表示。R表示n維實數空間。實數是不可數的。實數是實數理論的核心研究對象。
(9)數學中實數指什麼擴展閱讀:
一、發展歷史
在公元前500年左右,以畢達哥拉斯為首的希臘數學家們認識到有理數在幾何上不能滿足需要,但畢達哥拉斯本身並不承認無理數的存在。 直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。1871年,德國數學家康托爾第一次提出了實數的嚴格定義。
根據日常經驗,有理數集在數軸上似乎是「稠密」的,於是古人一直認為用有理數即能滿足測量上的實際需要。以邊長為1厘米的正方形為例,其對角線有多長?在規定的精度下(比如誤差小於0.001厘米),總可以用有理數來表示足夠精確的測量結果(比如1.414厘米)。
但是,古希臘畢達哥拉斯學派的數學家發現,只使用有理數無法完全精確地表示這條對角線的長度,這徹底地打擊了他們的數學理念,他們原以為:
任何兩條線段(的長度)的比,可以用自然數的比來表示。
二、相關性質
1、封閉性
實數集對加、減、乘、除(除數不為零)四則運算具有封閉性,即任意兩個實數的和、差、積、商(除數不為零)仍然是實數。
2、有序性
實數集是有序的,即任意兩個實數a、b必定滿足並且只滿足下列三個關系之一:a<b,a>b,a=b。
3、傳遞性
實數大小具有傳遞性,即若a>b,且b>c,則有a>b。
4、稠密性
R實數集具有稠密性,即兩個不相等的實數之間必有另一個實數,既有有理數,也有無理數。