① 數學,我們只記得公式,卻不知道公式是怎麼來的那麼學數學還有什麼意義
第一點,在數學課本上,每個數學公式之前都帶有他的推導過程,公式是最後的總結,比如說圓面積公式,就是將圓拆分成兩個半圓,再將半圓交叉組合成一個長方形,一步步得到最終的公式。你所說的不知道公式怎麼來的,完全是不負責任的說法
第二點,記住公式不是學習數學的目的,只是更好學習數學的手段,請不要本末倒置
第三點,學習的全民化、終身化,不是讓每個人都去做博士、科學家、研究者,自身有這方面的興趣,可以進一步深入研究,絕大部分人學習是因為更好生活的需要,如果不學數學,不懂數字運算,做買賣絕對被坑死;如果不學語文,不懂文字,現在你還能在網上提問嗎
最後一點,每個人都有自己的興趣特長、都有自己不擅長的方面,發揮自己的長處彌補自身不足是一種智慧,請不要抱怨、埋怨,認識自己是一種智慧,改變自己是一種魄力
② 學數學的意義是什麼
數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題。掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學。 可以解決生活中的許多實際問題啊 如果沒有數學可以說就沒有這個世界!有很多看似枯燥又無理取鬧的問題在實際生活中都有意想不到的應用。比如計算機的二進制,比如圓錐曲線的應用,也許你只知道它很麻煩很變態,實際上反光鏡、冷卻塔的原理都少不了它!數列很無聊,但是魔術師們的洗牌技巧都在這里,不懂數學的人就會被騙!遺忘遷移才讓我們可以放心大膽地輸入各種帳號和密碼,沒有地圖塗色問題,一塊指甲大的電路板恐怕檢測到明年也不知道哪裡短路…數學的作用就是問一些看似精神病但是完全有可能推動人類進步的問題,學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者!掌握數字規律,訓練邏輯思維,能訓練人們的思維能力.開發腦力。更理性的去認識這個世界。數學一種工具,它邏輯性強,能訓練人們的思維能力;它注重方式方法,能讓你的思維更敏銳;再者就是能幫助你解決一些實際問題 掌握數字規律,訓練邏輯思維,數學是一門基礎學科,除了語言學科以外,其他學科基本上都會運用到數學。 意義深遠!如果沒有數學可以說就沒有這個世界!有很多看似枯燥又無理取鬧的問題在實際生活中都有意想不到的應用。比如計算機的二進制,比如圓錐曲線的應用,也許你只知道它很麻煩很變態,實際上反光鏡、冷卻塔的原理都少不了它!數列很無聊,但是魔術師們的洗牌技巧都在這里,不懂數學的人就會被騙!遺忘遷移才讓我們可以放心大膽地輸入各種帳號和密碼,沒有地圖塗色問題,一塊指甲大的電路板恐怕檢測到明年也不知道哪裡短路…數學的作用就是問一些看似精神病但是完全有可能推動人類進步的問題,學數學的意義就是不光會做老師們純粹為了考大家的題目,更重要的是把這些討厭的問題變成人人都喜聞樂見的實際性成果,數學家們是默默無聞卻強大無比的歷史推進者
③ 數學是什麼意思
數學,一詞源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。
中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一(六藝中稱為「數」)。
④ 數學的是什麼意思
數學_詞語解釋
【拼音】:shù xué
【解釋】:1.古代指術數之學。2.研究現實世界的空間形式和數量關系的科學,包括算術、代數、幾何、三角、微積分等。
【例句】:精算師考試的前面幾級主要是考數學,到後來的幾級考試則需要考一些申論題以證明你的理解能力。
⑤ 數學是什麼意思數學是什麼意思啊
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」
另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」
從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。
基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們和起來叫做整數。
對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。
人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。
⑥ 數學考研試題的數學一二三四是什麼意思啊我只學了高等數學啊!
是根據不同的專業對數學的要求程度高低劃分的
若是理工類那麼自然是要求數學一了.數二.三.四依次減少考試內容.
數學一考試科目
微積分、線性代數、概率論與數理統計初步
數學二考試科目
微積分、線性代數初步
數學三考試科目
微積分、線性代數、概率論與數理統計
數學四
考試科目
微積分、線性代數、概率論
數學一
高等數學約56
%
線性代數約
22
%
概率論與數理統計約22
%
數學二
高等數學約78
%
線性代數約22
%
數學三
微積分約56
%
線性代數約22
%
概率論與數理統計約22
%
數學四
微積分約56
%
線性代數約22
%
概率論與數理統計約22
%
理、工、農、林類考數學一或二。經濟、管理類考數學三或四。
數學一或二具體劃分:輕工、紡織、食品、農林考數學二;化學工程、材料工程、環境工程、石油天然氣工程、地質礦業工程可根據本專業對數學的要求選擇選擇數學一或二;其他各類專業(包括授工學學位的管理科學與工程一級學科)必須考數學一。
經濟、管理類考數學三或四。
數學三或四的具體劃分:必須考數學三的是
1.經濟學門類中的應用經濟學一級學科中的統計學、數量經濟學等2個二級學科、專業;
2.管理學門類中的工商管理一級學科中的企業管理、技術經濟及管理等2個二級學科、專業;
3.授管理學學位的管理科學與工程一級學科。
經濟、管理類其他各專業可根據本專業對數學的要求選擇選擇數學三或四。
具體專業的要求,則要看具體學校的招生簡章。
四類數學試卷最大的區別在對於知識面的要求上(請以新大綱為准):數學一最廣(包括高等數學、線性代數、概率統計全部),數學三其次(比數學一少空間解幾、曲線積分、曲面積分,及物理應用,但有經濟應用、差分方程),數學四比數學三略低,數學二最低(比數學三還少級數、概率統計等,但有物理應用)。
具體要求見2009考研大綱(在新考綱問世之前,可參考2008考研大綱)。
⑦ 學數學的真正意義是什麼
學習數學最大的意義,其實就是鍛煉一個人的思考能力,它可以將抽象東西量化出來,可以說如果在科研的高精尖領域,方方面面都需要用到數學,通過計算來確保整個流程的順利實施。
數學可以說只是一個工具,但對我們的影響又絕不僅僅是工具。學習數學可以很好地培養我們的理性思維,讓我們養成更嚴謹的思考習慣。
發展:
隨著現在5G信息化時代的到來,數學已成為一個廣闊而多層面的學科,可以說數學與任何科學領域都是密不可分的。任何一個學科在高層次的較量就是數學的較量,也是思維的較量。
回到現實,可以說數學這門學科,在我們的應試教育中起到舉足輕重的地位。盡管我們可能未來都是普通人,接觸不到高精尖的行業,但是高考多考一分,我們未來就多一分的選擇權,也能讓我們時刻保持大腦思考,也是好事一樁。
⑧ 所謂的數學類專業是干什麼的
數學類專業是研究數量、結構、變化以及空間模型等概念的一門學科。
本專業培養德、智、體、美全面發展的掌握數學與應用數學科學的基本理論、基礎知識和基本方法,能夠運用數學知識和使用計算機解決若干實際數學問題,具有現代教育觀念,適應教育改革需要,以及具有良好的知識更新能力和創新能力的中等學校數學師資和教育、教學管理工作及科學研究的專門人才。
求學生系統學習數學和應用數學的基本理論和方法,受到嚴格的數學思維訓練,掌握計算機的原理和運用手段,並通過教育理論課程和教學實踐環節,形成良好的教師素養,培養從事數學教學基本能力和數學教育研究、數學教學研究、數學科學研究、數學實際應用等基本能力。
(8)只學數學的是什麼意思是什麼意思擴展閱讀
1、主幹課程:數學分析、高等代數、高等數學、解析幾何、微分幾何、高等幾何、常微分方程、偏微分方程、概率論與數理統計、復變函數論、實變函數論、抽象代數、近世代數、數論、泛函分析、拓撲學、模糊數學。師范類還要學習數學教育學等。
2、主要實踐性教學環節:包括計算機的實際操作,深入一線教學實踐。
3、修業年限:四年。
4、授予學位:理學學士學位。
⑨ 數學是什麼意思
數學【shù xué】(希臘語:μαθηματικ?)西方源自於古這一詞在希臘語的μ?θημα(máthēma),其有學習、學問、科學,以及另外還有個較狹隘且技術性的意義-「數學研究」,即使在其語源內。其形容詞意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞hjt數學(math),以前我國古代把數學叫算術,又稱算學,最後才改為數學。
數學是研究數量、結構、變化以及空間模型等概念的一門學科。透過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。
⑩ 數學的含義是什麼
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。
此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。因此,我們可以學習群、環、域和其他的抽象系統。
把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域。由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。
代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究。這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性。組合數學研究列舉滿足給定結構的數對象的方法。
應用數學及美學
一些數學只和生成它的領域有關,且用來解答此領域的更多問題。但一般被一領域生成的數學在其他許多領域內也十分有用,且可以成為一般的數學概念。即使是「最純的」數學通常亦有實際的用途,此一非比尋常的事實,被1963年諾貝爾物理獎得主維格納稱為「數學在自然科學中不可想像的有效性」。
如同大多數的研究領域,科學知識的爆發導致了數學的專業化。主要的分歧為純數學和應用數學。在應用數學內,又被分成兩大領域,並且變成了它們自身的學科——統計學和計算機科學。
許多數學家談論數學的優美,其內在的美學及美。「簡單」和「一般化」即為美的一種。另外亦包括巧妙的證明,如歐幾里得對存在無限多素數的證明;又或者是加快計算的數值方法,如快速傅里葉變換。
高德菲·哈羅德·哈代在《一個數學家的自白》一書中表明他相信單單是美學上的意義,就已經足夠作為純數學研究的正當理由。
以上內容參考網路-數學