⑴ 初中數學壓軸題解題技巧有哪些
數學綜壓軸題是為考察考生綜合運用知識的能力而設計的,集中體現知識的綜合性和 方法 的綜合性,多數為函數型綜合題和幾何型綜合題,或兩類問題的組合。下面是我為大家整理的關於初中數學壓軸題解題技巧,希望對您有所幫助。歡迎大家閱讀參考學習!
1初中數學壓軸題解題技巧
函數型綜合題
以給定的直角坐標系和幾何圖形為背景,先求函數的解析式,再進行圖形的研究,求點的坐標或研究圖形的某些性質。
求已知函數的解析式主要方法有待定系數法,包括關鍵是求點的坐標,而求點的坐標基本方法是幾何圖形的性質地幾何法(圖形法)和代數法(解析法)。
幾何型綜合題
先給定幾何圖形,根據已知條件進行計算,常以動點或動形為依託,對應產生線段、面積等的變化,求對應的(未知)函數的解析式,求函數的自變數的取值范圍,最後根據所求的函數關系進行探索研究。一般有:在什麼條件下圖形是等腰三角形、直角三角形,四邊形是平行四邊形、菱形、梯形等,或探索兩個三角形滿足什麼條件全等,相似等,或探究線段之間的數量、位置關系等,或探索麵積之間滿足一定關系時求x的值等,或直線(圓)與圓的相切時求自變數的值等。
求未知函數解析式的關鍵是列出包含自變數和因變數之間的等量關系(即列出含有x、y的方程),此類問題當屬幾何與代數的綜合問題。找等量關系的途徑在初中主要有利用勾股定理、三角形相似、面積相等方法。求函數的自變數的取值范圍主要是尋找圖形的特殊位置(極端位置)和根據解析式求解。而最後的探索問題千變萬化,但少不了對圖形的分析和研究,用幾何和代數的方法求出x的值。是壓軸題的選擇梯形。
2初中數學應用題的解題技巧
認真審題
很多學生在看到應用題之後往往急於尋找其中可用的條件,因此他們往往把目光都集中在一些數據上,而忽視了文字敘述,尤其是在考試時間比較緊張的時候,很多學生在做應用題的時候往往在讀題目時囫圇吞棗,沒有審清題意就急於解答,從而導致錯誤的發生。因此,要想做好應用題首先就要認真審題,理清題目中所表達的意義,這樣,才能夠進行接下來的解題活動。
歸納問題
在讀完題目以後,學生首先要做的就是對題目進行歸納,了解清楚所做的題目屬於什麼類型,這樣才能夠根據不同的類型把實際問題轉化為數學模型。在初中階段,我們接觸的比較多的應用題類型主要包括行程問題、工程問題、生產問題、營銷與策略問題、增長率問題、幾何問題等,而我們在讀完題目進行分類以後,就可以根據不同類型的問題在題目中有目的地尋找需要的條件。例如,在做到路程問題時,我們就要在題目找出路程、速度、時間等數量及其關系,在做到營銷與策略的問題時,就要理清楚單價、數量、總價等條件。總之,只有先進行科學的歸納,才能夠在此基礎上運用之前的知識來進行解題。
找出問題
所謂找出問題,就是要明確在這道應用題中需要我們求出什麼,然後從問題中利用 逆向思維 來推測出要想解決這些問題需要哪些條件,這樣,我們才能以這些信息為依據回到題目中去努力尋找這些條件,為解題做准備。
理清數據信息
為了提高學生的分析和歸納的能力,很多的應用題中會故意給學生設置一些迷霧,給出一些與題目無關的條件或者數據。因此,我們要想解決問題,就要努力在所給出的條件中整理出所需的數據,然後根據題目要求對這些條件或者數據進行整理分析。
3中考數學難題解題技巧
正向思維是最常用的方式
也就是審題之後順著題目要求,從前到後一點點求證,這是證明題的基本方法,中等難度題目、簡單難度題目中較多使用的就是這種方法。 逆向思維,就是與正向思維相反,從求證入手,要想做到這樣的結果,需要什麼樣的條件,一步一步反向分析。逆向思維對於讀完題干要求之後完全不知從何入手的題目有很大的解題幫助,從結論出發,有時候問題反而更簡便
例如:要證明有兩條邊長度相等,那麼結合圖形發現只要證明他們存在的三角形相等就可以了;為了證明這兩個三角形是全等的,那麼我們需要有什麼樣的角的條件;為了找到角之間的關系,我們需要在哪裡做一條輔助線……這樣思考下去,其實所需要的一切條件就都具備了。這種解題方法在平時的解題中要對學生多鍛煉。
正逆結合
這是高難度題目中重點強調的解題思路,對於一些從結論很難得出完整思路,又不知道從哪裡開始下手時,就要選取正逆結合的方法。初中數學中,基本上題目給的已知條件都是有用的,所以一定不能放過每一個條件,多做引申。
比如給了三角形一條邊的中點,我們就要考慮是否要做出中位線,給出了梯形我們就要考慮是不是要做高,是不是要平移腰或者對角線,是不是要補出某種圖形等等。
4初中數學證明題解題技巧
仔細審題,確定題意
審題是做題的第一步,這個過程就像翻譯機的工作原理,要把純文字語言轉換成我們所理解的數學模型。首先要仔細的讀題,標注出重點詞,分清已知和求證。比如講題目中的要求改寫成「如果在等腰三角形中,做出兩底角的角平分線,那麼可以推出這兩條角平分線長度相等」。如果有圖就最好結合圖形,如果題目沒有給圖,就要求學生 根據題意做出合理圖形,將圖形模型建立起來,切忌憑空想像,一定要動手畫圖。再次就是已知數學語言和符號寫出「已知」和「求證」,「已知」是命題的條件,「求證」是命題的結論,一定要注意已知和求證的表達方式是數學語言、符號。
審題中需要注意的是,除了要標記題目的重點,還要學會適當的引申。在審題的過程中將一些課堂上學過的基本定理和基本圖形、特殊圖形與題目相結合,便於後面進行解題時提高正確率和速度。這也是對學生構建知識體系提出了更高的要求。
不重不漏,仔細檢查
分析過程完成後,就是答題的重頭戲了,用數學的語言和符號闡述整個證明過程。書寫過程要求嚴謹細致,既不能無中生有,也不能胡說八道、亂來一氣,要做到有根有據,有因為、有所以。在幾個解題思路中選取一個,按照解題思路完整的表達就可以了。
中學生錯題率高還有一個原因就是沒有養成檢查的好習慣。數學的嚴謹性在證明題中體現得淋漓盡致,每一個步驟都要具備合理性,要寫出足夠證明結論的公理、定理或者推論,不能憑空捏造,也不能隨意推想。在證明的過程中,每一步都要仔細檢查,不能有所疏漏、少條件,也不能犯寫作答案,看錯要求等等粗心導致的錯誤。只有仔細檢查,才能保證做到言之有理,言之有據,不失一分。
初中數學壓軸題解題技巧有哪些相關 文章 :
1. 初中數學中考知識重難點分析
2. 2020中考數學科目的壓軸題解題方法
3. 2020中考數學備考之壓軸題十個方法
4. 初二數學壓軸題答題技巧
5. 學好初中三年數學的方法有哪些
6. 怎樣提高初三數學壓軸題
7. 初三數學學習方法和技巧大全
8. 中考數學總復習六大策略
9. 2020高考數學得高分的技巧大全
⑵ 2022年高考數學壓軸題怎麼答 解題技巧有哪些
高考數學的壓軸題可以說是 數學 考試中難度最大的題目,那麼,數學壓軸題怎麼答呢?解題技巧有哪些呢?下面和我一起來看看吧!
1、復雜的問題簡單化
高考數學壓軸題一般有兩個小題,而且往往都很復雜。考生可以把很復雜的問題,分解成一系列簡單的問題,慢慢求解。高考是按步驟得分的,所以考生要秉著能算的先算,就算得不出結論,但是只要踩中得分點,中間還是可以得到一些分數的。
2、適當放棄
對於數學基礎比較好的考生來說,數學壓軸題的最後一問,一般可以拿到一半左右的分數。但是,因為壓軸題難度大、耗時久,因此建議大家,盡量在不浪費整體考試時間的基礎上,盡最大可能拿分,如果實在是解不出,就要適當的學會放棄。
最牛高考勵志書,淘寶搜索《高考蝶變》購買!
3、逆向思考
高考數學壓軸題難度很大,所以逆向思考法是一個很重要的解題技巧。如果考生在做數學壓軸題的時候,正向思考發生思維受阻,可以嘗試用逆向思維的方法去探求新的解題途徑,往往會有突破性的進展。
我推薦: 高考數學壓軸題解題訣竅
4、敢於嘗試
對於考生來說,在做數學壓軸題的時候,要敢於嘗試、敢於思考。如果壓軸題有兩問,第二問的論證往往會用到第一問的結論。所以,如果壓軸題第一問沒有證出來,可以直接把結論用在第二問上。
⑶ 初三數學壓軸題常用方法技巧
這個問題過於寬泛,過於模糊。
初中三年級數學是有相當難度的,尤其是所謂的壓軸題,也就是試卷裡面的拔高題。
針對不同類型的題目一定有不同的解題技巧。
不過只要平時學習基礎牢固,應用熟練,做過較多的難題,大多數時候都不會有問題。
⑷ 中考數學壓軸題訣竅 壓軸題解題技巧
數學的壓軸題一直以來是師生重點鑽研的項目,其特點是分數多、難度大、考驗學生的綜合能力。那麼做中考助學壓軸題有沒有技巧呢?
一、學會運用數形結合思想
數形結合思想是指從幾何直觀的角度,利用幾何圖形的性質研究數量關系,尋求代數問題的解決方法(以形助數),或利用數量關系來研究幾何圖形的性質,解決幾何問題(以數助形)的一種數學思想。
數形結合思想使數量關系和幾何圖形巧妙地結合起來,使問題得以解決。
縱觀近幾年全國各地的中考壓軸題,絕大部分都是與平面直角坐標系有關。
其特點是通過建立點與數即坐標之間的對應關系,一方面可用代數方法研究幾何圖形的性質,另一方面又可藉助幾何直觀,得到某些代數問題的解答。
二、學會運用函數與方程思想
從分析問題的數量關系入手,適當設定未知數,把所研究的數學問題中已知量和未知量之間的數量關系,轉化為方程或方程組的數學模型,從而使問題得到解決的思維方法,這就是方程思想。
用方程思想解題的關鍵是利用已知條件或公式、定理中的已知結論構造方程(組)。這種思想在代數、幾何及生活實際中有著廣泛的應用。
直線與拋物線是初中數學中的兩類重要函數,即一次函數與二次函數所表示的圖形。
因此,無論是求其解析式還是研究其性質,都離不開函數與方程的思想。
例如函數解析式的確定,往往需要根據已知條件列方程或方程組並解之而得。
一、以坐標系為橋梁,運用數形結合思想。
縱觀最近幾年各地的中考數學壓軸題,絕大部分都是與坐標系有關的,其特點是通過建立點與數即坐標之間的對應關系,一方面可用代數方法研究幾何圖形的性質,點的位置轉化為坐標問題,「三十六技:點在圖像上,點的坐標滿足方程」;另一方面又可藉助幾何直觀,得到某些代數問題的解答,把坐標的問題轉化為線段的關系,利用「直角坐標系中求線段的長度,不管三七二十一先考慮三角形相似再說80%」,「幾何中求線段的長度,不管三七二十一先構造直角三角形再說80%」的方法解決問題。
二、以直線或拋物線知識為載體,運用函數建模、求解方程思想。
直線與拋物線是初中數學中的兩類重要函數,即一次函數與二次函數所表示的圖形。因此,無論是求其解析式還是研究其性質,都離不開函數與方程的思想。「方案選擇與最值問題,不管三七二十一先建立目標函數再說100%」、「二次函數極值問題,不管三七二十一先考慮化成頂點式作圖再說100%」。
在解答一次函數與二次函數圖像問題的綜合題時,應結合圖像的特點、函數的性質,牢記參數ak的幾何意義,「三十六技:k在一元一次函數中的作用」、「a在一元二次函數中的作用」、「二次函數圖形對稱」。
⑸ 做數學壓軸題的技巧高中
對於高考想在數學分數有更高的追求的同學來說,壓軸題應該是我們能夠做出來的,那麼與其在高考中絞盡腦汁去思考壓軸題,不如在平時就有所准備,掌握一些高考數學壓軸題解題訣竅和技巧。下面給大家分享一些關於做數學壓軸題的技巧高中,希望對大家有所幫助。
一.做數學壓軸題的技巧
1.重視審題
你的心態就是珍惜題目中給你的條件。數學題目中的條件都是不多也不少的,一道給出的題目,不會有用不到的條件,而另一方面,你要相信給出的條件一定是可以做到正確答案的。所以,解題時,一切都必須從題目條件出發,只有這樣,一切才都有可能。
在數學家波利亞的四個解題步驟中,第一步審題格外重要,審題步驟中,又有這樣一個技巧:當你對整道題目沒有思路時,步驟(1)將題目條件推導出「新條件」,步驟(2)將題目結論推導到「新結論」,步驟(1)就是不要理會題目中你不理解的部分,只要你根據題目條件把能做的先做出來,能推導的先推導出來,從而得到「新條件」。步驟(2)就是想要得到題目的結論,我需要先得到什麼結論,這就是所謂的「新結論」。
然後在「新條件」與「新結論」之間再尋找關系。一道難題,難就難在題目條件與結論的關系難以建立,而你自己推出的「新條件」與「新結論」之間的關系往往比原題更容易建立,這也意味著解出題目的可能性也就越大!
2.細心演算
由於高考數學壓軸題思路曲折,推理和運算過程都比較復雜,一旦前面的解答部分出錯,就會導致後面的解答勞而無功,且往往陷入更加復雜的運算,因此一定要細心演算,關鍵步驟要認真檢查。
對於一些高考壓軸題,如果題意難以理解,解題思路不明,可以先考慮一些特殊情況或簡單情況,也就是「以退求進」。
3.但求突破
高考數學壓軸題,像一塊硬骨頭,要敢於「啃」,不要懼怕。壓軸題往往有兩問或者三問,第一問通常比較容易,要做好第一問,同時也為做好後面的問題打下基礎。對後面的問題,即使不能夠寫出完整的解答過程,也要大膽的去做,能做多少是多少,要把自己的想法寫出來。
二.高考數學壓軸題解題技巧
技巧1.注重方程與函數思想
利用方程解決幾何計算已經不能算難題了,建立變數間的函數關系,也是經常會碰到的,常見的建立函數關系的 方法 有比例線段,勾股定理,三角比,面積公式等
技巧2.注重分類討論思想
這個大家碰的多了,就不多講了,常見於動點問題,找等腰,找相似,找直角三角形之類的。
技巧3.注重轉化與化歸思想
就是把一個問題轉化為另一個問題,比如把四邊形問題轉化為三角形問題,還有壓軸題中時有出現的找等腰三角形,有時可以轉化為找一個和它相似的三角形也是等腰三角形的問題等等,代數中用的也很多,比如無理方程有理化,分式方程整式化等等
技巧4.注重數形結合思想
高中用的較多的是用幾何問題去解決直角坐標系中的函數問題,對於高中生,盡可能從圖形著手去解決,比如求點的坐標,可以通過往坐標軸作垂線,把它轉化為求線段的長,再結合基本的相似全等三角比解決,盡可能避免用兩點間距離公式列方程組,比較典型的是08年中考,倒數第2題,用解析法的同學列出一個極其復雜的方程後,無法繼續求解下去了,而用幾何方法,結合相似三角比可以輕易解決。另一個典型的例子是09二模倒數第2題,用幾何法3分鍾解決,而用代數法30分鍾也未必能解決。所以遇到此類題目,切記先用幾何方法,實在做不出再用解析法。
做數學壓軸題的技巧高中相關 文章 :
★ 數學壓軸題的答題技巧
★ 數學壓軸題的做題思路
★ 高考數學函數壓軸題解題技巧
★ 2020中考數學壓軸題解題方法
★ 2020中考數學解題技巧及壓軸題解法
★ 高考數學壓軸題備考秘訣有哪些
★ 高三數學壓軸題的解題方法
★ 2020中考數學備考之壓軸題十個方法
★ 2020高考數學壓軸題常用解題形式和解題策略分享
⑹ 高考數學壓軸題答題技巧 數學最後一題怎麼做
高考 數學 壓軸大題難度大、綜合性強,取得滿分不容易,但是想盡可能得分還是有方法可行的。下面我整理了一些數學壓軸題答題技巧,供大家參考!
高考數學壓軸題怎麼答
1、如果遇到一個很困難的問題,確實啃不動,一個聰明的解題策略是,將它們分解為一系列的步驟,或者是一個個小問題,先解決問題的一部分,能解決多少就解決多少,能演算幾步就寫幾步,尚未成功不等於失敗.特別是那些解題層次明顯的題目,或者是已經程序化了的方法,每進行一步得分點的演算都可以得分,最後結論雖然未得出,但分數卻已過半,這叫「大題巧拿分」。
2、解題過程中卡在某一過渡環節上是常見的.這時,我們可以先承認中間結論,往後推,看能否得到結論.若題目有兩問,第(1)問想不出來,可把第(1)問當作「已知」,先做第(2)問,跳一步解答.
3、對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展.順向推有困難就逆推,直接證有困難就反證。
4、「以退求進」是一個重要的解題策略.對於一個較一般的問題,如果你一時不能解決所提出的問題,那麼,你可以從一般退到特殊,從抽象退到具體,從復雜退到簡單,從整體退到部分,從參變數退到常量,從較強的結論退到較弱的結論.總之,退到一個你能夠解決的問題,通過對「特殊」的思考與解決,啟發思維,達到對「一般」的解決。
高考數學最後一題怎麼做
最牛高考勵志書,淘寶搜索《高考蝶變》購買!
正確認識壓軸題
壓軸題主要出在函數,解幾,數列三部分內容,一般有三小題。記住:第一小題是容易題!爭取做對!第二小題是中難題,爭取拿分!第三小題是整張試卷中最難的題目!也爭取拿分!
其實對於所有認真復習迎考的同學來說,都有能力與實力在壓軸題上拿到一半左右的分數,要獲取這一半左右的分數,不需要大量針對性訓練,也不需要復雜艱深的思考,只需要你有正確的心態!信心很重要,勇氣不可少。同學們記住:心理素質高者勝!
重視審題
你的心態就是珍惜題目中給你的條件。數學題目中的條件都是不多也不少的,一道給出的題目,不會有用不到的條件,而另一方面,你要相信給出的條件一定是可以做到正確答案的。所以,解題時,一切都必須從題目條件出發,只有這樣,一切才都有可能。
千萬不要分心
其實高考的時候怎麼可能分心呢?這里的分心,不是指你做題目的時候想著考好去哪裡玩。高考時,你是不可能這么想的。你可以回顧高三以往考試,問一下自己:在做最後一道題目的時候,你有沒有想「最後一道題目難不難?不知道能不能做出來」「我要不要趕快看看最後一題,做不出就去檢查前面題目」「前面不知道做的怎樣,會不會粗心錯」……這就是影響你解題的「分心」,這些就使你不專心。
專心於現在做的題目,現在做的步驟。現在做哪道題目,腦子里就只有做好這道題目。現在做哪個步驟,腦子里就只有做好這個步驟,不去想這步之前對不對,這步之後怎麼做,做好當下!