⑴ 數學樹狀圖怎麼畫
01
顯性放回
現有形狀、大小和顏色完全一樣的三張卡片,上面分別標有數字「1」、「2」、「3」.第一次從這三張卡片中隨機抽取一張,記下數字後放回;第二次再從這三張卡片中隨機抽取一張並記下數字.請用畫樹狀圖的方法表示出上述試驗所有可能的結果,並求第二次抽取的數字大於第一次抽取的數字的概率.
02
分析:
從題中文字「記下數字後放回」知本題屬於「顯性放回」.本題中的事件是摸兩次卡片,看卡片的數字,由此可以確定事件包括兩個環節.摸第一張卡片,放回去,再摸第二張卡片,所以樹狀圖應該畫兩層.
第一張卡片的數字可能是1,2,3等3個中的一個,所以第一層應畫3個分叉;
第二次摸取卡片,由於放回,第二個球的數字可能是3個中的一個,所以第二層應接在第一層的3個分叉上,每個小分支上,再有3個分叉.
畫出樹狀圖,這樣共得到3×3=9種情況,從中找出第二次抽取的數字大於第一次抽取的數字的情況,再求出概率.
03
顯性不放回
例2 一個不透明的布袋裡裝有4個大小、質地都相同的乒乓球,球面上分別標有數字1,-2,3,-4.小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有幾種可能的結果;
(2)請用畫樹狀圖的方法求兩次摸出的乒乓球的數字之積為偶數的概率.
04
分析:
本題屬於「顯性不放回」.本題中的事件是摸兩個乒乓球,看乒乓球的數字,由此可以確定事件包括兩個環節,所以樹狀圖應該畫兩層.第一個乒乓球的數字可能是1,-2,3,-4等4個中的一個,所以第一層應畫4個分叉;由於不放回,第二個乒乓球的數字可能是剩下的3個中的一個,所以第二層應接在第一層的4個分叉上,每個小分支上,再有3個分叉,畫出樹狀圖.
05
隱形放回
小明騎自行車從家去學校,途經裝有紅、綠燈的三個路口,假沒他在每個路口遇到紅燈和綠燈的概率均為,則小明經過這三個路口時,恰有一次遇到紅燈的慨率是多少?請用畫樹狀圖的方法加以說明.
06
分析:
通過反復分析知本題屬於「隱形放回」問題,比較容易出錯.其實問題相當於一個口袋裡有紅球和綠球各1個,放回地隨機取三次.本題中的事件是小明騎自行車從家去學校,途經裝有紅、綠燈的三個路口,由此可以確定事件包括三個環節,所以樹狀圖應該畫三層.由於每一個路口可能是紅燈,綠燈等2個中的一個,所以每一層的分叉的小分支上都有兩個小分叉.
07
隱形不放回
小明有3支水筆,分別為紅色、藍色、黑色;有2塊橡皮,分別為白色、灰色.小明從中任意取出1支水筆和1塊橡皮配套使用,試用樹狀圖或表格列出所有可能的結果,並求取出紅色水筆和白色橡皮配套的概率.
08
分析:
從文字中稍加分析知,本題屬於「隱性不放回」,而且選取時有指明對象,是水筆和橡皮.本題中的事件是小明有3支水筆為紅色、藍色、黑色;有2塊橡皮為白色、灰色,取出1支水筆和1塊橡皮配套使用.由此可以確定事件包括兩個環節,所以樹狀圖應該畫兩層.至於水筆和橡皮哪個先取,可以隨便,不影響結果,關鍵是各層的分叉要畫對.
09
有兩個不同形狀的計算器(分別記為A,B)和與之匹配的保護蓋(分別記為a,6)(如圖所示)散亂地放在桌子上,若從計算器和保護蓋中隨機取兩個,用樹形圖法或列表法,求恰好匹配的概率.
10
分析:
從文字中理解本題屬於「隱性不放回」,而且隨機選取沒有指明對象是計算器還是保護蓋,比較容易出錯,本題中的事件是從計算器和保護蓋中隨機取兩個,看恰好匹配.由此可以確定事件包括兩個環節,取第一個,不放回去,然後再取第二個,所以樹狀圖應該畫兩層.取第一個可能是A,B,a,b等4個中的一個,所以第一層應畫4個分叉;再看第二層,由於不放回,取第二個可能是剩下的3個中的一個,所以第二層應接在第一層的4個分叉上,每個小分支上,再有3個分叉,畫出樹狀圖.
⑵ 什麼是樹狀圖
樹狀圖
樹狀圖dendrogram亦稱樹枝狀圖。為了用圖表示親緣關系,把分類單位擺在圖上樹枝頂部,根據分枝可以表示其相互關系,具有二次元和三次元。在數量分類學上用於表型分類的樹狀圖,稱為表型樹狀圖(phenogram),摻入系統的推論的稱為系統樹狀圖(cladogram)以資區別。表型樹狀圖是根據群析描繪的,系統樹狀圖是根據一種模擬的假定的性狀進化方向即用電子計算機描繪的。
⑶ 數學題中的樹狀圖該怎麼畫
先畫個圓表示起點: 然後分出4個線,分別寫上紅,紅,黃,藍, 這4個每個有連出3個線對應分別寫著 (紅,黃,藍) , (紅,黃,藍) ,(紅,紅,藍), (紅,紅,藍), 之後數一共12個,兩次都紅的,(從起點開始都是紅),共有2種,所以概率為1/6
⑷ 什麼是樹狀圖
樹狀圖 dendrogram
亦稱樹枝狀圖。樹形圖是數據樹的圖形表示形式,以父子層次結構來組織對象。是枚舉法的一種表達方式。
為了用圖表示親緣關系,把分類單位擺在圖上樹枝頂部,根據分枝可以表示其相互關系,具有二次元和三次元。在數量分類學上用於表型分類的樹狀圖,稱為表型樹狀圖(phenogram),摻入系統的推論的稱為系統樹狀圖(cladogram)以資區別。表型樹狀圖是根據群析描繪的,系統樹狀圖是根據一種模擬的假定的性狀進化方向即用電子計算機描繪的。
樹狀圖也是初中學生學習概率問題所需要畫的一種圖形。
如何畫樹狀圖
最小樹形圖,就是給有向帶權圖中指定一個特殊的點v,求一棵有向生成樹T,使得該有向樹的根為v,並且T中所有邊的總權值最小。最小樹形圖的第一個演算法是1965年朱永津和劉振宏提出的復雜度為O(VE)的演算法。
判斷是否存在樹形圖的方法很簡單,只需要以v為根作一次圖的遍歷就可以了,所以下面的演算法中不再考慮樹形圖不存在的情況。
在所有操作開始之前,我們需要把圖中所有的自環全都清除。很明顯,自環是不可能在任何一個樹形圖上的。只有進行了這步操作,總演算法復雜度才真正能保證是O(VE)。
首先為除根之外的每個點選定一條入邊,這條入邊一定要是所有入邊中最小的。現在所有的最小入邊都選擇出來了,如果這個入邊集不存在有向環的話,我們可以 證明這個集合就是該圖的最小樹形圖。這個證明並不是很難。如果存在有向環的話,我們就要將這個有向環所稱一個人工頂點,同時改變圖中邊的權。假設某點u在 該環上,並設這個環中指向u的邊權是in[u],那麼對於每條從u出發的邊(u, i, w),在新圖中連接(new, i, w)的邊,其中new為新加的人工頂點; 對於每條進入u的邊(i, u, w),在新圖中建立邊(i, new, w-in[u])的邊。為什麼入邊的權要減去in[u],這個後面會解釋,在這里先給出演算法的步驟。然後可以證明,新圖中最小樹形圖的權加上舊圖中被收縮 的那個環的權和,就是原圖中最小樹形圖的權。
上面結論也不做證明了。現在依據上面的結論,說明一下為什麼出邊的權不變,入邊的權要減去in [u]。對於新圖中的最小樹形圖T,設指向人工節點的邊為e。將人工節點展開以後,e指向了一個環。假設原先e是指向u的,這個時候我們將環上指向u的邊 in[u]刪除,這樣就得到了原圖中的一個樹形圖。我們會發現,如果新圖中e的權w'(e)是原圖中e的權w(e)減去in[u]權的話,那麼在我們刪除 掉in[u],並且將e恢復為原圖狀態的時候,這個樹形圖的權仍然是新圖樹形圖的權加環的權,而這個權值正是最小樹形圖的權值。所以在展開節點之後,我們 得到的仍然是最小樹形圖。逐步展開所有的人工節點,就會得到初始圖的最小樹形圖了。
如果實現得很聰明的話,可以達到找最小入邊O(E),找環 O(V),收縮O(E),其中在找環O(V)這里需要一點技巧。這樣每次收縮的復雜度是O(E),然後最多會收縮幾次呢?由於我們一開始已經拿掉了所有的 自環,我門可以知道每個環至少包含2個點,收縮成1個點之後,總點數減少了至少1。當整個圖收縮到只有1個點的時候,最小樹形圖就不不用求了。所以我們最 多隻會進行V-1次的收縮,所以總得復雜度自然是O(VE)了。由此可見,如果一開始不除去自環的話,理論復雜度會和自環的數目有關。
⑸ 數學的樹形圖怎麼畫
以搖兩個骰子為例:第一行寫上骰子一,因為骰子能搖出六種可能,所以把這六種可能並排著都寫出來,然後再另起一行,寫上骰子二,同樣有六種可能,然後就在上面寫出的六種可能下面分別寫上這六個可能,就完了。其他類型也以此類推,反正就是先寫出第一個條件的所有可能,再在所有可能下面分別寫出第二個條件的所有可能,以此類推。
⑹ 小學數學樹狀圖怎麼畫
小學樹狀圖可以簡單的只畫幾個,讓學生理解樹狀圖的概念就好了
⑺ 初中數學樹狀圖和表格優先選擇哪個
當表示內容有明顯層次結構情況下使用樹狀圖,當同類數據多個屬性需要比較時用表格。
樹狀圖法更具有層次性比如說3個球,1個紅,2個黑,取兩次不放回有哪些取法。這里的兩次取球,第一次的結果是對第二次有直接影響的就是所謂「層次性」。用樹狀圖表示更為清晰也有利於自己思考和做題(但是不代表不可以用列表法)。而列表法相對而言更為普遍,只要可以列全所有情況,一般都可以列表,什麼情況下不能用列表或樹狀圖,第一種就是可能出現的事件個數太多,以至於列舉法很低效費時第二種就是涉及到幾何概型或者說非離散型的概率問題比如說在0至10的所有實數中任選一個,大於5的概率是多少。
⑻ 請問什麼是樹狀圖網上說的我不懂,請大家解釋清楚一點,最好有圖,謝謝!
樹狀圖 dendrogram 亦稱樹枝狀圖。為了用圖表示親緣關系,把分類單位擺在圖上樹枝頂部,根據分枝可以表示其相互關系,具有二次元和三次元。在數量分類學上用於表型分類的樹狀圖,稱為表型樹狀圖(phenogram),摻入系統的推論的稱為系統樹狀圖(cladogram)以資區別。表型樹狀圖是根據群析描繪的,系統樹狀圖是根據一種模擬的假定的性狀進化方向即用電子計算機描繪的。
⑼ 數學;什麼時候用樹狀圖什麼時候用 列表
一般來說的話,只有2個量時,列表比較直觀,例如有關擲兩個骰(tóu)子的問題或是兩個人抽簽、抽紙牌等問題;而樹形圖一般多用在三個變數及以上的情況中,例如有關三人或多人抽簽問題,但也多用在2個變數時。
⑽ 誰知道小學數學的樹狀圖怎麼畫,是什麼意思,介紹一下,謝謝了。
初中才學的的吧