① 數學解方程怎麼做
求方程的解的過程叫做解方程。
解方程的步驟 (1)有括弧就先去掉 (2)移項:將含未知數的項移到左邊,常數項移到另右邊 (3)合並同類項:使方程變形為單項式 (4)方程兩邊同時除以未知數的系數得未知數的值 例如: 3+x=18 解: x =18-3 x =15 ∴x=15是方程的解 —————————— 4x+2(79-x)=192 解:4x+158-2x=192 4x-2x+158=192 2x+158=192 2x=192-158 2x=34 x=17 ∴x=17是方程的解 —————————— πr=6.28(只取π小數點後兩位) 解這道題首先要知道π等於幾,π=3.1415926535,只取3.14, 解:3.14r=6.28 r=6.28/3.14=2 不過,x不一定放在方程左邊,或一個方程式子里有兩個x,這樣就要用數學中的簡便計算方法去解決它了。有些式子右邊有x,為了簡便算,可以調換位置
② 數學解方程有幾種方法
1、估演算法:剛學解方程時的入門方法。直接估計方程的解,然後代入原方程驗證。
2、應用等式的性質進行解方程。
3、合並同類項:使方程變形為單項式
4、移項:將含未知數的項移到左邊,常數項移到右邊
例如:3+x=18
解:x=18-3
x=15
5、去括弧:運用去括弧法則,將方程中的括弧去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6、公式法:有一些方程,已經研究出解的一般形式,成為固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函數圖像法:利用方程的解為兩個以上關聯函數圖像的交點的幾何意義求解。
(2)數學方程怎麼擴展閱讀
解方程依據
1、移項變號:把方程中的某些項帶著前面的符號從方程的一邊移到另一邊,並且加變減,減變加,乘變除以,除以變乘;
2、等式的基本性質
性質1:等式兩邊同時加(或減)同一個數或同一個代數式,所得的結果仍是等式。用字母表示為:若a=b,c為一個數或一個代數式。
(1)a+c=b+c
(2)a-c=b-c
性質2:等式的兩邊同時乘或除以同一個不為0的數,所得的結果仍是等式。
用字母表示為:若a=b,c為一個數或一個代數式(不為0)。則:
a×c=b×c 或a/c=b/c
性質3:若a=b,則b=a(等式的對稱性)。
性質4:若a=b,b=c則a=c(等式的傳遞性)。
③ 怎麼學數學方程
1、「方程」的思想 數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系.最常見的等量關系就是「方程」.比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程.我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟.如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來.初二、初三我們還將學習解一元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等.解這些方程的思維幾乎一致,都是通過一定的方法將它們轉化成一元一次方程或一元二次方程的形式,然後用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決.物理中的能量守恆,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果.因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程. 所謂的「方程」思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用「方程」的觀點去構建有關的方程,進而用解方程的方法去解決它. 2、「數形結合」的思想 大千世界,「數」與「形」無處不在.任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了.初中數學的兩個分支?-代數和幾何,代數是研究「數」的,幾何是研究「形」的.但是,研究代數要藉助「形」,研究幾何要藉助「數」,「數形結合」是一種趨勢,越學下去,「數」與「形」越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的一門課,叫做「解析幾何」.在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了.往往藉助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題.在今後的數學學習中,要重視「數形結合」的思維訓練,任何一道題,只要與「形」沾得上一點邊,就應該根據題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處.嘗到甜頭的人慢慢會養成一種「數形結合」的好習慣. 3、「對應」的思想 「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等.比如我們在計算或化簡中,將對應公式的左邊,對應 a , y對應b ,再利用公式的右邊直接得出原式的結果 即.這就是運用「對應」的思想和方法來解題.初二、初三我們還將看到數軸上的點與實數之間的一一對應,直角坐標平面上的點與一對有序實數之間的一一對應,函數與其圖象之間的對應.「對應」的思想在今後的學習中將會發揮越來越大的作用. 4、「轉化」的思想——最好噶辦法就系多做聯系就得拉!唔明就搵我,教下你都得閑啊!
④ 初中數學方程式怎麼解
數學初中方程式可以用代入消元法。
將方程組中一個方程的某個未知數用含有另一個未知數的代數式表示出來,代入另一個方程中,消去一個未知數,得到一個一元一次方程,最後求得方程組的解。
代入法解二元一次方程組的步驟:
①選取一個系數較簡單的二元一次方程變形,用含有一個未知數的代數式表示另一個未知數。
②將變形後的方程代入另一個方程中,消去一個未知數,得到一個一元一次方程。(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達到消元的目的。)
③解這個一元一次方程,求出未知數的值。
④將求得的未知數的值代入①中變形後的方程中。求出另一個未知數的值。
⑤用「{」聯立兩個未知數的值,就是方程組的解。
⑥最後檢驗(代入原方程組中進行檢驗,方程是否滿足左邊=右邊)。
一元二次方程配方法
1、把原方程化為一般形式。
2、方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊。
3、方程兩邊同時加上一次項系數一半的平方。
4、把左邊配成一個完全平方式,右邊化為一個常數。
5、進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。
⑤ 數學解方程步驟
1、去括弧
2、移項
3、相同項相加減
4、將未知數前系數化為1
⑥ 數學方程怎麼做
解:
數學方程,就是解方程
例如:x²-5x+6=0
(x-2)(x-3)=0
方程的解是:
x1=2
x2=3
⑦ 小學數學如何解方程
小學數學解方程如下:
1、有分母先去分母。
2、有括弧就去括弧。
3、需要移項就進行移項。
4、合並同類項。
5、系數化為1求得未知數的值。
6、開頭要寫「解」。
使方程左右兩邊相等的未知數的值,叫做方程的解。求方程全部的解或判斷方程無解的過程叫做解方程。必須含有未知數等式的等式才叫方程。等式不一定是方程,方程一定是等式。
方程的分類:
1、一元二次方程
就是關於平方的方程。
解一元二次方程的基本思想方法是通過「降次」將它化為兩個一元一次方程。一元二次方程有四種解法:1、直接開平方法;2、配方法;3、公式法;4、分解因式法。
2、一元三次方程
就是關於立方的方程。
一元三次方程的求根公式用通常的演繹思維是作不出來的,用類似解一元二次方程的求根公式的配方法只能將型如ax^3+bx^2+cx+d=0的標准型一元三次方程形式化為x^3+px+q=0的特殊型。
⑧ 方程式怎麼解
解方程的步驟:
⑴有分母先去分母。
⑵有括弧就去括弧。
⑶需要移項就進行移項。
⑷合並同類項。
⑸系數化為1求得未知數的值。
⑹ 開頭要寫「解」。
例如:
4x+2(79-x)=192
解:
4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
2x=34
x=17
(8)數學方程怎麼擴展閱讀:
解方程就是求出方程中所有未知數的值的過程。方程一定是等式,等式不一定是方程。不含未知數的等式不是方程。
驗證:一般解方程之後,需要進行驗證。驗證就是將解得的未知數的值代入原方程,看看方程兩邊是否相等。如果相等,那麼所求得的值就是方程的解。注意事項:寫「解」字,等號對齊,檢驗。
代數學中,根據方程未知數的個數,可將其分為:一元方程,二元方程,三元方程等。根據方程未知項的最高次數,可將其分為:一次方程,二次方程,三次方程等。在近代數學中,還有微分方程、差分方程、積分方程等學科。
在自然科學中,通常用一類特殊的式子,用來表示微觀粒子間在特定條件下相互轉化的過程,這種式子我們也稱其為「方程式」,簡稱「方程」。譬如核反應方程式、化學方程式、熱化學方程式、生化反應方程式、有關微觀粒子的產生與湮滅的方程式等。