❶ 數學中的s.f和d.p是什麼意思
4s.f 是standard form,即標准形式,寫成科學計數的形式,也就是保留四位有效數字。
3d.p全稱是dicimal point,即小數點後保留三位數字。
4sf和3dp是一個意思。
數字往往是四捨五入,以避免報告微不足道的數字。
例如,如果秤僅測量到最接近的克,讀數為12.345公斤(有五個有效數字),則會產生12.34500公斤(有七個有效數字)的測量誤差。
數字也可以簡單化,而不是指示給定的測量精度,例如,使它們在新聞廣播中更快地發音。
(1)數學集合中p是什麼數擴展閱讀:
有效數字的末位是估讀數字,存在不確定性.一般情況下不確定度的有效數字只取一位,其數位即是測量結果的存疑數字的位置;有時不確定度需要取兩位數字,其最後一個數位才與測量結果的存疑數字的位置對應。
由於有效數字的最後一位是不確定度所在的位置,因此有效數字在一定程度上反映了測量值的不確定度(或誤差限值)。測量值的有效數字位數越多,測量的相對不確定度越小;有效數字位數越少,相對不確定度就越大.可見,有效數字可以粗略反映測量結果的不確定度。
例子:d=(10.430±0.3)是不對的,只能寫成d=(10.4±0.3)
❷ 在數學的集合中:Z,Q,R,N,S,U,P 等符號分別表示什麼集急求!!
摘要 Z整數集合{……,-1,0,1,……}
❸ 集合P'代表什麼是指集合P以外的集合么
: P的補集,若I代表所有元素,P就只是這個所有元素的部分元素的集合,那麼P上加一橫就表示剩下的那些元素咯
❹ 數學中P代表什麼
數學中P代表概率。
概率亦稱「或然率」。它反映隨機事件出現的可能性(likelihood)大小。隨機事件是指在相同條件下,可能出現也可能不出現的事件。
例如,從一批有正品和次品的商品中,隨意抽取一件,「抽得的是正品」就是一個隨機事件。設對某一隨機現象進行了n次試驗與觀察,其中A事件出現了m次,即其出現的頻率為m/n。
經過大量反復試驗,常有m/n大概率越來越接近於某個確定的常數(此論斷證明詳見伯努利大數定律)。該常數即為事件A出現的概率,常用P (A) 表示。
(4)數學集合中p是什麼數擴展閱讀:
一、概率的相關歷史
概率是度量偶然事件發生可能性的數值。假如經過多次重復試驗(用X代表),偶然事件(用A代表)出現了若干次(用Y代表)。以X作分母,Y作分子,形成了數值(用P代表)。
在多次試驗中,P相對穩定在某一數值上,P就稱為A出現的概率。如偶然事件的概率是通過長期觀察或大量重復試驗來確定,則這種概率為統計概率或經驗概率。
研究支配偶然事件的內在規律的學科叫概率論。屬於數學上的一個分支。概率論揭示了偶然現象所包含的內部規律的表現形式。
所以,概率,對人們認識自然現象和社會現象有重要的作用。比如,社會產品在分配給個人消費以前要進行扣除,需扣除多少,積累應在國民收入中佔多大比重等,就需要運用概率論來確定。
二、概率的相關性質
1、性質1:P(Φ)=0;
2、性質2:(有限可加性)當n個事件A1,…,An兩兩互不相容時:P(A1∪...∪An)=P(A1)+...+P(An);
3、性質3:對於任意一個事件A:P(A)=1-P(非A);
4、性質4:當事件A,B滿足A包含於B時:P(B-A)=P(B)-P(A),P(A)≤P(B);
5、性質5:對於任意一個事件A,P(A)≤1;
6、性質6:對任意兩個事件A和B,P(B-A)=P(B)-P(A∩B);
7、性質7:(加法公式)對任意兩個事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。
❺ 數學中,排列組合A C P分別代表什麼求詳細。
排列組合中P是舊版教材的寫法,後來新版教材將P改成A,所以A和P是一樣的,都是排列數。而C是排列組合中的組合數。
1、排列的定義:從n個不同元素中,任取m(m≤n,m與n均為自然數,下同)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號 A(n,m)表示,舊版教材中用P(n,m)表示。
計算公式:
C(n,m)=C(n,n-m)。(n≥m)
排列組合中的基本計數原理
1、加法原理和分類計數法
(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那麼完成這件事共有N=m1+m2+m3+…+mn種不同方法。
(2)第一類辦法的方法屬於集合A1,第二類辦法的方法屬於集合A2,……,第n類辦法的方法屬於集合An,那麼完成這件事的方法屬於集合A1UA2U…UAn。
(3)分類的要求 :每一類中的每一種方法都可以獨立地完成此任務;兩類不同辦法中的具體方法,互不相同(即分類不重);完成此任務的任何一種方法,都屬於某一類(即分類不漏)。
2、乘法原理和分步計數法
(1)乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法,那麼完成這件事共有N=m1×m2×m3×…×mn種不同的方法。
(2)合理分步的要求
任何一步的一種方法都不能完成此任務,必須且只須連續完成這n步才能完成此任務;各步計數相互獨立;只要有一步中所採取的方法不同,則對應的完成此事的方法也不同。
❻ 數學中,集合有哪幾種字母,分別是什麼意思
數學中的集合字母和意思:
N:非負整數集合或自然數集合{0,1,2,3,……}
N*或N+:正整數集合{1,2,3,……}
Z:整數集合{……,-1,0,1,……}
P:質數集合
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合
R+:正實數集合
R-:負實數集合
C:復數集合
∅:空集合(不含有任何元素的集合稱為空集合)
U:全集合(包含了某一問題中所討論的所有元素的集合)
(6)數學集合中p是什麼數擴展閱讀:
一、集合的特性:
(1)確定性
給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
(2)互異性
一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
(3)無序性
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。(參見序理論)
(4)符號表示規則
元素則通常用a,b,c,d或x等小寫字母來表示;而集合通常用A,B,C,D或X等大寫字母來表示。當元素a屬於集合A時,記作a∈A。假如元素a不屬於A,則記作a∉A。如果A和B兩個集合各自所包含的元素完全一樣,則二者相等,寫作A=B。
二、集合的運算定律:
(1)交換律:A∩B=B∩A;A∪B=B∪A
(2)結合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
(3)分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
(4)對偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C
(5)同一律:A∪∅=A;A∩U=A
(6)求補律:A∪A'=U;A∩A'=∅
(7)對合律:A''=A
(8)等冪律:A∪A=A;A∩A=A
(9)零一律:A∪U=U;A∩∅=∅
(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A
(11)反演律(德·摩根律):(A∪B)'=A'∩B';(A∩B)'=A'∪B'。文字表述:1.集合A與集合B的交集的補集等於集合A的補集與集合B的補集的並集; 2.集合A與集合B的並集的補集等於集合A的補集與集合B的補集的交集。
(12)容斥原理(特殊情況):
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)