『壹』 數學概念有哪些
數學是研究數量、結構、變化以及空間模型等概念的一門學科。通過抽象化和邏輯推理的使用,由計數、計算、量度和對物體形狀及運動的觀察中產生。數學家們拓展這些概念,為了公式化新的猜想以及從合適選定的公理及定義中建立起嚴謹推導出的真理。 數學屬性是任何事物的可量度屬性,即數學屬性是事物最基本的屬性。可量度屬性的存在與參數無關,但其結果卻取決於參數的選擇。例如:時間,不管用年、月、日還是用時、分、秒來量度;空間,不管用米、微米還是用英寸、光年來量度,它們的可量度屬性永遠存在,但結果的准確性與這些參照系數有關。 數學是研究現實世界中數量關系和空間形式的科學。簡單地說,是研究數和形的科學。由於生活和勞動上的需求,即使是最原始的民族,也知道簡單的計數,並由用手指或實物計數發展到用數字計數。 基礎數學的知識與運用總是個人與團體生活中不可或缺的一塊。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅的進展,直至16世紀的文藝復興時期,因著和新科學發現相作用而生成的數學革新導致了知識的加速,直至今日。 今日,數學被使用在世界上不同的領域上,包括科學、工程、醫學和經濟學等。數學對這些領域的應用通常被稱為應用數學,有時亦會激起新的數學發現,並導致全新學科的發展。數學家亦研究沒有任何實際應用價值的純數學,即使其應用常會在之後被發現。 創立於二十世紀三十年代的法國的布爾巴基學派認為:數學,至少純粹數學,是研究抽象結構的理論。結構,就是以初始概念和公理出發的演繹系統。布學派認為,有三種基本的抽象結構:代數結構(群,環,域……),序結構(偏序,全序……),拓撲結構(鄰域,極限,連通性,維數……)。 詞源 數學(mathematics;希臘語:μαθηματικά)這一詞在西方源自於古希臘語的μάθημα(máthēma),其有學習、學問、科學,以及另外還有個較狹意且技術性的意義-「數學研究」,即使在其語源內。其形容詞μαθηματικός(mathēmatikós),意義為和學習有關的或用功的,亦會被用來指數學的。其在英語中表面上的復數形式,及在法語中的表面復數形式les mathématiques,可溯至拉丁文的中性復數mathematica,由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká),此一希臘語被亞里士多德拿來指「萬物皆數」的概念。 (拉丁文:Mathemetica)原意是數和數數的技術。 我國古代把數學叫算術,又稱算學,最後才改為數學。
知道了嗎???
『貳』 什麼是數學概念
眾所周知,概念是思維的基本形式之一,是對一切事物進行判斷和推理的基礎.數學概念是構成數學知識的基礎,是基礎知識和基本技能教學的核心,正確地理解數學概念是掌握數學知識的前提.因此數學概念的教學是數學教學的一個重要方面,但數學概念的抽象性使得數學概念的教學相對棘手.
概念的產生都有其必然性,我們要抓住概念產生的背景,讓學生了解數學概念的產生、發展、演變的原因以及在這些原因中所隱藏著數學概念間的內在聯系,將數學概念在數學思想的整體連貫性中的作用體現出來.
因此,教師在講授新的概念時,可以分析概念產生的背景.找出合適學生理解的、有趣而生動的切入點,讓學生更容易理解新概念,更容易對新知識找到共鳴,才能讓學生有更多的機會參與發現需要建立新概念的時機並加入到這一創造活動中去,從中感受和諧、連貫、嚴密、有用的數學之美.下面淺談一下在概念教學中用到的幾種方法.
一、從概念的產生背景著手,層層深入
對數這一概念就是學生在數學學習中遇到的一個非常抽象的概念,直接講授的方式會使學生難於理解.其實我們分析一下對數產生的背景,可以發現這是數學運算發展到一定的階段後,必然產生的一種新運算.加法發展到一定程度必然要引入減法,乘方發展到一定階段必然要出現開方一樣,對數也是為了生產生活中的計算需要而必然產生的.如果把這些概念的背景、運算方式列成表格,在對比過程中自然而然形成新的概念,使學生輕松地接受並理解它.
教師可以設置了一個這樣的教學引入過程: 首先提出兩個問題1、1個細胞一次分裂成兩個細胞,請問1個細胞需要分裂多少次以後才能分裂成128個?2、某人原來年薪為a萬元,假設他的工資以每年10%的速度增長,請問經過多少年以後他的年薪增長為原來的2倍?
這兩個例題中,運用的運算都是解指數方程:1、,2、.但第一題答案是特殊值,不需要引入新運算;第二題答案則不是特殊值了,在現有的運算中,答案算不出來.如何讓解決這一問題?
緊接著,教師再提出了幾種具有互逆關系的運算進行對比,如:3+x=10 x=10-3、5=8 x=、 .
在接下來的教學中,我們就可以自然的將指數式化成對數式x=,引入新的運算概念.並且指出:指數式與對數式的關系(1)是等價的(2)它們只是寫法不一樣,讀法不一樣,a、b、N的名稱不一樣,所在位置不一樣,但代表的數一樣,含義一樣,數的范圍也是一樣,只要牢牢記住指數式和對數式中的字母a、b、N交換的方式、交換的位置,就可以自由的將指數式和對數式進行互化.在這個過程中,指數對數與加減、乘除、乘方開方之間關系是相類似的,這些概念之間的對比要貫穿教學始終,以便於學生的理解.
二、從概念的生活背景出發,創設學習情境
很多數學概念是人們在長期的現實生活中對事物進行高度抽象概括的產物,有具體的素材為基礎,有生動的現實原型,教師要善於結合生活實際,通過多種方式創造良好的學習情境激發學生的學習興趣,使學生覺得這些抽象的數學概念彷彿就在自己的身邊,伸手可摸.
等比數列這樣的概念就是直接源於生活的概念,在講授的過程中,現實生活中的實例隨手可得,如常見的細胞分裂問題,商店打折問題,放射性物質的重量問題,銀行利率,為自己家選擇合適的還貸方式等等實例可以信手拈來穿插在概念的講解、鞏固的過程中.
為了讓學生積極性充分發揮出來,我還設計了一個有趣的問題情境引入等比數列這一概念:
阿基里斯(希臘神話中的善跑英雄)和烏龜賽跑,烏龜在前方1里處,阿基里斯的速度是烏龜的10倍,當他追到1里處時,烏龜前進了里,當他追到了里,烏龜前進了里;當他追到了里,烏龜又前進了里……
(1)分別寫出相同的各段時間里阿基里斯和烏龜各自所行的路程;
(2)阿基里斯能否追上烏龜?
讓學生觀察這兩個數列的特點引出等比數列的定義,學生興趣十分濃厚,積極性和主動性高漲,課堂氣氛也十分活躍.
三、從概念的歷史背景出發,激發興趣
復數和虛數的概念有悠遠的歷史背景,是數發展到一定的階段的必然產物.在很長一段時間里,人們在實際生活中找不到用虛數和復數表示的量,在學生的有限的知識結構中也找不到虛數的生活原型,所以學生很難完全理解它.因此,在講解這兩個概念時,可以將數的發展史、虛數與復數的出現歷程作簡單闡述,為了表述得清晰而有趣,教師可以把這過程製作成動畫短片:
從原始人分配食物開始,首先是自然數的出現,然後到分數的出現.接下來經過漫長的數的發展,人們又發現了很多不能用兩整數之比寫出來的數,如圓周率等.人們把它們寫成π等形式,稱它們為無理數.到19世紀,由於運算時經常需要開平方,如果被開方數是負數,比如,這道題還有解嗎?如果沒有解,那數學運算就像走在死胡同中那樣處處碰壁.這樣,可以讓學生融入教學中,跟著故事的結尾一起思索,然後引入新概念:數學家們就規定用符號"i "表示"-1"的平方根,即=-1,虛數就這樣誕生了.實數和虛數結合起來,寫成 a+bi的形式(a、b均為實數),這就是復數.種引入概念的過程新穎別致,一開始就能抓住學生的眼球,吸引他們的注意力,使課堂教學輕松有趣.
四、從概念的專業背景出發,講求實用
許多數學概念在其他的專業領域應用也非常廣泛.把數學知識和其他專業知識有機結合在一起,可以讓學生充分認識到數學學習的重要性.
三角函數這一概念在很多專業領域都有重要的應用.在物理方面,簡單的和諧運動,星體的環繞運動,峰谷電;在心理生理方面,情緒周期性波動、智力體力的周期性變化、一天內的血壓狀況;天文地理方面,氣溫變化規律,月缺月圓、潮漲潮汐的規律;日常生活中,車輪的變化,這一切的研究都離不開三角函數.
因此三角函數的應用課里,可以設計一些有周期性變化規律的實際問題,讓學生建立簡單的三角函數模型,培養學生數學建模,分析問題、數形結合、抽象概括等能力,體驗數學在解決實際問題中的價值和作用,培養學生勤於思考、勇於探索的精神.
學生對新概念的學習只有在已有知識的基礎上才能構建,所以教師在教學時一定要注意教材所設計的知識結構.要做到既不脫離課本,又不拘泥於課本,要有大膽的創新精神.要根據學生實際情況,設計好每一堂概念課.
『叄』 什麼是數學概念中學數學核心概念有哪些
數學概念 (mathematical concepts):是人腦對現實對象的數量關系和空間形式的本質特徵的一種反映形式,即一種數學的思維形式。
在數學中,作為一般的思維形式的判斷與推理,以定理、法則、公式的方式表現出來,而數學概念則是構成它們的基礎。正確理解並靈活運用數學概念,是掌握數學基礎知識和運算技能、發展邏輯論證和空間想像能力的前提。
中學數學核心概念有描述統計和概率
滿意請採納~\(≧▽≦)/~
『肆』 什麼是數學概念,簡潔點,要小學生聽的懂的,不要太復雜
概念主要指的就是數學上的定義及與定義相關的一些知識。
就是對一種事物嚴格的概括。
比如那樣事物的形狀、如何形成、性質、特點等。(數學概念很廣泛,有抽象、有具體)
舉個例子:圓(形狀,名稱);圓邊上的所有點到圓心的距離都相等,即半徑(如何形成,這個不是嚴格的定義,希望你明白);沒有尖角,三個不在同一直線上的點可確定一個圓等(性質,還有很多不列舉了);因為有「圓」邊上的所有點到「圓」心的距離都相等這個特點,所以輪子不用三角形,正方形(特點,如果不明白就把「圓」換成「這個圖形」再讀一次)。
關於數學概念,其實是以前人沒有統一的數學符號,但又要討論實際應用中的數學問題,就用語文的形式闡述。後來因為不方便,就慢慢有了數學符號。數學概念對有的人可能說不重要,但是當一個新問題討論的時候,數學概念是一種很好的闡明方式,因為它有嚴格性、通用性、合理性。
告訴你一點題外話:×號和÷號到現在國際上還沒有統一的標准,如.是乘號和/是除號。不同的國家使用不同。
最後願樓主學業順利。
『伍』 什麼叫做數學概念
數學概念(mathematical concepts)是人腦對現實對象的數量關系和空間形式的本質特徵的一種反映形式,即一種數學的思維形式。
在數學中,作為一般的思維形式的判斷與推理,以定理、法則、公式的方式表現出來,而數學概念則是構成它們的基礎。正確理解並靈活運用數學概念,是掌握數學基礎知識和運算技能、發展邏輯論證和空間想像能力的前提。
『陸』 初一數學概念有哪些
一、有理數
0既不是正數,也不是負數。
正整數、負整數、0統稱為整數。
整數可以看作分母為1的分數.正整數、0負整數、正分數、負分數都可以寫成分數的形式,這樣的數稱為有理數。
原點、正方向、單位長度是數軸三要素。
只有符號不同的兩個數叫做互為相反數。
0的相反數仍是0.
數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0.
有理數的加法法則:
1、同號兩數相加,取相同的符號,並把絕對值相加;
2、絕對值不等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。
3、 一個數同零相加,仍得這個數;
4、兩個互為相反數的兩個數相加得0。
有理數的減法法則:
減去一個數,等於加上這個數的相反數。
有理數的乘法法則:
1、兩數相乘,同號得正,異號得負,並把絕對值相乘;
2、任何數同0相乘,都得0;
3、乘積是1的兩個數互為倒數。
有理數的除法法則:
1、除以一個不等於0的數,等於乘以這個數的倒數;
2、兩個有理數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的
數,都得0。
求n個相同因數的積的運算,叫做乘方。
正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數;
0的任何次正整數次冪都是0。
有理數的混合運算順序:
1先乘方,再乘除,最後加減;
2同級運算,從左到右進行;
3如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
把一個絕對值大於10的數表示成 a×10n 的形式(其中a是整數數位只有一位的數,即1≤|a|<10,n是正整數),這種計數方法叫做科學計數法。
用科學計數法表示一個n位整數,其中10的指數是這個數的整數位數減1。
四捨五入後的近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數
字,都叫做這個數的有效數字。
一個數與准確數相近(比准確數略多或者略少些),這一個數稱之為近似數。
二、整式
單項式、多項式、整式的概念
單項式:由數與字母的乘積組成的代數式叫做單項式。單獨的一個數或一個字母也是單項式。
多項式:幾個單項式的和叫做多項式。
整式:單項式與多項式統稱整式。
單項式的系數是指單項式中的數字因數,單項式的次數是指單項式中所有字母的指數之和。
在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數項,多項式中次數最高項的次數,就是這個多項式的次數。
所含字母相同,並且相同字母的指數也相同的項叫做同類項,所有常數項都是同類項。
同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
合並同類項:同類項的系數相加,所得的結果作為系數.字母和字母的指數不變。
三、一元一次方程
方程中只含有一個未知數(元),並且未知數的指數是1(次),未知數的式子都是
整式,這樣的方程叫做一元一次方程。
等式兩邊加(或減)同一個數(或式子),結果仍相等。
等式兩邊乘以同一個數,或除以同一個不為0的數,結果仍相等。
把方程中的某一項,改變符號後,從方程的左邊(右邊)移到右邊(左邊),這種
變形叫做移項。
賣價=進價+利潤
利潤=賣價-進價
利潤率=利潤÷進價×100%
賣價=進價×(1+利潤率)
利潤=進價×利潤率
四、圖形
直線
(1)概念:向兩方無限延伸的的一條筆直的線。如代數中的數軸,就是一條直線(它只規定了原點、方向和長度單位)。
(2)基本性質:經過兩點有一條直線,並且只有一條直線;也可以簡單地說「兩點確定一條直線」。
(3)特點:①直線沒有長短,向兩方無限延伸;②直線沒有粗細;③兩點確定一條直線;④兩條直線相交有唯一一個交點。
射線
(1)概念:直線上一點和它一旁的部分叫做射線。
(2)特點:只有一個端點,向一方無限延伸,無法度量。
線段
(1)概念:直線上兩點和它們之間的部分叫做線段。線段有兩個端點,有長度。
(2)基本性質:兩點之間線段最短。
(3)特點:有兩個端點,不能向任何一方延伸,可以度量,可以較長短。
線段的中點:把一條線段分成兩條相等線段的點。
角的概念:有公共端點的兩條射線組成的圖形叫做角,這個公共端點是角的頂點,這兩
條射線是角的兩條邊。
角度制及換算:
(1)角度制的概念:以度、分、秒為單位的角的度量制,叫做角度制。
(2)角度制的換算:
1°=60′ 1′=60″ 1周角=360° 1平角=180° 1直角=90°
(3)換算方法:
把高級單位轉化為低級單位要乘進率;把低級單位轉化為高級單位要除以進率;
角的平分線:
從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線。
餘角和補角:
(1)餘角:如果兩個角的和等於90°(直角),那麼這兩個角互為餘角,其中一個角是另
一個角的餘角;
(2)補角:如果兩個角的和等於180°(平角),那麼這兩個角互為補角,其中一個角是另一個角的補角;
(3)餘角的性質:等角的餘角相等;
等角的性質:同角的補角相等
『柒』 小學數學概念有哪些
小學數學知識概念公式匯總
小學一年級 九九乘法口訣表。學會基礎加減乘。
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5 工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6 加數+加數=和和-一個加數=另一個加數
7 被減數-減數=差被減數-差=減數 差+減數=被減數
8 因數×因數=積積÷一個因數=另一個因數
9 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2 正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3 長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4 長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5 三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6 平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7 梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圓形 S面積 C周長 ∏ d=直徑 r=半徑
周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
面積=半徑×半徑×∏
9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
奉上,望採納!
『捌』 數學是什麼什麼是數學
數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
數學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受。
西方數學簡史
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。
第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。
算術(加減乘除)也自然而然地產生了。更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普。歷史上曾有過許多各異的記數系統。
古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
西歐從古希臘到16世紀經過文藝復興時代,初等代數、以及三角學等初等數學已大體完備。但尚未出現極限的概念。
17世紀在歐洲變數概念的產生,使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在經典力學的建立過程中,結合了幾何精密思想的微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等領域也開始慢慢發。
『玖』 什麼是數學,數學的概念
數學是研究空間形式和數量關系的科學,是刻畫自然規律和社會規律的科學語言和有效工具。數學科學是自然科學、技術科學等科學的基礎,並在經濟科學、社會科學、人文科學的發展中發揮越來越大的作用。數學的應用越來越廣泛,正在不斷地滲透到社會生活的方方面面,它與計算機技術的結合在許多方面直接為社會創造價值,推動著社會生產力的發展。數學在形成人類理性思維和促進個人智力發展的過程中發揮著獨特的、不可替代的作用。數學是人類文化的重要組成部分,數學素質是公民所必須具備的一種基本素質。
-------選自<普通高中數學新課程標准>
『拾』 數學概念有哪些
概念 (mathematical concepts):是人腦對現實對象的數量關系和空間形式的本質特徵的一種反映形式,即一種數學的思維形式。
在數學中,作為一般的思維形式的判斷與推理,以定理、法則、公式的方式表現出來,而數學概念則
什麼是數學數學思想方法有哪些數學思維方法數學數學思維數學是什麼數學定理大全數學方法有哪些數學的意義數學思想
概述
正確地理解和形成一個數學概念,必須明確這個數學概念的內涵--對象的"質"的特徵,及其外延--對象的"量"的范圍。一般來說,數學概念是運用定義的形式來揭露其本質特徵的。但在這之前,有一個通過實例、練習及口頭描述來理解的階段。比如,兒童對自然數,對運算結果--和、差、積、商的理解,就是如此。到小學高年級,開始出現以文字表達一個數學概念,即定義的方式,如分數、比例等。有些數學概念要經過長期的醞釀,最後才以定義的形式表達,如函數、極限等。定義是准確地表達數學概念的方式。
許多數學概念需要用數學符號來表示。如dy表示函數y的微分。數學符號是表達數學概念的一種獨特方式,對學生理解和形成數學概念起著極大的作用,它把學生掌握數學概念的思維過程簡約化、明確化了。許多數學概念的定義就是用數學符號來表達,從而增強了科學性。
許多數學概念還需要用圖形來表示。有些數學概念本身就是圖形,如平行四邊形、棱錐、雙曲線等。有些數學概念可以用圖形來表示,比如y=x+1的圖像。有些數學概念具有幾何意義,如函數的微分。數形結合是表達數學概念的又一獨特方式,它把數學概念形象化、數量化了。
總之, 數學概念是在人類歷史發展過程中,逐步形成和發展的。
數學概念
一、基本概念
1.描述統計。
通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。
2.概率的統計定義。
人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現"出現正面"或"出現反面"的次數大約各占總拋擲次數的: 左右。這里的"大量重復"是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:
可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。
例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;
某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?
因為前30年出現晴天的頻率為0.83,所以概率大約是0.83