㈠ 數學解決問題的策略
在解題過程中,運用畫圖的方法,畫出與題意相關的示意圖,藉助示意圖來幫助推理、思考,這是小學數學解決問題中最常用的一種策略。
常見的畫圖方式有:線段圖、集合圖等。
將疑難問題的文字「翻譯成圖」,能夠立竿見影地理清思路,找到解題策略。
例:某班有45位同學,其中有30人沒有參加數學小組,有20人參加航模小組,有8小組都參加了。問:只參加一個小組的學生有多少人?
分析:畫出集合圖。
方框表示全班所有人。區域①表示只參加數學小組的同學。區域②表示只參加航模小組的人。區域③表示同時參加數學、航模兩個小組的人。區域④表示兩個小組都沒有參加的人。
圖片、圖形轉達信息的效率要遠遠高於文字和語言。
利用集合圖將復雜的文字概念關系轉化為直觀的圖,可以幫助孩子快速理清各種量之間的邏輯關系,提高解題效率。
轉化策略
轉化也是小學數學解決問題中常用的一種方法,能把較復雜的問題轉化為簡單問題,能把未知的問題變為已知的問題。
例:媽媽買了2千克柑橘和5千克生梨,共花了28.6元。每千克柑橘的價格是生梨的4倍,每千克柑橘和生梨各多少元?
分析:「每千克柑橘的價格是生梨的4倍」,這句話就是轉化的條件。我們可以這樣想:買1千克柑橘的價錢可以買4千克生梨,那麼買2千克柑橘的價錢可以買2×4=8千克生梨。所以總共花了28.6元相當於買了(8+5)千克生梨所花的錢。通過轉換,問題就得以解決了。
列表策略
列表策略,又叫列舉策略。是將問題的條件信息用表格的形式列舉出來,便於從中發現問題、分析數量關系,從而排除非數學信息的干擾,同時也便於找到解決問題的方法。
例:有1張五元紙幣,2張兩元紙幣,8張1元紙幣,要拿9元錢,有幾種拿法?
㈡ 數學解決問題的一般步驟
第一,從問題出發。解決數學問題,首先要從理解數學問題開始,沒有正確的理解就沒有正確的解答。所以說要從問題出發,分析問題的基本條件,基本要求,梳理基本脈絡,形成基本觀點。這就要求學生要特別注重語言的訓練,包括聽說讀寫等能力的訓練,以實現對題目的充分理解。
第二,從規律出發。數學問題都是有一定規律可遵循的,發現了規律可以事半功倍,發現不了規律只能一頭霧水。如何發現規律?首先要認識規律。數學的規律都是隱藏在各類問題之下的,一般很難發現。這就需要學生日常養成專心聽講的良好習慣,因為這些規律性認識都是經過老師認真備課,精心組織耐心講授出來的。課時要會做筆記,做好筆記,課下做好復習,認識,理解規律,最好能夠自主的去發現規律總結規律。
第三,從結果出發。所謂解決數學問題,在小學和中學階段就是指解決數學題目。數學題目有一個特點,就是一定有一個疑問,有一個答案。為了解答,我們需要認真分析問題,即所謂的有的放矢。從結果出發反推問題所在,從結果中發現數學沖突和矛盾,在結果中理清解題思路。
第四,從邏輯關系出發。解決數學問題的實質是邏輯關系的理順,學生需要從題目中找到各種數量,變數,並建立起這些量之間合理的邏輯關系和數學解釋。羅輯思維能力提升的方法很多,主要是專項邏輯訓練,數字規律認識,圖形類型歸納,數形結合問題等等。在具體的解題過程中,我們需要抓住變數,還要抓住不變數,通過這些量之間的變化關系得出題意中的邏輯關系,進而最終求的結果。
㈢ 遇到數學難題,怎樣解決
同學們,當你們遇到數學難題時是否愁眉苦臉,把它放棄?或者急於尋求他人的幫助?以前的我也是這樣,如今在老師和爸爸媽媽的幫助下,已經徹底改掉了以往的思想,可以獨立的解決數學難題了。現在,我就把我解決數學難題的做法告訴大家,和大家一起分享。對自己充滿信心,這是前提條件。有的同學一遇到課本裡面帶有「*」字型大小的題目連看都不看,認為這是提高題肯定很難,看了也沒用,反正不會做。俗話說:「鏡子越擦越明,腦袋越用越靈。」如果你不去認真思考這道難題,就白白浪費了一次鍛煉腦袋的機會。長久下去,腦袋就會變得遲鈍、緩慢。如果你對自已有信心,你就會認真去思考難題,你的腦袋就會變得靈活起來。所以,解決難題時必須對自己有信心,這樣才能考慮後面的解決方法。當然,不止是對自己有信心,更重要的是得掌握一定的基礎知識,對書上的概念、定義、公式一定要熟記、理解、掌握。這些基礎知識可是對解決數學難題起到關鍵作用。當你碰到一道數學難題時首先要認真審題,弄清題意。也就是當我們看到題目時,要仔仔細細閱讀清楚,把題意理解透了再動筆,這樣解題就不容易出錯。「磨刀不誤砍柴工」說的就是這個道理。其次是考慮採用什麼方法解題,下面我就把我採用的解決應用題的幾種方法總結分析如下:(一)線段圖法:就是根據題目中所給的已知條件,畫出線段圖,題目中的數量關系就直觀的表現在紙上,能啟發我們思考溝通「已知」和「未知」的聯系,幫助我們解答問題。(二)綜合法:對多步應用題從應用題的已知條件出發,選出兩個有直接聯系的已知條件,組成一個簡單應用題,求出答案;把這個求出的答案當作一個新條件,然後同另一個有聯系的已知條件,組成一個新的簡單應用題,再求出答案;這樣一步一步地推究下去,最後一個簡單應用題的問題,就是這個應用題的問題。如我們書上常用「知道了----和-----,可以求出-----」這樣的提示語來表達這種思路。(三)分析法:從應用題最後的所求問題出發,找出解答這個問題所需的兩個條件,並對照題目里的條件,看哪個是已知的,哪個是未知的;把這個未知的條件當做新問題,找出解答新問題所需要的兩個條件,再對照題目,看是不是都是直接的已知條件;直至找到全部是已知條件為止。書上常用「要求-----,先要求出-----」這樣的提示語來表達這種思路。最後是檢查,寫出答案。這也是極其關鍵的一步。要是方法懂得了,答案寫錯了,那也是前功盡棄,太可惜了。學習需要一步一個腳印,解決數學難題也是如此,不僅要有好的解題方法,更要掌握基礎知識,沒有任何捷徑。古人雲:「書山有路勤為徑,學海無崖苦作舟。」只要你有了牢固的基礎知識,再加上掌握了正確的解題方法,任何難題都能迎刃而解。對我有幫助!
㈣ 如何解決數學難題
你的說法是對的。
學習好的同學其實就是平時做的題型多,了解各種題型的解法,才能自己獨立完成各種難題。
你可以向成績好的同學請教一下學習的具體方法。
如果他們不太願意向你介紹方法,你可以多留意一下他們是怎麼學習的。
但是,不論怎樣的學習方法,都離不開多練、多總結。
首先要把課本的內容弄懂,搞清楚各個知識點之間的聯系。將各個知識點對應的題型做上一遍,應該說這部分的內容就算學透了。當然了,也不是說要搞題海戰,但是,要掌握各個知識點,沒有練到一定的程度,是不可能掌握好的。做題後,也要反思一下,這道題所涉及的知識點是什麼?出題的人為什麼要這樣出?堅持做下去,你會有很大的提高。
所以,平時要多積累,多思考。
㈤ 初二學生遇到數學中難一點的題目就不會做,這是什麼原因如何解決這問題
沒有獨立思考的能力,對公式概念不熟悉,沒有讀懂題目,不會活學活用。有的學生學數學的時候遇到了困難,只會做簡單的,不會做難的,就是因為缺乏勇氣,不敢挑戰自己。
有的學生沒有耐心,看到題目就想直接做,沒有讀懂題目就開始做題,就容易走進死胡同。遇到難一點的題就不會做了,其實就是學生的分析能力差,沒有認真讀懂題目的意思。只要細心一些,認真去分析題目的意思,就會有解題思路。
學數學千萬要學會活學活用,做題不能太保守,要懂得靈活掌握。做數學題要嘗試用不同的方法來解出答案,時間長了就會培養對數學的興趣,只要愛上學數學,解題就不再是困難的事。做數學題的時候,要學會找到巧妙的方法來解決問題,只有多做題,才能積累做題的經驗,遇見難題就不會退縮了。
㈥ 高中數學解題方法有哪些
1、配方法
把一個解析式利用恆等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恆等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恆等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法
換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易於解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬於R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法
在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而後根據題設條件列出關於待定系數的等式,最後解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法
在解題時,我們常常會採用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利於問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然後,從這個假設出發,經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行於/不平行於;垂直於/不垂直於;等於/不等於;大(小)於/不大(小)於;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發,否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用於計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至於無法下手的習題,可以藉助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利於對圖形本質的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
㈦ 解決數學問題的常見思路方法有哪些
1、公式法:將公式直接運用到問題中,常用在代數問題中。解決該類問題必須記好數學公式。
2、逆推倒想法:由問題的結論推理到問題中的條件,常用在幾何問題中。解決該類問題必須掌握好幾何中的定義、公理、定理和推論等。
3、數形結合法:將問題轉化成圖形進行解決,常用在代數中的應用題中。
㈧ 如何上好小學數學中"解決問題"的教學
解決問題的教學內涵豐富,如何讓學生喜歡它,這是我們當前所面臨的問題。如何上好小學數學解決問題教學的幾點體會
《基礎教育課程改革綱要》中指出:改變課程實施中過於強調接受學習,死記硬背,機械訓練的現狀,倡導學生主動參與、樂於探究、勤於動手,培養學生收集和處理信息的能力。《課程標准》明確指出:「學生是學習的主人。」前蘇聯教育家蘇霍姆林斯基也曾說過:「人的心靈深處,總有一種把自己當作發現者、研究者、探索者的固有需要,這種需要在小學生精神世界尤為重要。」長期束縛在教師、教材、課堂圈子裡,不敢越雷池半步的學生,在今天更需要我們極力改變學習方式,而探究即為自主學習的方式。因此,要講究自主探究的學習策略,使之成為發現者、研究者、探索者,從而把他們心靈深處被壓抑的個性釋放出來。數學解決問題教學更能充分發揮學生自主探究學習的能動性。
一、引導發現、感悟,注重自主探究的嘗試性
發現是探究的開始。由於好奇是少年兒童的心理特點,它往往可促使學生作進一步深入細致的觀察、思考和探索,從而提出探究性的問題。讓學生提出問題,自主合作探究,不僅僅是一個方式方法問題,而是一種教育觀念的問題,是一種教學質量觀的問題,是學生觀的反映。如果我們能營造一個積極寬松和諧的課堂教學氛圍,讓學生成為「問」的主體,成為一個「信息源」,那麼,學生學習的積極性和主動性將被大大激發。因為學生提問題總是以自身積極思考為前提的。正因為這樣,我們說教師與其「給」學生10個問題,不如讓學生自己去發現,去「產生」一個問題。
兩步計算的解決問題教學時,我將例題巧作變動,大大激發了學生探究的慾望。
師:大家想不想來做一個猜數游戲啊?
生:想!
師:我這兒有三個不同顏色的盒子(分別出示紅、白、黑三個盒子),盒子里分別裝了一些硬幣。現在,我請你猜一猜,紅盒子里裝了多少個硬幣?
生:(七嘴八舌亂猜)
師:大家都沒有猜對。在你沒有得到相關的信息之前,你能一下子准確地猜出紅盒子里裝了多少個硬幣嗎?
生:不能。
師:那我給你一個信息:黑盒子里有15個硬幣。依靠這個信息,你能准確猜出紅盒子里的硬幣個數嗎?為什麼?
生:不能。紅盒子里硬幣的個數與黑盒子無關。
師:我再給你一個信息:白盒子里有10個硬幣。現在,你能不能猜出紅盒子里硬幣的個數?為什麼?
生:還是不能。因為紅盒子里的個數與白盒子的個數無關。
師:知道了這兩個信息,你還想知道什麼方面的信息就能猜出紅盒子里硬幣的個數了?把你的想法和小組里的成員交流一下。
學生通過交流,歸納出如果再知道一個能把紅盒子與白盒子和黑盒子里的個數聯系起來的信息,就能猜出紅盒子里硬幣的個數。學生舉例:紅盒子里的硬幣個數比黑(白)盒子多(少)多少個;紅盒子里的硬幣個數是黑(白)盒子的多少倍;紅盒子里的硬幣個數比黑盒子和白盒子的總數多(少)多少個;紅盒子里的硬幣個數是黑盒子和白盒子的總數的多少倍等等。這時,引導比較學生自己提出的問題,可以發現有的只需一步計算,有的卻需兩步計算。讓學生說說為什麼要兩步計算。在提出問題、比較問題的過程中,學生不僅強化了兩步解決問題的結構,而且對解決問題教學中數量關系的選擇有了初步的定位。教師最後出示相關信息,學生終於順利猜出紅盒子里的硬幣個數。
只有學生自己主動提出問題,主體作用才能得以真正的發揮,才能體現自主探究發現。因此,教師要隨時注意挖掘教材中隱藏的「發現」因素,創設一種使學生主動發現問題、提出問題的情境,啟發學生自己發現問題、探索知識,使教學過程圍繞學生在學習中產生的問題而展開。教師必須積極創設問題情境,引導學生提出與學習過程有密切關系的問題,使所提出的問題提到點子上,才能促進自主合作探究,達到學會學習之目的。
二、鼓勵參與合作,追求自主探究的互動性
1、創設情景,激發興趣,提供主動探究的空間。
教學時不要把學生死死地捆在教科書上,讓學生死記那些他們認為很枯燥的東西。教師要根據學生的數學學習心理規律盡可能選他們樂於接受的,有價值的數學內容為題材編出問題。如給數學找到生活中的原型,讓學生體驗到「學數學」不是在「記數學、背數學、練數學、考數學」,而是在 「用數學」。
人教版九年義務教育六年制第九冊教材第45頁,應用題例1是這樣的:
一個服裝廠計劃做660套衣服,已經做了5天,平均每天做75套。剩下的要3天做完,平均每天要做多少套?
這種類型的解決問題枯燥得很,離學生比較遠,學生肯定沒有興趣。沒有了興趣不能產生探究的興趣。我對此題做了如下改動:
(1)課件展示情境或組織學生進行對話表演。
客戶:周廠長,你好!我們訂做的660套衣服,生產得怎麼樣了?
廠長:已經做了5天,平均每天做75套。
客戶:我們等著要貨,你們3天之內能完成了嗎?
廠長:能。
(2)師:同學們!你們根據廠長、客戶提供的信息想到什麼數學問題?
教師根據學生的回答,整理出以上出示的例1。
(3)師:你們會解答嗎?如果不會,可以小組討論。
生:略
這種方式較好地體現了「數學問題生活化」和「自主學習、探索創新」兩大方面,將學習活動置於社會生活問題之中,巧妙地把要解決的問題變為對話展現給學生。讓學生主動積極地獲取知識,將感性的實際活動與學生的內心感受體驗結合起來。這樣的數學,學生不僅學得好,而且也為他們以後到社會上去成為各行各業的成功者打好基礎。
2、給學生自由選擇的權利,提供主動探究空間。
每個學生都有自己獨特的內心世界、精神世界和內心感受,有著不同於他人的觀察、思考、解決問題的方式。現代教育越來越重視每個學生潛能的開發和個性的發展。由於學生的認知水平和認知習慣的不同,常常會想出不同的計算方法,這正是學生具有不同獨特性的體現。因此在教學過程中,教師要鼓勵學生靈活運用知識,嘗試各種演算法的多樣化。
無論學生用哪種方法解決這個問題,都應該給予肯定,不能強求學生使用統一的方法解決同樣的問題,在學生獨立思考解決這個問題的基礎上,進行小組內的交流,每個學生都發表自己的觀點,傾聽同伴的解決方法,使每個學生感受到解決方法的靈活性、多樣化。這樣的教學有利於培養學生獨立思考的能力,有利於學生進行學習交流。使每個學生都有獲得成功的愉悅,而且還能使不同的人學到不同的數學,不同的人在數學上得到不同的發展。
3、建立合作小組,提供主動參與的合作夥伴。
課前先建立合作小組,將不同學習能力、學習態度、學習興趣、性別、個性的學生分配在同一組內,組成4人或6人的小組,再給組內成員一個特殊的身份,一項特殊的職責。如「主持人」(掌管小組討論的全局,分配發言機會,協調小組學習的進程,觀察組內同學合作技巧的表現,如討論時的聲音控制、提問和應答時的禮貌)等,最後要求每一組設計組名、組標,促使合作學習小組形成「組內互助合作,組間競爭奪標」的氛圍。
解決問題具有抽象性,有時學生不能很好地理解題意,造成解題障礙。在這種情況下,教師應重視問題解決的過程,讓學生理解題意,從而輕松掌握解題方法。
4、選擇專題,分工合作,加強主動探究能力。
在有限的課堂時間里,可緊扣教材,選擇重點、難點、疑點作為專題,運用研究性學習,分工合作,提高學生的主動性、研究性和發現的能力。為了減少學生研究探索學習的梯度,課堂上利用教材特點進行專題研究是必不可少的,可在課外探究學習中面對更多的是如何搜集處理信息怎樣與人合作。為此要引導學生遇到困難時能主動尋求幫助,要熱情地幫助他人排憂解難。若自己擁有材料正是別人急需的,能成全他人的計劃,使自己在學會探究的同時,更學會做人。
三、激活求異思維,培養自主探究的獨創性
通過不同的途徑,從不同的角度,用不同的方法解決問題,這樣不僅活躍了學生的思維,開闊了思路,同時也促進學生養成善於求異的習慣,對於培養學生的創新能力有著決定性的作用。在教師的教學中,通過表達方式的變異,理解角度的變更,思考方法的變遷,題型設計的變化等來提供多形態的知識信息,創造多樣化的思維環境,接通多方位的解題思路,從而促進內容的深化,理解的深入,提高學生思維的變通性和廣闊性。人們在理解知識的過程中,習慣運用某種思維方式,便會產生定勢心理。教師在教學中要不失時機地創設思維情境,千方百計地為學生提供創新素材和空間。用「教」的創新火種點燃「學」的創新火,才能有成效地培養學生自主探究的獨創性。
比如針對五年級的學生,在學習了三步計算的應用題後,我設計了一道與學生生活比較接近的開放題,以此來激活學生的變通思維:
學校組織師生看電影。學生950人,教師27人。影劇院售票處寫著:
今日放映
《宇宙與人》
成人票: 每張8元
學生票: 每張4元
團體票: 每張6元
(30人或30人以上可購買團體票)
請設計一種你認為最省錢的購票方案,並算出購票一共需要多少錢?
題目一出示,學生就頗有興趣,積極開動腦筋,力求找到最佳方案。
以下是 學生不同的解題方法:
方法1:827+4950=4016(元)
方法2:(27+950)6=5862(元)
方法3:從學生人數中拿出3人,和教師組成一個團體。
306+9474=3968(元)
……
針對這樣的問題,不同層次的學生有不同的解法,每位學生在這樣的問題情境中都得到了充分地發揮。通過練習,培養了學生主動應用數學知識的能力
四、設計開放作業,強化自主探究實踐性
數學教學是一個開放的系統,生活中處處有數學,也處處用數學。皮亞傑認為「兒童如果不具有自己的真實活動,教育就不可能成功。」如何設計開放的作業,讓學生在自主探究的實踐中有所收獲呢?首先要尊重學生擇業的要求,其次要開放作業的形式與內容。
1、遷移例題解法。
如講授了植樹問題後,可建議學生去步行街上走一走,數一數步行街上有多少個垃圾桶,目測一下每兩個垃圾桶之間的距離大約是多少米,再算一算從起始的垃圾桶到最後一個垃圾桶之間的總長度約是多少米?
2、結合生活熱點。
國慶、元旦等節日期間,許多商店推出打折的促銷手段,可以在家長的帶領下,去商店購物,看看商品的原價是多少,打幾折,打折以後的價錢是多少,比原價便宜多少?記錄下你的考察結果。返校後可組織討論:商店利用打折的手段促銷商品,它是賺多了,還是賺少了?會不會虧本?讓學生真切的感受到數學就在我們的身邊。
3、加強專題實踐。
學習了長方形和正方形面積的計算以後,就可以跟爸爸媽媽一起給家設計一些裝修方案。比如:量一量房間的長和寬,算一算房間的面積大約是多少平方米。如果購買地板的話,根據家庭的經濟實力,再去市場了解地板的價格,選擇合適的價位,進行購買,大約需要支出多少。
這樣開放的作業內容,既與教材內容相聯系,又與學生生活相結合,還「接軌」了社會活動,學生有了「自由馳騁」的自主學習,自由探索的空間,在實踐中才能煥發生命的活力,充滿成長的氣息,書寫一個創造的人生。
解決問題的教學內涵豐富,如何讓學生喜歡它,這是我們當前所面臨的問題。但我堅信,只要教師通過一定的策略,為學生營造輕松的氛圍,讓學生覺得要解決 的問題,離自己並不遙遠,問題解決才有價值。這樣才能讓學生喜歡上解決問題。從而真正掌握解決方法。達到了這種境界才算是一堂成功的優秀的教學。
㈨ 小學數學中解決問題的策略有哪些
要提高學生解決問題的能力,關鍵是要加強對學生進行解決問題策略的指導。解決問題的策略是在解決問題的過程中逐步形成和積累的,同時需要學生自己不斷進行內化。根據問題的難易程度,解決問題的策略可以分為一般策略和特殊策略兩類。
一、一般策略
有些問題的數量關系比較簡單,學生只需依據生活經驗或通過分析、綜合等抽象思維過程就可以直接解決問題。
1.生活化。生活化是指在解決數學問題時通過建立與學生生活經驗的聯系從而解決問題的策略,常運用於學習新知時,關鍵要在問題解決後向學生點明解決問題過程中所蘊涵的數學知識和方法。如學習《最大公因數》,先出示問題:老師最近買了一個車庫,長40分米、寬32分米,想在車庫的地面上鋪正方形地磚。如果要使地磚的邊長是整分米數,在鋪地磚時又不用切割,地磚有幾種選擇?如果要使買的塊數最少,應該買哪一種?因為學生對此類問題比較熟悉,所以普遍認為:地磚的邊長應該是40和32公有的因數,公有因數最大時買的塊數最少,解決這兩個問題應先找出40和32的因數。然後讓學生梳理解決問題的過程,並點明什麼是公因數、什麼是最大公因數、如何找公因數和最大公因數。
2.數學化。數學化是指在解決實際問題時通過建立與學生已有知識的聯系從而解決問題的策略,常運用於實際解決問題時,關鍵是在解決問題之前要讓學生明確運用什麼知識和方法來解決問題。如學習《長方形周長》,當學生已經知道長方形周長=(長+寬)×2後出示:小明沿著一個長方形游泳池走了一圈,他一共走了多少米?首先讓學生明確「求一共走了多少米就是求長方形周長」,再思考「長方形周長怎麼求」、「求長方形周長應知道什麼」,最後出示信息「長50米、寬20米」,學生就能自主解決問題。
3.純數學。純數學是指在解決數學問題時通過分析、利用數量之間的關系從而解決問題的策略,常運用於學習與舊知有密切聯系的新知時,關鍵要在需解決的數學問題和已有的數學知識之間建立起橋梁。如學習《稍復雜的分數乘法應用題》,先出示舊問題:水泥廠二月份生產水泥8400噸,三月份比二月份增加25%,三月份生產水泥幾噸?學生認為:因為增加幾噸=二月份幾噸×25%,所以三月份幾噸=二月份幾噸×(1+25%)=8400×(1+25%)。再出示新問題:水泥廠二月份生產水泥8400噸,三月份比二月份減少25%,三月份生產水泥幾噸?讓學生說說兩類問題有什麼異同,因為這兩類問題有著本質的聯系,所以教師只需在兩者之間建立起聯系的橋梁,學生就能用遷移的方法自主解決新問題,他們認為:因為減少幾噸=二月份幾噸×25%,所以三月份幾噸=二月份幾噸×(1-25%)=8400×(1-25%)。
二、特殊策略
有些問題的數量關系較復雜,常需要一些特殊的解題策略來突破難點,從而找到解題的關鍵並順利解決問題。小學生常用的也易接受的特殊策略主要有以下七種:
1.列表的策略。這種策略適用於解決「信息資料復雜難明、信息之間關系模糊」的問題,它是「把信息中的資料用表列出來,觀察和理順問題的條件、發現解題方法」的一種策略。如在學習人教版第7冊《烙餅中的數學問題》時,為了研究烙餅個數與烙餅時間的關系就可採用列表策略,如右圖。運用此策略時要注意:(1)帶領學生經歷填表過程;(2)引導學生理解數量之間的關系;(3)啟發學生利用表格理出解題思路,說一說自己的發現,感受函數關系。
2.畫圖的策略。這種策略適用於解決「較抽象而又可以圖像化」的問題,它是「用簡單的圖直觀地顯示題意、有條理地表示數量關系,從中發現解題方法、確定解題方法」的一種策略。如在學習人教版第5冊《搭配問題》時,為了能更直觀、有條理地解決問題就可採用畫圖策略,如右圖。運用此策略時要注意:(1)讓學生在畫圖的活動中體會方法,學會方法;(2)畫圖前要理請數量關系;(3)畫圖要與數量關系相統一。
3.枚舉的策略。這種策略適用於解決「用列式解答比較困難」的問題,它是「把事情發生的各種可能進行有序思考、逐個羅列,並用某種形式進行整理,從而找到問題答案」的一種策略。如在學習人教版第3冊《簡單的排列與組合》時,為了能做到不重復不遺漏就可採用枚舉策略,如右圖。運用此策略時要注意:(1)在枚舉的時候要有序地思考,做到不重復、不遺漏;(2)設計的教學活動應包括「引發需要——填表列舉——反思方法——感悟策略」等幾個主要環節;(3)要在反思中積累列舉技巧,引導學生進行整理、歸納與交流。
4.替換的策略。這種策略較適用於解決「條件關系復雜、沒有直接方法可解」的問題,它是「用一種相等的數值、數量、關系、方法、思路去替代變換另一種數值、數量、 關系、方法、思路從而解決問題」的一種策略。如學習人教版第6冊《等量代換》時,為了能把復雜問題變成簡單問題就可採用替換策略,如右圖。運用此策略時要注意:(1)把握替換的思路,提出假設並進行替換、分析替換後的數量關系;(2)掌握替換的方法,在題目中尋找可以進行替換的依據、表示替換的過程;(3)抓住替換的關鍵,明確什麼替換什麼、把握替換後的數量關系。
5.轉化的策略。這種策略主要適用於解決「能把數學問題轉化為已經解決或比較容易解決的問題」的問題,它是「通過把復雜問題變成簡單問題、把新穎問題變成已經解決的問題」的一種策略。如學習人教版第11冊《按比例分配》時,為了能讓學生利用所學知識主動解決新問題就可採用轉化策略,如右圖。運用此策略時要注意:(1)突出轉化策略的實用價值,精心選擇數學問題;(2)突破運用轉化策略的關鍵,把新問題、非常規問題分別轉化成熟悉的、常規的且能夠解決的問題;(3)在豐富的題材里靈活應用轉化策略,提高應用轉化策略解決問題的能力。
6.假設的策略。這種策略主要運用於解決「一些數量關系比較隱蔽」的問題,它是「根據題目中的已知條件或結論作出某種假設,然後根據假設進行推算,對數量上出現的矛盾進行適當調整,從而找到正確答案」的一種策略。如學習人教版第11冊《雞兔同籠》時,為了能使隱蔽復雜的數量關系明朗化、簡單化就可採用假設策略,如右圖。運用此策略時要注意:(1)根據題目的已知條件或結論作出合理的假設;(2)要弄清楚由於假設而引起的數量上出現的矛盾並作適當調整;(3)根據一個單位相差多少與總數共差多少之間的數量關系解決問題。
7.逆推的策略。這種策略主要運用於解決「已知『最後的結果、到達最終結果時每一步的具體過程或做法、未知的是最初的數量』這三個條件」的問題,它是「從題目的問題或結果出發、根據已知條件一步一步地進行逆向推理,逐步靠攏已知條件直至問題解決」的一種策略。如解決右圖中的類似問題時,為了能更充分地利用條件、更好地解決問題就可以運用逆推策略。運用此策略時要注意:(1)在鋪墊式敘述時不要有任何暗示,不到最後不要得出結論;(2)在每一處的敘述中都要能為最後的結論服務;(3)在向前推理的過程中,每一步運算都是原來運算的逆運算;(4)這類問題還可以用畫線段圖和列表的方法來解決。
關註解決問題的策略,對於如何分類其實並不重要,重要的是要理解常用策略的本質、把握每種策略的運用范圍和要點,更快、更好地解決問題。
㈩ 如何在初中數學課中進行變式教學
一、遞進變異
遞進變異是指題目由特殊到一般的變異,而解題需要的基礎知識保持不變。一是題目的條件由特殊到一般,由簡單到復雜變異,這樣可形成遞進式變式題組。遞進式變式題組是指在課堂教學中,為了達到某一教學目的,根據學生的認知規律,合理、有效地設計一組數學問題,且這組數學問題又有一定的內在邏輯聯系,即前一個問題是後一個問題的特殊情況,後一個問題是前一個問題的一般的、情況,這樣由特殊到一般的題目組合稱為遞進式變式題組。這種遞進式變式題組,層層遞進,由淺入深,由簡到繁,循序漸進,螺旋式上升,有利於學生對問題本質的深刻理解,進而掌握解題規律、突破教學難點。二是在解題的一般規律不變的情況下,通過變化非本質屬性,有利於學生從中分離出一般的規律。三是有利於不同層次的學生。由於問題由簡單到復雜,可使不同層次的學生順著台階一步步的往上爬,並從中掌握一般規律。例如,在「分式」的教學中,設計如下作業。
案例1:
六、幾點思考
第一,基於變異理論進行變式教學,題目的變異要圍繞不變的本質而展開。變異的目的是要學生通過幾個實例發現並總結、歸納出解決問題的一般性原理(規律). 因此,在進行變異時,首先要明確問題的本質,然後圍繞問題的本質不變,變化非本質屬性,以突出問題的本質屬性,使此類問題的一般性原理凸出出來。
第二,重復有利於提高學生數學知識的記憶強度。變異是在本質不變的情況下展開的,也就是說學生解答此類問題運用的思想方法是相同的. 因此,學生要重復使用相同的原理解答題目,是一種重復的思維活動。認知心理學的研究表明,重復可以增強學生對知識的記憶,能夠使長時記憶中的記憶強度增加,即記憶的痕跡大,這樣在學生解答其他問題時,便於從長時記憶中提取需要遷移的信息,從而提高分析問題和解決問題的能力。
第三,變異有利於不同層次學生發現並總結掌握問題的一般原理。學生之間的差異是客觀存在的,不同的學生其解決問題的能力,以及歸納、概括的能力是不同的. 因此,在進行題目變異時,要使題目有一定的梯度,也就是要遞進式變異,由簡單到復雜,從而使不同層次的學生都能夠從中分析並發現一般性的原理。