導航:首頁 > 數字科學 > 數學書8下內容是什麼

數學書8下內容是什麼

發布時間:2022-09-15 08:14:47

㈠ 北師大版八年級下冊數學全書概念總結

《數學》(八年級下冊)知識點總結

第一章 一元一次不等式和一元一次不等式組

一. 不等關系

※1. 一般地,用符號「<」(或「≤」), 「>」(或「≥」)連接的式子叫做不等式.

¤2. 要區別方程與不等式: 方程表示的是相等的關系;不等式表示的是不相等的關系.

※3. 准確「翻譯」不等式,正確理解「非負數」、「不小於」等數學術語.

非負數 <===> 大於等於0(≥0) <===> 0和正數 <===> 不小於0

非正數 <===> 小於等於0(≤0) <===> 0和負數 <===> 不大於0

二. 不等式的基本性質

※1. 掌握不等式的基本性質,並會靈活運用:

(1) 不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:

如果a>b,那麼a+c>b+c, a-c>b-c.

(2) 不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即

如果a>b,並且c>0,那麼ac>bc, .

(3) 不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:

如果a>b,並且c<0,那麼ac<bc,

※2. 比較大小:(a、b分別表示兩個實數或整式)

一般地:

如果a>b,那麼a-b是正數;反過來,如果a-b是正數,那麼a>b;

如果a=b,那麼a-b等於0;反過來,如果a-b等於0,那麼a=b;

如果a<b,那麼a-b是負數;反過來,如果a-b是負數,那麼a<b;

即:

a>b <===> a-b>0

a=b <===> a-b=0

a<b <===> a-b<0

(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.

三. 不等式的解集:

※1.
能使不等式成立的未知數的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式.

※2. 不等式的解可以有無數多個,一般是在某個范圍內的所有數,與方程的解不同.

¤3. 不等式的解集在數軸上的表示:

用數軸表示不等式的解集時,要確定邊界和方向:

①邊界:有等號的是實心圓圈,無等號的是空心圓圈;

②方向:大向右,小向左

四. 一元一次不等式:

※1. 只含有一個未知數,且含未知數的式子是整式,未知數的次數是1. 像這樣的不等式叫做一元一次不等式.

※2. 解一元一次不等式的過程與解一元一次方程類似,特別要注意,當不等式兩邊都乘以一個負數時,不等號要改變方向.

※3. 解一元一次不等式的步驟:

①去分母;

②去括弧;

③移項;

④合並同類項;

⑤系數化為1(不等號的改變問題)

※4. 一元一次不等式基本情形為ax>b(或ax<b)

①當a>0時,解為 ;

②當a=0時,且b<0,則x取一切實數;

當a=0時,且b≥0,則無解;

③當a<0時, 解為 ;

¤5. 不等式應用的探索(利用不等式解決實際問題)

列不等式解應用題基本步驟與列方程解應用題相類似,即:

①審: 認真審題,找出題中的不等關系,要抓住題中的關鍵字眼,如「大於」、「小於」、「不大於」、「不小於」等含義;

②設: 設出適當的未知數;

③列: 根據題中的不等關系,列出不等式;

④解: 解出所列的不等式的解集;

⑤答: 寫出答案,並檢驗答案是否符合題意.

五. 一元一次不等式與一次函數

六. 一元一次不等式組

※1. 定義: 由含有一個相同未知數的幾個一元一次不等式組成的不等式組,叫做一元一次不等式組.

※2. 一元一次不等式組中各個不等式解集的公共部分叫做不等式組的解集.如果這些不等式的解集無公共部分,就說這個不等式組無解.

幾個不等式解集的公共部分,通常是利用數軸來確定.

※3. 解一元一次不等式組的步驟:

(1)分別求出不等式組中各個不等式的解集;

(2)利用數軸求出這些解集的公共部分,即這個不等式組的解集.

兩個一元一次不等式組的解集的四種情況(a、b為實數,且a<b)

一元一次不等式
解集
圖示
敘述語言表達

x>b

兩大取較大

x>a

兩小取小

a<x<b

大小交叉中間找

無解

在大小分離沒有解
(是空集)

第二章 分解因式

一. 分解因式

※1. 把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.

※2. 因式分解與整式乘法是互逆關系.

因式分解與整式乘法的區別和聯系:

(1)整式乘法是把幾個整式相乘,化為一個多項式;

(2)因式分解是把一個多項式化為幾個因式相乘.

二. 提公共因式法

※1.
如果一個多項式的各項含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.

如:

※2. 概念內涵:

(1)因式分解的最後結果應當是「積」;

(2)公因式可能是單項式,也可能是多項式;

(3)提公因式法的理論依據是乘法對加法的分配律,即:

※3. 易錯點點評:

(1)注意項的符號與冪指數是否搞錯;

(2)公因式是否提「干凈」;

(3)多項式中某一項恰為公因式,提出後,括弧中這一項為+1,不漏掉.

三. 運用公式法

※1. 如果把乘法公式反過來,就可以用來把某些多項式分解因式.這種分解因式的方法叫做運用公式法.

※2. 主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3. 易錯點點評:

因式分解要分解到底.如 就沒有分解到底.

※4. 運用公式法:

(1)平方差公式:

①應是二項式或視作二項式的多項式;

②二項式的每項(不含符號)都是一個單項式(或多項式)的平方;

③二項是異號.

(2)完全平方公式:

①應是三項式;

②其中兩項同號,且各為一整式的平方;

③還有一項可正負,且它是前兩項冪的底數乘積的2倍.

※5. 因式分解的思路與解題步驟:

(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組後提取各組公因式或運用公式法來達到分解的目的;

(4)因式分解的最後結果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.

四. 分組分解法:

※1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.

如:

※2. 概念內涵:

分組分解法的關鍵是如何分組,要嘗試通過分組後是否有公因式可提,並且可繼續分解,分組後是否可利用公式法繼續分解因式.

※3. 注意: 分組時要注意符號的變化.

五. 十字相乘法:

※1.對於二次三項式 ,將a和c分別分解成兩個因數的乘積, , , 且滿足 ,往往寫成
的形式,將二次三項式進行分解.

如:

※2. 二次三項式 的分解:

※3. 規律內涵:

(1)理解:把分解因式時,如果常數項q是正數,那麼把它分解成兩個同號因數,它們的符號與一次項系數p的符號相同.

(2)如果常數項q是負數,那麼把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數p的符號相同,對於分解的兩個因數,還要看它們的和是不是等於一次項系數p.

※4. 易錯點點評:

(1)十字相乘法在對系數分解時易出錯;

(2)分解的結果與原式不等,這時通常採用多項式乘法還原後檢驗分解的是否正確.

第三章 分式

一. 分式

※1. 兩個整數不能整除時,出現了分數;類似地,當兩個整式不能整除時,就出現了分式.

整式A除以整式B,可以表示成 的形式.如果除式B中含有字母,那麼稱
為分式,對於任意一個分式,分母都不能為零.

※2. 整式和分式統稱為有理式,即有:

※3. 進行分數的化簡與運算時,常要進行約分和通分,其主要依據是分數的基本性質:

分式的分子與分母都乘以(或除以)同一個不等於零的整式,分式的值不變.

※4.
一個分式的分子、分母有公因式時,可以運用分式的基本性質,把這個分式的分子、分母同時除以它的們的公因式,也就是把分子、分母的公因式約去,這叫做約分.

二. 分式的乘除法

※1. 分式乘以分式,用分子的積做積的分子,分母的積做積的分母;分式除以以分式,把除式的分子、分母顛倒位置後,與被除式相乘.

即: ,

※2. 分式乘方,把分子、分母分別乘方.

即:

逆向運用 ,當n為整數時,仍然有 成立.

※3. 分子與分母沒有公因式的分式,叫做最簡分式.

三. 分式的加減法

※1.
分式與分數類似,也可以通分.根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

※2. 分式的加減法:

分式的加減法與分數的加減法一樣,分為同分母的分式相加減與異分母的分式相加減.

(1)同分母的分式相加減,分母不變,把分子相加減;

上述法則用式子表示是:

(2)異號分母的分式相加減,先通分,變為同分母的分式,然後再加減;

上述法則用式子表示是:

※3. 概念內涵:

通分的關鍵是確定最簡分母,其方法如下:最簡公分母的系數,取各分母系數的最小公倍數;最簡公分母的字母,取各分母所有字母的最高次冪的積,如果分母是多項式,則首先對多項式進行因式分解.

四. 分式方程

※1. 解分式方程的一般步驟:

①在方程的兩邊都乘最簡公分母,約去分母,化成整式方程;

②解這個整式方程;

③把整式方程的根代入最簡公分母,看結果是不是零,使最簡公母為零的根是原方程的增根,必須捨去.

※2. 列分式方程解應用題的一般步驟:

①審清題意;

②設未知數;

③根據題意找相等關系,列出(分式)方程;

④解方程,並驗根;

⑤寫出答案.

第四章 相似圖形

一. 線段的比

※1. 如果選用同一個長度單位量得兩條線段AB, CD的長度分別是m、n,那麼就說這兩條線段的比AB:CD=m:n ,或寫成
.

※2. 四條線段a、b、c、d中,如果a與b的比等於c與d的比,即
,那麼這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.

※3. 注意點:

①a:b=k,說明a是b的k倍;

②由於線段 a、b的長度都是正數,所以k是正數;

③比與所選線段的長度單位無關,求出時兩條線段的長度單位要一致;

_

圖1

_

B

_

C

_

A
④除了a=b之外,a:b≠b:a, 與 互為倒數;

⑤比例的基本性質:若 , 則ad=bc; 若ad=bc, 則

二. 黃金分割

※1. 如圖1,點C把線段AB分成兩條線段AC和BC,如果
,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.

※2.黃金分割點是最優美、最令人賞心悅目的點.

四. 相似多邊形

¤1. 一般地,形狀相同的圖形稱為相似圖形.

※2. 對應角相等、對應邊成比例的兩個多邊形叫做相似多邊形.相似多邊形對應邊的比叫做相似比.

五. 相似三角形

※1. 在相似多邊形中,最為簡簡單的就是相似三角形.

※2. 對應角相等、對應邊成比例的三角形叫做相似三角形.相似三角形對應邊的比叫做相似比.

※3. 全等三角形是相似三角的特例,這時相似比等於1.
注意:證兩個相似三角形,與證兩個全等三角形一樣,應把表示對應頂點的字母寫在對應的位置上.

※4. 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比.

※5. 相似三角形周長的比等於相似比.

※6. 相似三角形面積的比等於相似比的平方.

六.探索三角形相似的條件

_

圖2

_

F

_

E

_

D

_

C

_

B

_

A

_

l

_

3

_

l

_

2

_

l

_

1
※1. 相似三角形的判定方法:

一般三角形
直角三角形
基本定理:平行於三角形的一邊且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形與原三角形相似.
①兩角對應相等;
②兩邊對應成比例,且夾角相等;
③三邊對應成比例.
①一個銳角對應相等;
②兩條邊對應成比例:
a. 兩直角邊對應成比例;
b. 斜邊和一直角邊對應成比例.

※2. 平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.

如圖2, l1 //
l2 // l3,則 .

※3. 平行於三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似.

八. 相似的多邊形的性質

※相似多邊形的周長等於相似比;面積比等於相似比的平方.

九. 圖形的放大與縮小

※1. 如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一點,那麼這樣的兩個圖形叫做位似圖形;
這個點叫做位似中心; 這時的相似比又稱為位似比.

※2. 位似圖形上任意一對對應點到位似中心的距離之比等於位似比.

◎3. 位似變換:

①變換後的圖形,不僅與原圖相似,而且對應頂點的連線相交於一點,並且對應點到這一交點的距離成比例.像這種特殊的相似變換叫做位似變換.這個交點叫做位似中心.

②一個圖形經過位似變換後得到另一個圖形,這兩個圖形就叫做位似形.

③利用位似的方法,可以把一個圖形放大或縮小.

第五章 數據的收集與處理

一. 每周幹家務活的時間

※1. 所要考察的對象的全體叫做總體;

把組成總體的每一個考察對象叫做個體;

從總體中取出的一部分個體叫做這個總體的一個樣本.

※2. 為一特定目的而對所有考察對象作的全面調查叫做普查;

為一特定目的而對部分考察對象作的調查叫做抽樣調查.

二. 數據的收集

※1. 抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.

而估計值是否接近實際情況還取決於樣本選得是否有代表性.

第六章 證明(一)

二. 定義與命題

※1. 一般地,能明確指出概念含義或特徵的句子,稱為定義.

定義必須是嚴密的.一般避免使用含糊不清的術語,例如「一些」、「大概」、「差不多」等不能在定義中出現.

※2. 可以判斷它是正確的或是錯誤的句子叫做命題.

正確的命題稱為真命題,錯誤的命題稱為假命題.

※3.
數學中有些命題的正確性是人們在長期實踐中總結出來的,並且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.

※4.
有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,並且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.

¤5. 根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.

三. 為什麼它們平行

※1. 平行判定公理: 同位角相等,兩直線平行.(並由此得到平行的判定定理)

※2. 平行判定定理: 同旁內互補,兩直線平行.

※3. 平行判定定理: 同錯角相等,兩直線平行.

四. 如果兩條直線平行

※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;

※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;

※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.

五. 三角形和定理的證明

※1. 三角形內角和定理: 三角形三個內角的和等於180°

¤2. 一個三角形中至多隻有一個直角

¤3. 一個三角形中至多隻有一個鈍角

¤4. 一個三角形中至少有兩個銳角

六. 關注三角形的外角

※1. 三角形內角和定理的兩個推論:

推論1: 三角形的一個外角等於和它不相鄰的兩個內角的和;

推論2: 三角形的一個外角大於任何一個和它不相鄰的內角.

㈡ 現在新版人教版的八年級下冊的數學書有哪幾章

第十一章 三角形
本章綜合解說
11.1 與三角形有關的線段
11.2 與三角形有關的角
11.3多邊形及其內角和
本章大歸納
第十二章 全等三角形
本章綜合解說
12.1全等三角形
12.2三角形全等的判定
12.3 角的平分線的性質
本章大歸納
本章綜合解說
第十三章 軸對稱
13.1 軸對稱
13.2畫軸對稱圖形
13.3等腰三角形
13.4課題學習 最短路徑問題
本章大歸納
第十四章 整式的乘法與因式分解
本章綜合解說
14.1整式的乘法
14.2乘法公式
14.3 因式分解
本章大歸納
第十五章 分式
本章綜合解說
15.1分 式
15.2分式的運算
15.3分式方程

㈢ 急求蘇教版初中數學書電子版(只要八下,九上,九下)!!!

《初中數學蘇科版八年級下冊綜合資料包》網路網盤資源免費下載

鏈接: https://pan..com/s/1h2hg5_sFVCMeUBXkM4dx3w

?pwd=b2ki 提取碼: b2ki

初中數學蘇科版八年級下冊綜合資料包|蘇科版八年級數學下冊:全冊課件+學案(76份).rar|八年級數學下冊教學設計+教學課件+動畫演示+知識拓展打包128份.rar|八年級數學下冊 全一冊教案+導學案(打包94套)(新版)蘇科版.rar

㈣ 八年級下冊數學書人教版2022有變動嗎

八年級下冊數學書人教版2022沒有變動
人教版即由人民教育出版社出版的教材版本名稱。人教版教材涵蓋小學到高中的內容,是大多數學校所用的教材。
統編版教材是國家教育部中的行政部門統組織編寫的教材,人教版教材是人民教育出版社出版的書籍。教材的版本很多,統編版和人教版只是其中的兩種,除這兩種外,還有冀教版、蘇教版、北師大版,主編部門不同,應用的區域范圍也不同。
統編版和人教版教材的應用范圍都比較廣泛,小學到高中都有這兩個版本的教材。也是大多數學校所用的教材。統編版和人教版都要國家審核通過才能出版。

㈤ 八年級下冊數學人教版第一章內容是什麼

分式 :
1、分式的概念
所謂分式指的是形如A/B,A、B是整式,B中含有字母且B不等於0的式子。其中A叫做分式的分子,B叫做分式的分母。如x/y是分式,還有x(y+2)/y也是分式。
2、分式的基本性質
分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=(A*C)/(B*C), A/B=(A÷C)/(B÷C)(A,B,C為整式,且B、C不等於0)。
3、分式的乘除運演算法則
分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。用字母表示為:a/b * c/d=ac/bd。
分式的除法法則:
(1).兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘。例如a/b÷c/d=ad/bc。
(2).除以一個分式,等於乘以這個分式的倒數:例如:a/b÷c/d=a/b*d/c。
4、分式的加減運演算法則
.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減。用字母表示為:a/c±b/c=(a±b)/c。異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算。用字母表示為:a/b±c/d=(ad±cb)/bd。
5、含字母系數的方程
6.分式方程
分母中含有未知數的方程叫做分式方程。
7.a=bc型數量關系
8.分式方程的應用

㈥ 八年級下冊數學課本每一節的整理

湘教版八年級下冊數學知識歸納
第一章節 直角三角形 第二章節 四邊形 第三章節圖形與坐標 第四章節一次函數 第五章節數據的頻數分布
第一章節 直角三角形
歸納作者 唐 瑤
第一章 直角三角形的兩個銳角互余。 直角三角形的兩個銳角相加和為90 ° 有兩個角互余的三角形是直角三角形。 兩個銳角相加和為90 ° ,那麼這個三角形是直角三角形。
直角三角形斜邊上的中線等於斜邊的一半。標注時一般要標三條線段。
在直角三角形中,如果一個銳角等於30 °,那麼它所對的直角邊等於斜邊的一半。一股都是用來計算或填空。
在直角三角形中,如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的角等於30 °
直角三角形兩直角邊a,b的平方和,等於斜邊c的平方。 即:a²+b²=c²
通常我們稱較短的一邊為勾,較長的一邊為股,斜邊為弦,因此這一性質被稱為勾股定理。
如果三角形的三條邊長a,b,c滿足關系;a²+b²=c²,那麼這個三角形是直角三角形。
斜邊直角邊定理斜邊和一條直角邊對應相等的兩個直角三角形全等〔可以間接寫成「斜邊 、直角邊」定理 或 HL 定理 〕.
角的平分線上的點到角的兩邊的距離相等。通常是用來計算,填空,證明等等。
角的內部到角的兩邊距離相等的點在角的平方線上。 用來判斷角平分線或者證明。

注意:
1「斜邊 、直角邊定理」是判斷兩個直角三角形全等所獨有的,在運用該判定定理時,要注意全等的前提條件是兩個直角三角形。
2要注意文章中的互逆命題,如直角三角形的性質和判定定理,勾股定理及其逆定理,角平分線的性質定理及其逆定理等,它們都互為逆命題。
3勾股定理及其逆定理都體現了數形結合的思想,勾股定理體現了由形到數,而勾股定理的逆定理是用代數方法來研究幾何問題,提現了由數到形。
第二章 四邊形
廖燕怡供稿

多邊形: 在平面內,由一些線段首尾順次相接組成的封閉圖形叫作多邊形。
組成多邊形的各條線段叫作多邊形的邊。 相鄰兩條邊的公共端點叫做多邊形的頂點。
連接不相鄰的兩個頂點的線段叫作多邊形的對角線。 相鄰兩邊組合的角叫作多邊形的內角,簡稱多邊形的角。 在平面內,邊相等、角也相等的多邊形叫作正多邊形。
多邊形內角和公式:n邊形的內角和等於(n-2)·180° 多邊形的內角的一邊與另一邊的反向延長所組成的角叫作這個多邊形的一個外角。 在多邊形的每個頂點處去一個外角,他們的和叫做這個多邊形的外角和。 n邊形的外角和與邊數沒有關系。任意多邊形的外角和等於360°,這與邊數多少無關,只要是多邊形。
平行四邊形:
平行四邊形的性質:兩組對邊分別平行的四邊形叫作平行四邊形。 這是定理概念。
平行四邊形性質定理一:平行四邊形的對邊相等,平行四邊形的對角相等。夾在兩條平行線間的平行線段相等。
平行四邊形性質定理二:平行四邊形的對角線互相平分。
平行四邊形的判定:判定定理一:一組對邊平行且相等的四邊形是平行四邊形 。
判定定理二:兩組對邊分別相等的四邊形是平行四邊形。
形判定定理三:對角線互相平分的四邊形是平行四邊形。兩組對角分別相等的四邊形是平行四邊形。
中心對稱和中心對稱圖形 在平面內,一個圖形上的每一個點對應到它在繞點O旋轉180°的相,這個變換稱為關於點O的中心對稱。 在平面內,如果一個圖形繞點旋轉180°,得到的像與另一個圖形重合,那麼稱這兩個圖形關於點O成中心對稱,點O叫作對稱中心。
性質:成中心對稱的兩個圖形中提供,對應點的連線經過對稱中心,且被對稱中心平分。
如果一個圖形繞點旋轉180°,所得到的像與原來的圖形互相重合,那麼這個圖形叫作中心對稱圖形,這個點叫作它的對稱中心。由上可得:線段是中心對稱圖形,線段的中心是它的對稱中心。平行四邊形是中心對稱圖形,對角線的交點是它的對稱中心。 線段也是中心對稱圖形。
三角形的中位線:連接三角形兩邊中點的線段叫作三角形的中位線。一個三角形有三條中位線。 中位線定理:三角形的每一條中位線都平行於第三邊,並且等於第三邊的一半。這個定理通常是用來計算或者填空和證明用。
矩形: 有一個角是直角的平行四邊形叫作矩形,也稱長方形。矩形的四個角都是直角,對邊相等,對角線互相平分。矩形是中心對稱圖形,對角線的交點是它的對稱中心。矩形的對角線相等。矩形還是軸對稱圖像,過每一組對邊中點的直線都是矩形的對稱軸(共有兩條對稱軸)。
矩形的判定:三個角是直角的四邊形是矩形。 對角線相等的平行四邊形是矩形。
菱形:定義:一組鄰邊相等的平行四邊形叫作菱形。
性質:菱形的四條邊都相等,對角相等,對角線互相平分。菱形是中心對稱圖形,對角線的交點是它的對稱中心。菱形的對角線互相垂直。菱形是軸對稱圖形,兩條對角線所在直線都是它的對稱軸。知道菱形的邊長,一般要標明四個邊的長,知道對角線長時,一般是只標它的一半長度。 菱形的面積是兩對角線長度乘積的一半。
判定:四條邊都相等的四邊形是菱形。 對角線互相垂直的平行四邊形是菱形。
正方形:我們把有一組鄰邊相等且有一個角是直角的平行四邊形叫作正方形。
性質:正方形的四條邊都相等,四個角都是直角。正方行的對角線相等,且互相垂直平分。
正方形是中心對稱圖形,對角線的交點是它的對稱中心。正方形也是軸對稱圖形(要注意它有4條對稱軸)。正方形是軸對稱圖形,兩條對角線所在直線,以及過每一組對邊中點的直線都是它的對稱軸。

第三章:平面直角坐標系
蔡博文供稿

為了用有序實數對表示平面內的一個點,可以在平面內畫兩條互相垂直的數軸,其中一條叫橫軸〔abscissa axis,通常稱為x軸〕,另一條叫縱軸〔ordinate axis,通常稱為y軸〕,它們的交點O是這兩條數軸的原點.通常,我們取橫軸向右為正方向,縱軸向上為正方向,橫軸與縱軸的單位長度通常取成一致〔有時也可以不一致〕,這樣建立的兩條數軸構成平面直角坐標系〔orthogonal coordinate system〕,記作Oxy,
在建立了平面直角坐標系後,平面上的點與有序實數對一一對應,
① 平面坐標軸分為四個象限,分別用I,II,III,IV表示或者一,二,三,四表示(通常還是用後面的這種方法來表示)。
② 並一,二,三,四象限的符號分別為(+. + ) ( -. + ) ( -. - ) ( +. - )
③ 平面直角坐標軸有橫軸縱軸分別用X .Y表示。如點A(4,-3)表示到Y軸有4個單位長度,到X軸有3單位長度,且在第四象限的這么一個點。而點B(- 3 , 4 )表示到Y軸有3個單位長度,到X軸有4單位長度,且在第二象限的這么一個點。
④ 到X軸的距離是Y軸的絕對值 點A(4 ,- 3 )到Y軸有4個單位。
到Y軸的距離是X軸的絕對值 點B(- 3 ,4 )到X軸有4個單位。
⑤ 軸對稱坐標表示,關於哪個軸對稱哪個軸的符號不變。
⑥ 平移的坐標表示上下移加Y或減Y 左右移減-X或加X
本章知識結構:

平面上物體位置的確定

↓ ← ← ← ← ↓ → → → → ↓
↓ ↓ ↓
方位角與距離 平面直角坐標系 其他方法
點的坐標
↓ ↓ ↓
← ← ← ← ↓ → → → →
↓ ↓
簡單圖形的坐標表示 軸對稱和平移的坐標表示

第四章 一次函數
謝 倩 供稿
【函數和它的表示法】 ﹛變數與函數﹜ 在討論的問題中,取值會發生變化的量稱為變數,取值固定不變的量稱為常量(或常數)。
一般的,如果變數y隨著變數x而變化,並且對於x取得每一個值,y都有唯一的一個值與它對應,那麼稱y是x的函數,記作y=f(x)。這時把x叫做自變數,把y叫做因變數。對於自變數x取得每一個值a,因變數y的對應值稱為函數值,記作f(a)。
函數的傳統定義:設有兩個變數x、y,如果對於x在某一范圍內的每一個確定的值,y都有唯一確定的值與它對應,y=f(x),那麼就稱y是x的函數,x叫做自變數。注間,我們通常說 「縱坐標是橫坐標的函數」。
﹛函數的表示法﹜ 建立平面直角坐標系,以自變數取得每一個值為橫坐標,以相應的函數值(即因變數的對應值)為縱坐標,描出每一個點,由所有這些點組成的圖形稱為這個函數的圖象。這種表示函數關系的方法稱為圖象法。
列一張表第一行表示自變數取的第一個值,第二行表示相應的函數值(即因變數Y的對應值),這種表示函數關系的方法稱為列表法。
用式子表示函數關系的方法稱為公式法,這樣的式子稱為函數的表達式。y=f(x)
如 : Y=8X Y=- 5X Y=3X+6 Y=7-2X
【一次函數】 關於自變數的一次式,像這樣的函數稱為一次函數,它的一般形式是: y=kx+b ( k, b為常數,k≠0). K值的正號決定了函數是上升——斜上 K值的負號決定了函數是下降——斜下
特別地,當b=0時,一次函數 y=kx ( k為常數且k≠0)也叫作正比例函數,其中k叫作比例系數。 正比例函數是經過原點且最簡單的函數。
一次函數的特徵是:因變數隨自變數的變化是均勻的(即自變數每增加1個最小單位,因變數都增加(或都減少)相同的數量 。
【一次函數的圖象】 類似的,數學上已經證明 :正比例函數y=kx ( k為常數,k≠0)的圖象是一條直線,由於兩點確定一條直線,因此畫正比例函數的圖象,只要描出圖象上的兩個點就行了,然後過這兩點作一條直線即可,我們常常把這條直線叫作「直線y=kx」.
一般的,直線y=kx ( k為常數,k≠0) 是一條經過原點的直線,當k>0時,直線y=kx經過第三、一象限從左向右上升,y隨x的增大而增大;當k<0時,直線y=kx經過第二、四象限從左向右下降,y隨x的增大而減小。 多是填空題目和判斷題。
類似的,可以證明,一次函數y=kx+b的圖象是一條直線,它與正比例函數y=kx的圖象平行,一次函數y=kx+b ( k, b為常數,k≠0)的圖象可以看作由直線y=kx平移|b|個單位長度而得到( 當b>0時,向上平移;當b<0時,向下平移)。
【用待定系數法確定一次函數表達式】 像這樣,通過先設定函數表達式(確定函數模型),再根據條件確定表達式中的未知系數,從而求出函數的表達式的方法稱為待定系數法。
先設這個函數為 y=kx+b 然後代入二個點的坐標值,得兩個方程,求出K與b,這時這個函數也就得出來了。

第五章 數據的頻數分布
黃騰逸供稿
1 不同小組中的數據個數稱頻數
2 當組距和組數無法確定無固定標准,可依數據個數多少分成5~12組(當數據在100個以內時)
3 繪制頻數直方圖時應注意:橫縱軸加上刻度,表明代表名稱和單位;小矩形邊界對應於各組的組界;
小長方形的面積: 組距*(頻數/組距)=頻數 請看 P157
4 繪制直方圖時注意組距選取不能過寬或者過窄。
5 頻數直方圖本質上是一種條形統計圖,注意體會它們的區別和聯系

㈦ 北師大版8下數學書!!

沒有掃描儀,打給你吧,看我打得這么辛苦,給點分吧
P221:

⒊某種植物適宜生長在溫度為16℃~20℃的山坡上,已知山區海拔每升高100m氣溫便下降0.55℃,測出山腳下的平均氣溫為22℃,那麼該植物種在山的哪一部分為宜?
⒋三個連續自然數的和小於15,這樣的自然數組共有多少?把它們分別寫出來。
⒌甲、乙兩家旅行社為了吸引更多顧客,分別推出了赴某地旅遊的團體優惠辦法。甲旅行社的優惠辦法是:買4張全票,其餘人按半價優惠;乙旅行社的優惠辦法是:一律按原價的3/4優惠。已知這兩家旅行社的原價均為每人100元,那麼隨著團體人數的變化,哪家旅行社的收費更優惠?
⒍某地為促進淡水養殖業的發展,決定對淡水魚的養殖提供政府補貼,以使淡水魚的價格控制在6~12元/千克之間。據市場調查,
如果淡水魚的市場價格為α元/千克,政府補貼為t元/千克,那麼要使每日市場的淡水魚供應量與需求量正好相等,t與α應滿足關系式:
100(α+t-8)=270-3α
為使市場價格不高於10元/千克,政府補貼至少應為多少?
⒎某校組織師生春遊,若單獨租用45座客車若干輛,剛剛好坐滿;若單獨租用60座客車,則可以少租1輛,且餘30個空座位。
(1)求該校參加春遊的人數;
(2)該校決定這次春遊同時租用這兩種車,其中60座客車比45座客車多租1輛,這樣要比單獨租用一種車輛節省租金。已知45座客車的租金為沒輛250元,60座客車為每輛300元,請你幫助計算本次春遊所需車輛的租金。
⒏分解因式:
(1)xy(x-y)-x(x-y)^2; (2)-α^2+1.96b^2;

閱讀全文

與數學書8下內容是什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:743
乙酸乙酯化學式怎麼算 瀏覽:1408
沈陽初中的數學是什麼版本的 瀏覽:1356
華為手機家人共享如何查看地理位置 瀏覽:1048
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:889
數學c什麼意思是什麼意思是什麼 瀏覽:1414
中考初中地理如何補 瀏覽:1306
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:706
數學奧數卡怎麼辦 瀏覽:1394
如何回答地理是什麼 瀏覽:1029
win7如何刪除電腦文件瀏覽歷史 瀏覽:1060
大學物理實驗干什麼用的到 瀏覽:1490
二年級上冊數學框框怎麼填 瀏覽:1705
西安瑞禧生物科技有限公司怎麼樣 瀏覽:988
武大的分析化學怎麼樣 瀏覽:1252
ige電化學發光偏高怎麼辦 瀏覽:1341
學而思初中英語和語文怎麼樣 瀏覽:1658
下列哪個水飛薊素化學結構 瀏覽:1427
化學理學哪些專業好 瀏覽:1490
數學中的棱的意思是什麼 瀏覽:1064