導航:首頁 > 數字科學 > 有多少位算出圓周率的數學家

有多少位算出圓周率的數學家

發布時間:2022-09-20 07:14:16

⑴ 最早計算出圓周率的人是誰

最早計算出圓周率的人是祖沖之。祖沖之算出圓周率(π)的真值在3.1415926和3.1415927之間,相當於精確到小數第7位,簡化成3.1415926,祖沖之因此入選世界紀錄協會世界第一位將圓周率值計算到小數第7位的科學家。

(1)有多少位算出圓周率的數學家擴展閱讀

祖沖之(429-500),字文遠。出生於建康(今南京),祖籍范陽郡遒縣(今河北淶水縣),中國南北朝時期傑出的數學家、天文學家。

祖沖之一生鑽研自然科學,其主要貢獻在數學、天文歷法和機械製造三方面。他在劉徽開創的探索圓周率的精確方法的基礎上,首次將「圓周率」精算到小數第七位,即在3.1415926和3.1415927之間,他提出的「祖率」對數學的研究有重大貢獻。直到16世紀,阿拉伯數學家阿爾·卡西才打破了這一紀錄。

由他撰寫的《大明歷》是當時最科學最進步的歷法,對後世的天文研究提供了正確的方法。其主要著作有《安邊論》《綴術》《述異記》《歷議》等。

西晉末期,北方發生大規模戰亂,祖沖之的先輩從河北遷徙到江南,並在江南定居下來。祖沖之就出生在江南,其祖父祖昌任劉宋朝大匠卿,是朝廷管理土木工程的官吏,父親祖朔之做「奉朝請」,學識淵博,常被邀請參加皇室的典禮、宴會。

祖沖之從小就受到很好的家庭教育。爺爺給他講「斗轉星移」,父親領他讀經書典籍,家庭的熏陶,耳濡目染,加之自己的勤奮,使他對自然科學和文學、哲學,特別是天文學產生了濃厚的興趣,在青年時代就有了博學的名聲。

⑵ 世界數學史上有哪些人在圓周率上做出了突出貢獻

圓周率是一個極其馳名的數。從有文字記載的歷史開始,這個數就引進了外行人和學者們的興趣。作為一個非常重要的常數,圓周率最早是出於解決有關圓的計算問題。僅憑這一點,求出它的盡量准確的近似值,就是一個極其迫切的問題了。事實也是如此,幾千年來作為數學家們的奮斗目標,古今中外一代一代的數學家為此獻出了自己的智慧和勞動。回顧歷史,人類對 π 的認識過程,反映了數學和計算技術發展情形的一個側面。 π 的研究,在一定程度上反映這個地區或時代的數學水平。德國數學史家康托說:「歷史上一個國家所算得的圓周率的准確程度,可以作為衡量這個國家當時數學發展水平的指標。」直到19世紀初,求圓周率的值應該說是數學中的頭號難題。為求得圓周率的值,人類走過了漫長而曲折的道路,它的歷史是饒有趣味的。我們可以將這一計算歷程分為幾個階段。

實驗時期

通過實驗對 π 值進行估算,這是計算 π 的的第一階段。這種對 π 值的估算基本上都是以觀察或實驗為根據,是基於對一個圓的周長和直徑的實際測量而得出的。在古代世界,實際上長期使用 π =3這個數值。最早見於文字記載的有基督教《聖經》中的章節,其上取圓周率為3。這一段描述的事大約發生在公元前950年前後。其他如巴比倫、印度、中國等也長期使用3這個粗略而簡單實用的數值。在我國劉徽之前「圓徑一而周三」曾廣泛流傳。我國第一部《周髀算經》中,就記載有圓「周三徑一」這一結論。在我國,木工師傅有兩句從古流傳下來的口訣:叫做:「周三徑一,方五斜七」,意思是說,直徑為1的圓,周長大約是3,邊長為5的正方形,對角線之長約為7。這正反映了早期人們對圓周率 π 和√2 這兩個無理數的粗略估計。東漢時期官方還明文規定圓周率取3為計算面積的標准。後人稱之為「古率」。

早期的人們還使用了其它的粗糙方法。如古埃及、古希臘人曾用穀粒擺在圓形上,以數粒數與方形對比的方法取得數值。或用勻重木板鋸成圓形和方形以秤量對比取值……由此,得到圓周率的稍好些的值。如古埃及人應用了約四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世紀,曾取 π= √10 = 3.162。在我國東、西漢之交,新朝王莽令劉歆製造量的容器――律嘉量斛。劉歆在製造標准容器的過程中就需要用到圓周率的值。為此,他大約也是通過做實驗,得到一些關於圓周率的並不劃一的近似值。現在根據銘文推算,其計算值分別取為3.1547,3.1992,3.1498,3.2031比徑一周三的古率已有所進步。人類的這種探索的結果,當主要估計圓田面積時,對生產沒有太大影響,但以此來製造器皿或其它計算就不合適了。

幾何法時期

憑直觀推測或實物度量,來計算 π 值的實驗方法所得到的結果是相當粗略的。

真正使圓周率計算建立在科學的基礎上,首先應歸功於阿基米德。他是科學地研究這一常數的第一個人,是他首先提出了一種能夠藉助數學過程而不是通過測量的、能夠把 π 的值精確到任意精度的方法。由此,開創了圓周率計算的第二階段。

圓周長大於內接正四邊形而小於外切正四邊形,因此 2√2 < π < 4 。
當然,這是一個差勁透頂的例子。據說阿基米德用到了正96邊形才算出他的值域。

阿基米德求圓周率的更精確近似值的方法,體現在他的一篇論文《圓的測定》之中。在這一書中,阿基米德第一次創用上、下界來確定 π 的近似值,他用幾何方法證明了「圓周長與圓直徑之比小於 3+(1/7) 而大於 3 + (10/71) 」,他還提供了誤差的估計。重要的是,這種方法從理論上而言,能夠求得圓周率的更准確的值。到公元150年左右,希臘天文學家托勒密得出 π =3.1416,取得了自阿基米德以來的巨大進步。

割圓術。不斷地利用勾股定理,來計算正N邊形的邊長。

在我國,首先是由數學家劉徽得出較精確的圓周率。公元263年前後,劉徽提出著名的割圓術,得出 π =3.14,通常稱為「徽率」,他指出這是不足近似值。雖然他提出割圓術的時間比阿基米德晚一些,但其方法確有著較阿基米德方法更美妙之處。割圓術僅用內接正多邊形就確定出了圓周率的上、下界,比阿基米德用內接同時又用外切正多邊形簡捷得多。另外,有人認為在割圓術中劉徽提供了一種絕妙的精加工辦法,以致於他將割到192邊形的幾個粗糙的近似值通過簡單的加權平均,竟然獲得具有4位有效數字的圓周率 π =3927/1250 =3.1416。而這一結果,正如劉徽本人指出的,如果通過割圓計算得出這個結果,需要割到3072邊形。這種精加工方法的效果是奇妙的。這一神奇的精加工技術是割圓術中最為精彩的部分,令人遺憾的是,由於人們對它缺乏理解而被長期埋沒了。

恐怕大家更加熟悉的是祖沖之所做出的貢獻吧。對此,《隋書·律歷志》有如下記載:「宋末,南徐州從事祖沖之更開密法。以圓徑一億為丈,圓周盈數三丈一尺四寸一分五厘九毫二秒七忽,朒數三丈一尺四寸一分五厘九毫二秒六忽,正數在盈朒二限之間。密率:圓徑一百一十三,圓周三百五十五。約率,圓徑七,周二十二。」

這一記錄指出,祖沖之關於圓周率的兩大貢獻。其一是求得圓周率

3.1415926 < π < 3.1415927

其二是,得到 π 的兩個近似分數即:約率為22/7;密率為355/113。

他算出的 π 的8位可靠數字,不但在當時是最精密的圓周率,而且保持世界記錄九百多年。以致於有數學史家提議將這一結果命名為「祖率」。

這一結果是如何獲得的呢?追根溯源,正是基於對劉徽割圓術的繼承與發展,祖沖之才能得到這一非凡的成果。因而當我們稱頌祖沖之的功績時,不要忘記他的成就的取得是因為他站在數學偉人劉徽的肩膀上的緣故。後人曾推算若要單純地通過計算圓內接多邊形邊長的話,得到這一結果,需要算到圓內接正12288邊形,才能得到這樣精確度的值。祖沖之是否還使用了其它的巧妙辦法來簡化計算呢?這已經不得而知,因為記載其研究成果的著作《綴術》早已失傳了。這在中國數學發展史上是一件極令人痛惜的事。

中國發行的祖沖之紀念郵票
祖沖之的這一研究成果享有世界聲譽:巴黎「發現宮」科學博物館的牆壁上著文介紹了祖沖之求得的圓周率,莫斯科大學禮堂的走廊上鑲嵌有祖沖之的大理石塑像,月球上有以祖沖之命名的環形山……

對於祖沖之的關於圓周率的第二點貢獻,即他選用兩個簡單的分數尤其是用密率來近似地表示 π 這一點,通常人們不會太注意。然而,實際上,後者在數學上有更重要的意義。

密率與 π 的近似程度很好,但形式上卻很簡單,並且很優美,只用到了數字1、3、5。數學史家梁宗巨教授驗證出:分母小於16604的一切分數中,沒有比密率更接近 π 的分數。在國外,祖沖之死後一千多年,西方人才獲得這一結果。

可見,密率的提出是一件很不簡單的事情。人們自然要追究他是採用什麼辦法得到這一結果的呢?他是用什麼辦法把圓周率從小數表示的近似值化為近似分數的呢?這一問題歷來為數學史家所關注。由於文獻的失傳,祖沖之的求法已不為人知。後人對此進行了各種猜測。

讓我們先看看國外歷史上的工作,希望能夠提供出一些信息。

1573年,德國人奧托得出這一結果。他是用阿基米德成果22/7與托勒密的結果377/120用類似於加成法「合成」的:(377-22) / (120-7) = 355/113。

1585年,荷蘭人安托尼茲用阿基米德的方法先求得:333/106 < π < 377/120,用兩者作為 π 的母近似值,分子、分母各取平均,通過加成法獲得結果:3 ((15+17)/(106+120) = 355/113。

兩個雖都得出了祖沖之密率,但使用方法都為偶合,無理由可言。

在日本,十七世紀關孝和重要著作《括要演算法》卷四中求圓周率時創立零約術,其實質就是用加成法來求近似分數的方法。他以3、4作為母近似值,連續加成六次得到祖沖之約率,加成一百十二次得到密率。其學生對這種按部就班的笨辦法作了改進,提出從相鄰的不足、過剩近似值就近加成的辦法,(實際上就是我們前面已經提到的加成法)這樣從3、4出發,六次加成到約率,第七次出現25/8,就近與其緊鄰的22/7加成,得47/15,依次類推,只要加成23次就得到密率。

錢宗琮先生在《中國算學史》(1931年)中提出祖沖之採用了我們前面提到的由何承天首創的「調日法」或稱加權加成法。他設想了祖沖之求密率的過程:以徽率157/50,約率22/7為母近似值,並計算加成權數x=9,於是 (157 + 22×,9) / (50+7×9) = 355/113,一舉得到密率。錢先生說:「沖之在承天後,用其術以造密率,亦意中事耳。」

另一種推測是:使用連分數法。

由於求二自然數的最大公約數的更相減損術遠在《九章算術》成書時代已流行,所以藉助這一工具求近似分數應該是比較自然的。於是有人提出祖沖之可能是在求得盈 二數之後,再使用這個工具,將3.14159265表示成連分數,得到其漸近分數:3,22/7,333/106,355/113,102573/32650…

最後,取精確度很高但分子分母都較小的355/113作為圓周率的近似值。至於上面圓周率漸近分數的具體求法,這里略掉了。你不妨利用我們前面介紹的方法自己求求看。英國李約瑟博士持這一觀點。他在《中國科學技術史》卷三第19章幾何編中論祖沖之的密率說:「密率的分數是一個連分數漸近數,因此是一個非凡的成就。」

我國再回過頭來看一下國外所取得的成果。

1150年,印度數學家婆什迦羅第二計算出 π= 3927/1250 = 3.1416。1424年,中亞細亞地區的天文學家、數學家卡西著《圓周論》,計算了3×228=805,306,368邊內接與外切正多邊形的周長,求出 π 值,他的結果是:

π=3.14159265358979325

有十七位準確數字。這是國外第一次打破祖沖之的記錄。

16世紀的法國數學家韋達利用阿基米德的方法計算 π 近似值,用 6×216正邊形,推算出精確到9位小數的 π 值。他所採用的仍然是阿基米德的方法,但韋達卻擁有比阿基米德更先進的工具:十進位置制。17世紀初,德國人魯道夫用了幾乎一生的時間鑽研這個問題。他也將新的十進制與早的阿基米德方法結合起來,但他不是從正六邊形開始並將其邊數翻番的,他是從正方形開始的,一直推導出了有262條邊的正多邊形,約4,610,000,000,000,000,000邊形!這樣,算出小數35位。為了記念他的這一非凡成果,在德國圓周率 π 被稱為「魯道夫數」。但是,用幾何方法求其值,計算量很大,這樣算下去,窮數學家一生也改進不了多少。到魯道夫可以說已經登峰造極,古典方法已引導數學家們走得很遠,再向前推進,必須在方法上有所突破。

17世紀出現了數學分析,這銳利的工具使得許多初等數學束手無策的問題迎刃而解。 π 的計算歷史也隨之進入了一個新的階段。

分析法時期

這一時期人們開始擺脫求多邊形周長的繁難計算,利用無窮級數或無窮連乘積來算 π 。

1593年,韋達給出

這一不尋常的公式是 π 的最早分析表達式。甚至在今天,這個公式的優美也會令我們贊嘆不已。它表明僅僅藉助數字2,通過一系列的加、乘、除和開平方就可算出 π 值。

接著有多種表達式出現。如沃利斯1650年給出:

1706年,梅欽建立了一個重要的公式,現以他的名字命名:

再利用分析中的級數展開,他算到小數後100位。

這樣的方法遠比可憐的魯道夫用大半生時間才摳出的35位小數的方法簡便得多。顯然,級數方法宣告了古典方法的過時。此後,對於圓周率的計算像馬拉松式競賽,紀錄一個接著一個:

1844年,達塞利用公式:

算到200位。

19世紀以後,類似的公式不斷涌現, π 的位數也迅速增長。1873年,謝克斯利用梅欽的一系列方法,級數公式將 π 算到小數後707位。為了得到這項空前的紀錄,他花費了二十年的時間。他死後,人們將這凝聚著他畢生心血的數值,銘刻在他的墓碑上,以頌揚他頑強的意志和堅韌不拔的毅力。於是在他的墓碑上留下了他一生心血的結晶: π 的小數點後707位數值。這一驚人的結果成為此後74年的標准。此後半個世紀,人們對他的計算結果深信不疑,或者說即便懷疑也沒有辦法來檢查它是否正確。以致於在1937年巴黎博覽會發現館的天井裡,依然顯赫地刻著他求出的 π 值。

又過了若干年,數學家弗格森對他的計算結果產生了懷疑,其疑問基於如下猜想:在 π 的數值中,盡管各數字排列沒有規律可循,但是各數碼出現的機會應該相同。當他對謝克斯的結果進行統計時,發現各數字出現次數過於參差不齊。於是懷疑有誤。他使用了當時所能找到的最先進的計算工具,從1944年5月到1945年5月,算了整整一年。1946年,弗格森發現第528位是錯的(應為4,誤為5)。謝克斯的值中足足有一百多位全都報了銷,這把可憐的謝克斯和他的十五年浪費了的光陰全部一筆勾銷了。

對此,有人曾嘲笑他說:數學史在記錄了諸如阿基米德、費馬等人的著作之餘,也將會擠出那麼一、二行的篇幅來記述1873年前謝克斯曾把 π 計算到小數707位這件事。這樣,他也許會覺得自己的生命沒有虛度。如果確實是這樣的話,他的目的達到了。

人們對這些在地球的各個角落裡作出不懈努力的人感到不可理解,這可能是正常的。但是,對此做出的嘲笑卻是過於殘忍了。人的能力是不同的,我們無法要求每個人都成為費馬、高斯那樣的人物。但成為不了偉大的數學家,並不意味著我們就不能為這個社會做出自己有限的貢獻。人各有其長,作為一個精力充沛的計算者,謝克斯願意獻出一生的大部分時光從事這項工作而別無報酬,並最終為世上的知識寶庫添了一小塊磚加了一個塊瓦。對此我們不應為他的不懈努力而感染並從中得到一些啟發與教育嗎?

1948年1月弗格森和倫奇兩人共同發表有808位正確小數的 π 。這是人工計算 π 的最高記錄。

計算機時期

1946年,世界第一台計算機ENIAC製造成功,標志著人類歷史邁入了電腦時代。電腦的出現導致了計算方面的根本革命。1949年,ENIAC根據梅欽公式計算到2035(一說是2037)位小數,包括准備和整理時間在內僅用了70小時。計算機的發展一日千里,其記錄也就被頻頻打破。

ENIAC:一個時代的開始

1973年,有人就把圓周率算到了小數點後100萬位,並將結果印成一本二百頁厚的書,可謂世界上最枯燥無味的書了。1989年突破10億大關,1995年10月超過64億位。1999年9月30日,《文摘報》報道,日本東京大學教授金田康正已求到2061.5843億位的小數值。如果將這些數字列印在A4大小的復印紙上,令每頁印2萬位數字,那麼,這些紙摞起來將高達五六百米。來自最新的報道:金田康正利用一台超級計算機,計算出圓周率小數點後一兆二千四百一十一億位數,改寫了他本人兩年前創造的紀錄。據悉,金田教授與日立製作所的員工合作,利用目前計算能力居世界第二十六位的超級計算機,使用新的計算方法,耗時四百多個小時,才計算出新的數位,比他一九九九年九月計算出的小數點後二千六百一十一位提高了六倍。圓周率小數點後第一兆位數是二,第一兆二千四百一十一億位數為五。如果一秒鍾讀一位數,大約四萬年後才能讀完。

不過,現在打破記錄,不管推進到多少位,也不會令人感到特別的驚奇了。實際上,把 π 的數值算得過分精確,應用意義並不大。現代科技領域使用的 π 值,有十幾位已經足夠。如果用魯道夫的35位小數的 π 值計算一個能把太陽系包圍起來的圓的周長,誤差還不到質子直徑的百萬分之一。我們還可以引美國天文學家西蒙·紐克姆的話來說明這種計算的實用價值:

「十位小數就足以使地球周界准確到一英寸以內,三十位小數便能使整個可見宇宙的四周准確到連最強大的顯微鏡都不能分辨的一個量。」

那麼為什麼數學家們還象登山運動員那樣,奮力向上攀登,一直求下去而不是停止對 π 的探索呢?為什麼其小數值有如此的魅力呢?

這其中大概免不了有人類的好奇心與領先於人的心態作怪,但除此之外,還有許多其它原因。

奔騰與圓周率之間的奇妙關系……

1、它現在可以被人們用來測試或檢驗超級計算機的各項性能,特別是運算速度與計算過程的穩定性。這對計算機本身的改進至關重要。就在幾年前,當Intel公司推出奔騰(Pentium)時,發現它有一點小問題,這問題正是通過運行 π 的計算而找到的。這正是超高精度的 π 計算直到今天仍然有重要意義的原因之一。

2、 計算的方法和思路可以引發新的概念和思想。雖然計算機的計算速度超出任何人的想像,但畢竟還需要由數學家去編製程序,指導計算機正確運算。實際上,確切地說,當我們把 π 的計算歷史劃分出一個電子計算機時期時,這並非意味著計算方法上的改進,而只是計算工具有了一個大飛躍而已。因而如何改進計算技術,研究出更好的計算公式,使公式收斂得更快、能極快地達到較大的精確度仍是數學家們面對的一個重要課題。在這方面,本世紀印度天才數學家拉馬努揚得出了一些很好的結果。他發現了許多能夠迅速而精確地計算 π 近似值的公式。他的見解開通了更有效地計算 π 近似值的思路。現在計算機計算 π 值的公式就是由他得到的。至於這位極富傳奇色彩的數學家的故事,在這本小書中我們不想多做介紹了。不過,我希望大家能夠明白 π 的故事講述的是人類的勝利,而不是機器的勝利。

3、還有一個關於 π 的計算的問題是:我們能否無限地繼續算下去?答案是:不行!根據朱達偌夫斯基的估計,我們最多算1077位。雖然,現在我們離這一極限還相差很遠很遠,但這畢竟是一個界限。為了不受這一界限的約束,就需要從計算理論上有新的突破。前面我們所提到的計算,不管用什麼公式都必須從頭算起,一旦前面的某一位出錯,後面的數值完全沒有意義。還記得令人遺憾的謝克斯嗎?他就是歷史上最慘痛的教訓。

4、於是,有人想能否計算時不從頭開始,而是從半截開始呢?這一根本性的想法就是尋找並行演算法公式。1996年,圓周率的並行演算法公式終於找到,但這是一個16進位的公式,這樣很容易得出的1000億位的數值,只不過是16進位的。是否有10進位的並行計算公式,仍是未來數學的一大難題。

5、作為一個無窮數列,數學家感興趣的把 π 展開到上億位,能夠提供充足的數據來驗證人們所提出的某些理論問題,可以發現許多迷人的性質。如,在 π 的十進展開中,10個數字,哪些比較稀,哪些比較密? π 的數字展開中某些數字出現的頻率會比另一些高嗎?或許它們並非完全隨意?這樣的想法並非是無聊之舉。只有那些思想敏銳的人才會問這種貌似簡單,許多人司空見慣但卻不屑發問的問題。

6、數學家弗格森最早有過這種猜想:在 π 的數值式中各數碼出現的概率相同。正是他的這個猜想為發現和糾正向克斯計算 π 值的錯誤立下了汗馬功勞。然而,猜想並不等於現實。弗格森想驗證它,卻無能為力。後人也想驗證它,也是苦於已知的 π 值的位數太少。甚至當位數太少時,人們有理由對猜想的正確性做出懷疑。如,數字0的出現機會在開始時就非常少。前50位中只有1個0,第一次出現在32位上。可是,這種現象隨著數據的增多,很快就改變了:100位以內有8個0;200位以內有19個0;……1000萬位以內有999,440個0;……60億位以內有599,963,005個0,幾乎佔1/10。

其他數字又如何呢?結果顯示,每一個都差不多是1/10,有的多一點,有的少一點。雖然有些偏差,但都在1/10000之內。

7、人們還想知道: π 的數字展開真的沒有一定的模式嗎?我們希望能夠在十進制展開式中通過研究數字的統計分布,尋找任何可能的模型――如果存在這種模型的話,迄今為止尚未發現有這種模型。同時我們還想了解: π 的展開式中含有無窮的樣式變化嗎?或者說,是否任何形式的數字排列都會出現呢?著名數學家希爾伯特在沒有發表的筆記本中曾提出下面的問題: π 的十進展開中是否有10個9連在一起?以現在算到的60億位數字來看,已經出現:連續6個9連在一起。希爾伯特的問題答案似乎應該是肯定的,看來任何數字的排列都應該出現,只是什麼時候出現而已。但這還需要更多 π 的數位的計算才能提供切實的證據。

8、在這方面,還有如下的統計結果:在60億數字中已出現連在一起的8個8;9個7;10個6;小數點後第710150位與3204765位開始,均連續出現了七個3;小數點52638位起連續出現了14142135這八個數字,這恰是的前八位;小數點後第2747956位起,出現了有趣的數列876543210,遺憾的是前面缺個9;還有更有趣的數列123456789也出現了。

如果繼續算下去,看來各種類型的數字列組合可能都會出現。

拾零: π 的其它計算方法

在1777年出版的《或然性算術實驗》一書中,蒲豐提出了用實驗方法計算 π 。這個實驗方法的操作很簡單:找一根粗細均勻,長度為 d 的細針,並在一張白紙上畫上一組間距為 l 的平行線(方便起見,常取 l = d/2),然後一次又一次地將小針任意投擲在白紙上。這樣反復地投多次,數數針與任意平行線相交的次數,於是就可以得到 π 的近似值。因為蒲豐本人證明了針與任意平行線相交的概率為 p = 2l/πd 。利用這一公式,可以用概率方法得到圓周率的近似值。在一次實驗中,他選取 l = d/2 ,然後投針2212次,其中針與平行線相交704次,這樣求得圓周率的近似值為 2212/704 = 3.142。當實驗中投的次數相當多時,就可以得到 π 的更精確的值。

1850年,一位叫沃爾夫的人在投擲5000多次後,得到 π 的近似值為3.1596。目前宣稱用這種方法得到最好結果的是義大利人拉茲瑞尼。在1901年,他重復這項實驗,作了3408次投針,求得 π 的近似值為3.1415929,這個結果是如此准確,以致於很多人懷疑其實驗的真偽。如美國猶他州奧格登的國立韋伯大學的L·巴傑就對此提出過有力的質疑。

不過,蒲豐實驗的重要性並非是為了求得比其它方法更精確的 π 值。蒲豐投針問題的重要性在於它是第一個用幾何形式表達概率問題的例子。計算 π 的這一方法,不但因其新穎,奇妙而讓人叫絕,而且它開創了使用隨機數處理確定性數學問題的先河,是用偶然性方法去解決確定性計算的前導。

在用概率方法計算 π 值中還要提到的是:R·查特在1904年發現,兩個隨意寫出的數中,互素的概率為6/π2。1995年4月英國《自然》雜志刊登文章,介紹英國伯明翰市阿斯頓大學計算機科學與應用數學系的羅伯特·馬修斯,如何利用夜空中亮星的分布來計算圓周率。馬修斯從100顆最亮的星星中隨意選取一對又一對進行分析,計算它們位置之間的角距。他檢查了100萬對因子,據此求得 π 的值約為3.12772。這個值與真值相對誤差不超過5%。

無窮的神秘氣息:紀梵希的男用香水 π 。廣告詞是:Explore pi, explore the universe

通過幾何、微積分、概率等廣泛的范圍和渠道發現 π ,這充分顯示了數學方法的奇異美。 π 竟然與這么些表面看來風馬牛不相及的試驗,溝通在一起,這的確使人驚訝不已。

⑶ 推算圓周率的是誰

世界上最早算出精密圓周率的科學家
是我國南北朝時的偉大數學家和天文學家 祖沖之。

圓周率77的計算,標志著一個國家和民 族的數學水平。關於祖沖之在圓周率方面的 工作,其史料僅見於《隋書•律歷志》,其中記載到,祖沖之給出了圓周率的兩個近似分
數值:密率:7℃ = 355/113,小數點後6位準確; 約率:℃℃=22/7,小數點後2位準確。可見, 他精確計算出了圓周率77的真值(小數點後 第 7 位)在 3.1415926 和 3.1415927 之間。 而在歐洲,1100多年後才算得355/113這一數值,被稱為「安東尼茲率」。日本數學家三上義夫在1912年提出,為紀念祖沖之的貢獻,應稱77 =355/113為「祖率」。
網路上抄來的

⑷ 歷史上 算出 圓周率的人有哪些按時間排序,他們的精確度依次又是多少

圓周率—π
▲什麼是圓周率?
圓周率是一個常數,是代表圓周和直徑的比例。它是一個無理數,即是一個無限不循環小數。但在日常生活中,通常都用3.14來代表圓周率去進行計算,即使是工程師或物理學家要進行較精密的計算,也只取值至小數點後約20位。
▲什麼是π?
π是第十六個希臘字母,本來它是和圓周率沒有關系的,但大數學家歐拉在一七三六年開始,在書信和論文中都用π來代表圓周率。既然他是大數學家,所以人們也有樣學樣地用π來表圓周率了。但π除了表示圓周率外,也可以用來表示其他事物,在統計學中也能看到它的出現。
▲圓周率的發展史
在歷史上,有不少數學家都對圓周率作出過研究,當中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、張衡、祖沖之等。他們在自己的國家用各自的方法,辛辛苦苦地去計算圓周率的值。下面,就是世上各個地方對圓周率的研究成果。
亞洲
中國:
魏晉時,劉徽曾用使正多邊形的邊數逐漸增加去逼近圓周的方法(即「割圓術」),求得π的近似值3.1416。
漢朝時,張衡得出π的平方除以16等於5/8,即π等於10的開方(約為3.162)。雖然這個值不太准確,但它簡單易理解,所以也在亞洲風行了一陣。
王蕃(229-267)發現了另一個圓周率值,這就是3.156,但沒有人知道他是如何求出來的。
公元5世紀,祖沖之和他的兒子以正24576邊形,求出圓周率約為355/113,和真正的值相比,誤差小於八億分之一。這個紀錄在一千年後才給打破。
印度:
約在公元530年,數學大師阿耶波多利用384邊形的周長,算出圓周率約為√9.8684。
婆羅門笈多採用另一套方法,推論出圓周率等於10的平方根。
歐洲
斐波那契算出圓周率約為3.1418。
韋達用阿基米德的方法,算出3.1415926535<π<3.1415926537
他還是第一個以無限乘積敘述圓周率的人。
魯道夫萬科倫以邊數多過32000000000的多邊形算出有35個小數位的圓周率。
華理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
歐拉發現的 e的iπ次方加1等於0,成為證明π是超越數的重要依據。
之後,不斷有人給出反正切公式或無窮級數來計算π,在這里就不多說了。
π與電腦的關系
在1949年,美國製造的世上首部電腦—ENIAC(Electronic Numerical Interator and Computer)在亞伯丁試驗場啟用了。次年,里特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。這部電腦只用了70小時就完成了這項工作,扣除插入打孔卡所花的時間,等於平均兩分鍾算出一位數。五年後,NORC(海軍兵器研究計算機)只用了13分鍾,就算出π的3089個小數位。科技不斷進步,電腦的運算速度也越來越快,在60年代至70年代,隨著美、英、法的電腦科學家不斷地進行電腦上的競爭,π的值也越來越精確。在1973年,Jean Guilloud和M. Bouyer發現了π的第一百萬個小數位。
在1976年,新的突破出現了。薩拉明(Eugene Salamin)發表了一條新的公式,那是一條二次收歛算則,也就是說每經過一次計算,有效數字就會倍增。高斯以前也發現了一條類似的公式,但十分復雜,在那沒有電腦的時代是不可行的。之後, 不斷有人以高速電腦結合類似薩拉明的算則來計算π的值。目前為止,π的值己被算至小數點後51,000,000,000個位。
為什麼要繼續計算π
其實,即使是要求最高、最准確的計算,也用不著這麼多的小數位,那麼,為什麼人們還要不斷地努力去計算圓周率呢?
這是因為,用這個方法就可以測試出電腦的毛病。如果在計算中得出的數值出了錯,這就表示硬體有毛病或軟體出了錯,這樣便需要進行更改。同時,以電腦計算圓周率也能使人們產生良性的競爭,,科技也能得到進步,從而改善人類的生活。就連微積分、高等三角恆等式,也是有研究圓周率的推動,從而發展出來的。
▲π的年表
圓周率的發展
年代 求證者 內容
古代 中國周髀算經 周一徑三
圓周率 = 3
西方聖經
元前三世 阿基米德(希臘) 1. 圓面積等於分別以半圓周和徑為邊長的矩形
的面積
2.圓面積與以直徑為長的正方形面積之比為11:14
3. 圓的周長與直徑之比小於3 1/7 ,大於
3 10/71
三世紀 劉徽
中國 用割圓術得圓周率=3.1416稱為'徽率'
五世紀 祖沖之
中國 1. 3.1415926<圓周率<3.1415927
2. 約率 = 22/7
3. 密率 = 355/113
1596年 魯道爾夫
荷蘭 正確計萛得的35 位數字
1579年 韋達
法國 '韋達公式'以級數無限項乘積表示
1600年 威廉.奧托蘭特
英國 用/σ表示圓周率
π是希臘文圓周的第一個字母
σ是希臘文直徑的第一個字母
1655年 渥里斯
英國 開創利用無窮級數求的先例
1706年 馬淇
英國 '馬淇公式'計算出的100 位數字
1706年 瓊斯
英國 首先用表示圓周率
1789年 喬治.威加
英國 准確計萛至126 位
1841年 魯德福特
英國 准確計萛至152 位
1847年 克勞森
英國 准確計萛至248 位
1873年 威廉.謝克斯
英國 准確計萛至527 位
1948年 費格森和雷恩奇
英國 美國 准確計萛至808 位
1949年 賴脫威遜
美國 用計算機將計算到2034位
現代 用電子計算機可將計算到億位

▲背誦π
歷來都有不少人想挑戰自己的記憶力,他們通常以圓周率為目標。目前的世界記錄是由敬之後藤創下的,他在1995年花了9個多小時,背誦出圓周率的42,000個位數。
目前,最常用的記憶圓周率技巧就是字長法,以每個字的字數代表圓周率的一個位數。在這種方法中最簡單的就是「How I wish I could calculate pi.」
用中文去背圓周率也很簡單,因為每個數字都只有一個音節,這樣背起來就如背詩一樣,只不過有點言不及義,例如:
山巔一石一壺酒
3.14159
二侶舞扇舞
26535
把酒砌酒扇又搧
8979323
飽死羅.....
846.....
關於π的有趣發現
將π的頭144個小數位數字相加,結果是666。144也等於(6+6)*(6+6)
愛因斯坦的生日恰好是在π日(3/14/1879)
從π的第523,551,502個小數位開始,是數列123456789。
從第359個位數開始,是數字360。也就是說第360個位數正好位於數字360的中央。
在頭一百萬個小數中,除了2和4,其他數字都曾連續出現7次。

資料來源
<<神奇的π>> David Blatner 著 商周出版
http://www.geocities.com/monicachan006/know.html
http://netcity1.web.hinet.net/UserData/lsc24285/circle.html
<<新世紀數學>>1A 第7課 牛津大學出版社

⑸ 對圓周率的研究做出貢獻的有哪些人

中國古代科學的豐碑——祖沖之和圓周率
祖沖之是南北朝時候的一位數學家,他最重要的貢獻是對圓周率的精密計算.
圓周率是圓的周長和直徑的比例數.過去這個數字一直計算得不夠精確,祖沖之決心攻破這個難關.當時,沒有現代化的計算機,都是用籌碼(小竹棍)進行計算.祖沖之常常天不亮就起床,一遍又一遍地挪動籌碼,直到深夜.他計算了一萬多遍,終於算出圓周率是在3.1415926和3.1415927之間

⑹ 圓周率是誰計算出來的

世界公認:中國南北朝時期的著名數學家祖沖之;
古今中外,許多人致力於圓周率的研究與計算.為了計算出圓周率的越來越好的近似值,一代代的數學家為這個神秘的數貢獻了無數的時間與心血.十九世紀前,圓周率的計算進展相當緩慢,十九世紀後,計算圓周率的世界紀錄頻頻創新.整個十九世紀,可以說是圓周率的手工計算量最大的世紀.進入二十世紀,隨著計算機的發明,圓周率的計算有了突飛猛進.藉助於超級計算機,人們已經得到了圓周率的2061億位精度.歷史上最馬拉松式的計算,其一是德國的Ludolph Van Ceulen,他幾乎耗盡了一生的時間,計算到圓的內接正262邊形,於1609年得到了圓周率的35位精度值,以至於圓周率在德國被稱為Ludolph數;其二是英國的William Shanks,他耗費了15年的光陰,在1874年算出了圓周率的小數點後707位.可惜,後人發現,他從第528位開始就算錯了.把圓周率的數值算得這么精確,實際意義並不大.現代科技領域使用的圓周率值,有十幾位已經足夠了.如果用Ludolph Van Ceulen算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一.以前的人計算圓周率,是要探究圓周率是否循環小數.自從1761年Lambert證明了圓周率是無理數,1882年Lindemann證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了.現在的人計算圓周率, 多數是為了驗證計算機的計算能力,還有,就是為了興趣.
ubhoelsz 2014-10-22

⑺ 在我國古代最早算出圓周率的數學家是誰

祖沖之算出圓周率(π)的真值在3.1415926和3.1415927之間,相當於精確到小數第7位,簡化成3.1415926,祖沖之因此入選世界紀錄協會世界第一位將圓周率值計算到小數第7位的科學家。

祖沖之還給出圓周率(π)的兩個分數形式:22/7(約率)和355/113(密率),其中密率精確到小數第7位。祖沖之對圓周率數值的精確推算值,對於中國乃至世界是一個重大貢獻,後人將「約率」用他的名字命名為「祖沖之圓周率」,簡稱「祖率」。

(7)有多少位算出圓周率的數學家擴展閱讀

中國古代數學家們對這個問題十分重視,研究也很早。在《周髀算經》和《九章算術》中就提出徑一周三的古率,定圓周率為三,即圓周長是直徑長的三倍。此後,經過歷代數學家的相繼探索,推算出的圓周率數值日益精確。

東漢張衡推算出的圓周率值為3.162。三國時王蕃推算出的圓周率數值為3.155。魏晉的著名數學家劉徽在為《九章算術》作注時創立了新的推算圓周率的方法——割圓術,將圓周率的值為邊長除以2,其近似值為3.14;並且說明這個數值比圓周率實際數值要小一些。

劉徽以後,探求圓周率有成就的學者,先後有南朝時代的何承天,皮延宗等人。何承天求得的圓周率數值為3.1428,皮延宗求出圓周率值為22/7≈3.14。

祖沖之認為自秦漢以至魏晉的數百年中研究圓周率成績最大的學者是劉徽,但並未達到精確的程度,於是他進一步精益鑽研,去探求更精確的數值。

⑻ 圓周率是誰算出來的

圓周率並不是祖沖之發現的,他之前,劉徽就就計算過圓周率.
作為數學家,研究計算圓周率應該是他們的專業方向之一.
我國古代數學家對圓周率方面的研究工作,成績是突出的。早在三國時期,著名數學家劉徽就用割圓術將圓周率精確到小數點後3位,南北朝時期的祖沖之在劉徽研究的基礎上,將圓周率精確到了小數點後7位,這一成就比歐洲人要早一千多年。
祖沖之是和他兒子一起從事這項研究工作的,當時條件很差。他們在一間大屋的地上畫了一個直徑1丈的大圓。從內接正6邊形開始計算,12邊形,24邊形,48邊形的翻翻,一直算到96邊形,計算的結果和劉徽的一樣。接著,內接邊數再逐次翻翻,邊數每翻一次,要進行7次加減運算,2次乘方,2次開方,運算的數字都很大,很復雜,在當時的條件下,是十分困難的。祖沖之父子一直把邊形算到24576邊,得出了圓周率在3·1415926和3·1415927之間,精確到了小數點後7位。其近似分數是
355/113,被稱為"密率"。德國數學家奧托在1573年重新得出這個近似分數。當時,歐洲人還不知道在一千多年之前祖沖之就己經算出來了。後來荷蘭人安托尼茲也算出這個近似分數,於是歐洲人就把這個稱為"密率"的近似分數叫著"安托尼茲率"。日本數學家認為應該恢復其本來面目,肯定祖沖之在圓周率方面研究的貢獻,改稱"祖率"才對。

⑼ 圓周率是誰計算出來的

英國天文學教授John
Machin於1706年發現。他利用這個公式計算到了100位的圓周率。Machin公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。
詳細:
還有很多類似於Machin公式的反正切公式。在所有這些公式中,Machin公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,Machin公式就力不從心了。下面介紹的演算法,在PC機上計算大約一天時間,就可以得到圓周率的過億位的精度。這些演算法用程序實現起來比較復雜。因為計算過程中涉及兩個大數的乘除運算,要用FFT(Fast
Fourier
Transform)演算法。FFT可以將兩個大數的乘除運算時間由O(n2)縮短為O(nlog(n))。
在我國,首先是由數學家劉徽得出較精確的圓周率。公元263年前後,劉徽提出著名的割圓術,得出
π
=3.14,通常稱為「徽率」,他指出這是不足近似值。雖然他提出割圓術的時間比阿基米德晚一些,但其方法確有著較阿基米德方法更美妙之處。割圓術僅用內接正多邊形就確定出了圓周率的上、下界,比阿基米德用內接同時又用外切正多邊形簡捷得多。另外,有人認為在割圓術中劉徽提供了一種絕妙的精加工辦法,以致於他將割到192邊形的幾個粗糙的近似值通過簡單的加權平均,竟然獲得具有4位有效數字的圓周率
π
=3927/1250
=3.1416。而這一結果,正如劉徽本人指出的,如果通過割圓計算得出這個結果,需要割到3072邊形。這種精加工方法的效果是奇妙的。這一神奇的精加工技術是割圓術中最為精彩的部分,令人遺憾的是,由於人們對它缺乏理解而被長期埋沒了。
好累啊~

閱讀全文

與有多少位算出圓周率的數學家相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:743
乙酸乙酯化學式怎麼算 瀏覽:1408
沈陽初中的數學是什麼版本的 瀏覽:1355
華為手機家人共享如何查看地理位置 瀏覽:1047
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:889
數學c什麼意思是什麼意思是什麼 瀏覽:1413
中考初中地理如何補 瀏覽:1305
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:705
數學奧數卡怎麼辦 瀏覽:1393
如何回答地理是什麼 瀏覽:1028
win7如何刪除電腦文件瀏覽歷史 瀏覽:1060
大學物理實驗干什麼用的到 瀏覽:1489
二年級上冊數學框框怎麼填 瀏覽:1704
西安瑞禧生物科技有限公司怎麼樣 瀏覽:986
武大的分析化學怎麼樣 瀏覽:1252
ige電化學發光偏高怎麼辦 瀏覽:1341
學而思初中英語和語文怎麼樣 瀏覽:1656
下列哪個水飛薊素化學結構 瀏覽:1427
化學理學哪些專業好 瀏覽:1490
數學中的棱的意思是什麼 瀏覽:1062