Ⅰ 高中數學所有符號及讀法
+ plus 加號;正號
- minus 減號;負號
± plus or minus 正負號
× is multiplied by 乘號
÷ is divided by 除號
= is equal to 等於號
≠ is not equal to 不等於號
≡ is equivalent to 全等於號
≌ is approximately equal to 約等於
≈ is approximately equal to 約等於號
< is less than 小於號
> is more than 大於號
≤ is less than or equal to 小於或等於
≥ is more than or equal to 大於或等於
% per cent 百分之…
∞ infinity 無限大號
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵ since; because 因為
∴ hence 所以
∠ angle 角
⌒ semicircle 半圓
⊙ circle 圓
○ circumference 圓周
△ triangle 三角形
⊥ perpendicular to 垂直於
∪ intersection of 並,合集
∩ union of 交,通集
∫ the integral of …的積分
∑ (sigma) summation of 總和
° degree 度
′ minute 分
〃 second 秒
Ⅱ 高中數學符號有哪些
1、幾何符號:
幾何是研究空間結構及性質的一門學科。它是數學中最基本的研究內容之一,常見定理有勾股定理,歐拉定理,斯圖爾特定理等。
常用符號有:⊥(垂直)、 ∥(平行)、 ∠(角)、 ⌒ (弧)、⊙(圓)。
2、代數符號:
代數的研究對象不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關系及其性質,而對於「數本身是什麼」這樣的問題並不關心。
常用符號有:∝(正比)、∧(邏輯和)、∨(邏輯或)、 ∫(積分)、 ≠ (不等於)、≤(小於等於)、 ≥(大於等於)、 ≈(約等於)、 ∞(無窮)。
3、運算符號:
運算符號是計算數學時所用的符號,計算符號有加號、減號、乘號、除號。
常用符號有:×(乘)、 ÷(除)、 √(根號)、 ±(加減)。
4、集合符號:
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集。
常用符號有:∪(並)、 ∩(交)、 ∈(屬於)。
5、特殊符號:
數學中常用某個特定的符號來表示某個元素。
常用符號有:∑(求和)、 π(圓周率)
6、希臘符號:
在數學中,希臘字母通常被用來表示常數、特殊函數和一些特定的變數。在數學領域,通常大寫與小寫的希臘字母所代表的意義都會有所分別,並且互不相關。
常用符號有:α (阿爾法)、β(貝塔)、 γ(伽馬)、 δ(代爾塔)、 ε(埃普西龍)、 ζ (澤塔)、η (誒塔)、θ (西塔)、ι (埃歐塔)、κ(堪帕)、 λ(蘭姆達)、 μ (謬)、ν
Ⅲ 高中數學常用符號
1 幾何符號
⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △
2 代數符號
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3運算符號
× ÷ √ ±
4集合符號
∪ ∩ ∈
5特殊符號
∑ π(圓周率)
6推理符號
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指數0123:�0�2�0�1�0�5�0�6
符號 意義
∞ 無窮大
PI 圓周率
|x| 函數的絕對值
∪ 集合並
∩ 集合交
≥ 大於等於
≤ 小於等於
≡ 恆等於或同餘
ln(x) 自然對數
lg(x) 以2為底的對數
log(x) 常用對數
floor(x) 上取整函數
ceil(x) 下取整函數
x mod y 求余數
{x} 小數部分 x - floor(x)
∫f(x)δx 不定積分
∫[a:b]f(x)δx a到b的定積分
[P] P為真等於1否則等於0
∑[1≤k≤n]f(k) 對n進行求和,可以拓廣至很多情況
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求極限
f(z) f關於z的m階導函數
C(n:m) 組合數,n中取m
P(n:m) 排列數
m|n m整除n
m⊥n m與n互質
a ∈ A a屬於集合A
#A 集合A中的元素個數
∑(n=p,q)f(n) 表示f(n)的n從p到q逐步變化對f(n)的連加和,
如果f(n)是有結構式,f(n)應外引括弧;
∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)],
如果f(n,r)是有結構式,f(n,r)應外引括弧;
∏(n=p,q)f(n) 表示f(n)的n從p到q逐步變化對f(n)的連乘積,
如果f(n)是有結構式,f(n)應外引括弧;
∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)],
如果f(n,r)是有結構式,f(n,r)應外引括弧;
lim(x→u)f(x) 表示 f(x) 的 x 趨向 u 時的極限,
如果f(x)是有結構式,f(x)應外引括弧;
lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)],
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∫(a,b)f(x)dx 表示對 f(x) 從 x=a 至 x=b 的積分,
如果f(x)是有結構式,f(x)應外引括弧;
∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∫(L)f(x,y)ds 表示 f(x,y) 在曲線 L 上的積分,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的積分,
如果f(x,y,z)是有結構式,f(x,y,z)應外引括弧;
∮(L)f(x,y)ds 表示 f(x,y) 在閉曲線 L 上的積分,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在閉曲面 D 上的積分,
如果f(x,y)是有結構式,f(x,y)應外引括弧;
∪(n=p,q)A(n) 表示n從p到q之A(n)的並集,
如果A(n)是有結構式,A(n)應外引括弧;
∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)],
如果A(n,r)是有結構式,A(n,r)應外引括弧;
∩(n=p,q)A(n) 表示n從p到q逐步變化對A(n)的交集,
如果A(n)是有結構式,A(n)應外引括弧;
∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)],
如果A(n,r)是有結構式,A(n,r)應外引括弧;
Ⅳ 高中數學命題符號
這是數學邏輯符號,連接兩個簡單命題用的,「∧」是且的意思,相當於集合中的交集,命題P∧Q的真假與P,Q的真假有關,當P,Q全是真命題時,命題P∧Q為真命題,其他都是假命題。
「∨」是或的意思,相當於集合中的並集,命題P∨Q的真假也與P,Q的真假有關,當P,Q全是假命題時,命題P∨Q為假命題,其他都是真命題。
(4)高中數學有關符號到哪裡查找擴展閱讀:
邏輯符號的主要特點和作用在於它能精確地、單義地解釋其所表示的對象(邏輯形式.邏輯聯結詞或邏輯運算等),從而可以用來精確、簡明地表示各種邏輯公理、定理和邏輯運算過程。
在邏輯中,經常使用一組符號來表達邏輯結構。因為邏輯學家非常熟悉這些符號,他們在使用的時候沒有解釋它們。
所以,給學邏輯的人的下列表格,列出了最常用的符號、它們的名字、讀法和有關的數學領域。此外,第三列包含非正式定義,第四列給出簡短的例子。
要注意,在一些情況下,不同的符號有相同的意義,而同一個符號,依賴於上下文,有不同的意義。
Ⅳ 高中常用的數學符號有哪些
數學符號 如加號(+),減號(-),乘號(×或?),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∬)等。 關系符號 如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≣」是大於或等於符號(也可寫作「≤」),「≢」是小於或等於符號(也可寫作「≥」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∠」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「?」是「包含」符號等。 結合符號 如小括弧「()」中括弧「[]」,大括弧「{}」橫線「—」 性質符號 如正號「+」,負號「-」,絕對值符號「| |」正負號「±」 省略符號 如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∟), ∮因為,(一個腳站著的,站不住) ∭所以,(兩個腳站著的,能站住) 總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。 排列組合符號 C-組合數 A-排列數 N-元素的總個數 R-參與選擇的元素個數 n!-階乘 ,如5!=5×4×3×2×1=120 C-Combination- 組合 A-Arrangement-排列 φ 空集 ∈ 屬於(不屬於) |A| 集合A的點數 包含 (或下面加 ≠) 真包含 ∪ 集合的並運算 ∩ 集合的交運算 a ∈ A a屬於集合A [a] 元素a 產生的循環群 I (i大寫) 環,理想 Z/(n) 模n的同餘類集合 r(R) 關系 R的自反閉包 s(R) 關系 的對稱閉包
f:X→Y f是X到Y的函數 GCD(x,y) x,y最大公約數 LCM(x,y) x,y最小公倍數 C 復數集 N
自然數集: N* 正自然數集 P 素數集 Q 有理數集 R 實數集 Z 整數集 數學符號的意義 符號(Symbol) 意義(Meaning) = 等於 is equal to ≠ 不等於 is not equal to < 小於 is less than > 大於 is greater than || 平行 is parallel to ≣ 大於等於 is greater than or equal to ≢ 小於等於 is less than or equal to ≡ 恆等於或同餘 π 圓周率 |x| 絕對值 absolute value of X ∽ 相似 is similar to ≌ 全等 is equal to(especially for triangle ) >> 遠遠大於號 << 遠遠小於號 ∞ 無窮大 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 x - floor(x) 小數部分 ∫f(x)dx 不定積分 ∫[a:b]f(x)dx a到b的定積分
Ⅵ 上哪裡下載有高中數學符號的字元集啊急
(1)如果使用微軟的你可以使用公式編輯器,也可以使用特殊符號
這兩種都要在菜單中的工具—自定義—命令(命令對話框中有左右)—(在左邊找到)插入電擊—(在右邊找到)公式編輯器或符號(拖在菜單中)點擊就可以使用了
(2)你也可以使用自能ABC的輸入法,V+1,V+2,.......V+7也可以找到你所需要的符號
Ⅶ 一個高中數學符號
高一數學常用符號有六種,具體寫法及意義如下:
1、幾何符號:
幾何是研究空間結構及性質的一門學科。它是數學中最基本的研究內容之一,常見定理有勾股定理,歐拉定理,斯圖爾特定理等。
常用符號有:⊥(垂直)、 ∥(平行)、 ∠(角)、 ⌒ (弧)、⊙(圓)。
2、代數符號:
代數的研究對象不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關系及其性質,而對於「數本身是什麼」這樣的問題並不關心。
常用符號有:∝(正比)、∧(邏輯和)、∨(邏輯或)、 ∫(積分)、 ≠ (不等於)、≤(小於等於)、 ≥(大於等於)、 ≈(約等於)、 ∞(無窮)。
3、運算符號:
運算符號是計算數學時所用的符號,計算符號有加號、減號、乘號、除號。
常用符號有:×(乘)、 ÷(除)、 √(根號)、 ±(加減)。
4、集合符號:
集合是指具有某種特定性質的具體的或抽象的對象匯總成的集體,這些對象稱為該集合的元素。一定范圍的,確定的,可以區別的事物,當作一個整體來看待,就叫做集合,簡稱集。
常用符號有:∪(並)、 ∩(交)、 ∈(屬於)。
5、特殊符號:
數學中常用某個特定的符號來表示某個元素。
常用符號有:∑(求和)、 π(圓周率)
6、希臘符號:
在數學中,希臘字母通常被用來表示常數、特殊函數和一些特定的變數。在數學領域,通常大寫與小寫的希臘字母所代表的意義都會有所分別,並且互不相關。
常用符號有:α (阿爾法)、β(貝塔)、 γ(伽馬)、 δ(代爾塔)、 ε(埃普西龍)、 ζ (澤塔)、η (誒塔)、θ (西塔)、ι (埃歐塔)、κ(堪帕)、 λ(蘭姆達)、 μ (謬)、ν (拗)。
(7)高中數學有關符號到哪裡查找擴展閱讀:
常見集合符號:
1、C復數集
2、I虛數集
3、N自然數集,非負整數集(包含元素"0")
4、N*(N+) 正自然數集,正整數集(其中*表示從集合中去掉元素「0」,如R*表示非零實數)
5、P素數(質數)集
6、Q有理數集
7、R實數集
8、Z整數集
9、A/R集合A上關於R的商集
10、[a] 元素a產生的循環群
11、Z/(n) 模n的同餘類集合
12、r(R) 關系R的自反閉包
13、s(R) 關系R的對稱閉包
參考資料:網路--數學符號
Ⅷ 高中數學里有一個符號是什麼意思
在幾何中,如樓上言,它代表圓。
不過看樓主的意思,它應該代表一種運算方式,(像加減乘除這樣的叫做運算方式)
如果是這樣的話,我可以負責任地說,高中數學里沒有這個符號。一般都是在高中試題里,命題者利用這個符號臨時創造一種運算方式(這完全由命題人設定,與符號本身沒有任何關系),比如A⊙B=A×B-A+B,然後以此為背景命題。這是一種很常見的考法。因此可以說,這個符號是沒有意義的。
Ⅸ 所有高中數學特殊符號的打法
1 Α α alpha a:lf 阿爾法 角度;系數
2 Β β beta bet 貝塔 磁通系數;角度;系數
3 Γ γ gamma ga:m 伽馬 電導系數(小寫)
4 Δ δ delta delt 德爾塔 變動;密度;屈光度
5 Ε ε epsilon ep`silon 伊普西龍 對數之基數
6 Ζ ζ zeta zat 截塔 系數;方位角;阻抗;相對粘度;原子序數
7 Η η eta eit 艾塔 磁滯系數;效率(小寫)
8 Θ θ thet θit 西塔 溫度;相位角
9 Ι ι iot aiot 約塔 微小,一點兒
10 Κ κ kappa kap 卡帕 介質常數
11 ∧ λ lambda lambd 蘭布達 波長(小寫);體積
12 Μ μ mu mju 繆 磁導系數;微(千分之一);放大因數(小寫)
13 Ν ν nu nju 紐 磁阻系數
14 Ξ ξ xi ksi 克西
15 Ο ο omicron omik`ron 奧密克戎
16 ∏ π pi pai 派 圓周率=圓周÷直徑=3.1416
17 Ρ ρ rho rou 肉 電阻系數(小寫)
18 ∑ σ sigma `sigma 西格馬 總和(大寫),表面密度;跨導(小寫)
19 Τ τ tau tau 套 時間常數
20 Υ υ upsilon jup`silon 宇普西龍 位移
21 Φ φ phi fai 佛愛 磁通;角
22 Χ χ chi phai 西
23 Ψ ψ psi psai 普西 角速;介質電通量(靜電力線);角
24 Ω ω omega o`miga 歐米伽 歐姆(大寫);角速(小寫);角
希臘字母讀法
Αα:阿爾法 Alpha
Ββ:貝塔 Beta
Γγ:伽瑪 Gamma
Δδ:德爾塔 Delte
Εε:艾普西龍 Epsilon
ζ :捷塔 Zeta
Ζη:依塔 Eta
Θθ:西塔 Theta
Ιι:艾歐塔 Iota
Κκ:喀帕 Kappa
∧λ:拉姆達 Lambda
Μμ:繆 Mu
Νν:拗 Nu
Ξξ:克西 Xi
Οο:歐麥克輪 Omicron
∏π:派 Pi
Ρρ:柔 Rho
∑σ:西格瑪 Sigma
Ττ:套 Tau
Υυ:宇普西龍 Upsilon
Φφ:fai Phi
Χχ:器 Chi
Ψψ:普賽 Psi
Ωω:歐米伽 Omega
≡恆等 ≠不等 ≮不小於 ∫求幾分 ∮全積分
∞無窮大 ∑求和 ∪求並 ∈屬於 ∵因為 ⊥ 垂直
‖兩條件相並 ∠ 角度 ⌒ 弧 ⊙ 圓 ≌ 三角形全等於
∽ 相似 ≤ 小於等於≈ 約等於 ≡ 又恆等 ⊿三角形
㏒ 取對數 ㏑ 取十的對數 其實你可以進入WORD,裡面全有!
Ⅹ 高中數學符號有哪些
1、加號,是用來表示正數或者加法數學符號。此符號還因為各種相對其他事物的類似之處而被賦予了豐富的抽象含義。加號屬於第一級運算。
2、減號,是四則運算之一「減」的運算符號,也可表示將某事物從某事物中除去。同時也有負號的意義。加減運算是人類最早掌握的兩種數學運算之一。
3、小於號,是數學中不等式運算符號的一種。是英國數學家哈利奧特在自己的《使用分析學》(Artis Analyticae Praxis)一書中首先使用了「<」和「>」符號,但是直到他去世十年之後1631年才發表。
4、除號,是個數學符號,是一個由一根短橫線和橫線兩側的兩點構成的符號,其主要用來表示數學中的除法運算。除號可運用到數學、物理學、化學等多領域。
5、根號,是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。