㈠ 北師大版初一數學知識點歸納
學習知識要善於思考,思考,再思考。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學作為最燒腦的科目之一,也是要記、要背、要講練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。
初一下冊數學復習知識點
概念知識
1、單項式:數字與字母的積,叫做單項式。
2、多項式:幾個單項式的和,叫做多項式。
3、整式:單項式和多項式統稱整式。
4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。
5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。
6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。
7、補角:兩個角的和為180度,這兩個角叫做互為補角。
8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。
9、同位角:在「三線八角」中,位置相同的角,就是同位角。
10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。
11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。
12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。
13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。
17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
18、全等圖形:兩個能夠重合的圖形稱為全等圖形。
19、變數:變化的數量,就叫變數。
20、自變數:在變化的量中主動發生變化的,變叫自變數。
21、因變數:隨著自變數變化而被動發生變化的量,叫因變數。
22、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形
叫做軸對稱圖形。
23、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
24、垂直平分線:線段是軸對稱圖形,它的一條對稱軸垂直於這條線段並且平分它,這樣的直線叫做這條線段的垂直平分線。(簡稱中垂線)
北師大版初一下冊數學知識點 總結
相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
兩條直線相交,有2對對頂角。
對頂角相等。
兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的.垂線,它們的交點叫做垂足。
平行線及其判定
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
平行線的性質
性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。
性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。
性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。
平移
向左平移a個單位長度,可以得到對應點(x-a,y)
向上平移b個單位長度,可以得到對應點(x,y+b)
向下平移b個單位長度,可以得到對應點(x,y-b)
初一數學 復習方法
初一數學主要知識點:
代數初步知識
1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式。
2. 幾個重要的代數式:(m、n表示整數)
(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;
(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;
(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .
有理數
凡能寫成q/p(p,q為整數且p≠0)形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0既不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).
有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).
有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。
整式的加減
單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
多項式:幾個單項式的和叫多項式.
多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式.
整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數式叫整式.
北師大版初一數學知識點歸納相關 文章 :
★ 北師大版初一下冊數學知識點復習總結
★ 北師版初一數學期末知識點總結
★ 北師大版初一數學上冊知識點
★ 北師大版七年級數學上冊知識點
★ 一年級數學北師版知識點
★ 北師大版初中數學知識點提綱
★ 七年級數學上冊知識點北師大版
★ 北師大初中數學知識總結
★ 北師大初一數學知識點總結
★ 七年級數學上冊知識點總結北師大
㈡ 初中數學(北師大版)全部知識點,重要知識點要標上重要,內容必須通俗易懂,要有自己總結出來的方法
初中數學合集網路網盤下載
鏈接:https://pan..com/s/1znmI8mJTas01m1m03zCRfQ
簡介:初中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。
㈢ 數軸導入最好的例子
數軸導入最好的例子:
很久以前,在一個地方有三個部落,它們分別是「正數部落」、「負數部落」和「零」。正數部落和負數部落為了在「數軸大陸」上爭奪地盤常常短兵相接。
可負數是屢戰屢敗:負數怎麼可能比正數大呢? 負數部落的首領「-1」開始焦慮:長期這樣下去,數軸大陸就會被正數獨占啦!「-1」首領於是拜訪了隱居深山的「絕對值」,把身懷絕技的絕對值請到自己的部落中。
又到了正負數部落交鋒的時候,。這一次正數部落想索性將負數部落趕出數軸大陸,於是派出了部落的得力大將「+2000」。負數部落派出的則是「蝦兵」「-3000」。
見對方來敵如此弱小,「+2000」不禁哈哈大笑。正當他准備前去輕松取敵時,絕對值出馬了,只看那弱小的「-3000」頓時變成了威猛的「+3000」。還沒等正數部落回過神來,「+2000」已被打得暈頭轉向,落荒而逃。
連綿的戰火讓數軸大陸不得安寧,讓「0」再也不願袖手旁觀了。當正負數部落又一次交戰時,「0」也上陣了。
信心百倍的負數部落這一次還是把希望寄託在神奇的絕對值身上,可是由於「0」有一種特殊的能力,每當絕對值想將負數變成相應的正數時,「0」總能將符 號「-」拉到絕對值的外面,所以得數還為負數。
由於負號在絕對值的外面,負數不能通過絕對值「變身」,也就失去了戰勝正數的絕技。 由於「0」的參與,正負數部落終於明白誰也無法獨占數軸大陸,戰亂的局面也終於結束了。
正數和負數各自守衛著屬於自己的領地。為了感謝零,正負數將零放在它們的正中間。這樣一來,零也就成了正負數的分界線。
㈣ 北師大版初一(七年級)上冊數學行程問題主要知識點
行程問題主要知識點
1、時間、路程、速度存在著重要的等量關系:時間×路程=速度,這是行程問題中的基本關系式,由此變形還可得到:速度=路程÷時間,時間=路程÷速度,同時,路程一定時,時間與速度成反比,時間(或速度)一定時,路程與速度(或時間)成正比;
2、行程問題有三種常見的題型
相遇問題、追及問題、航行問題,三種類型都有一般公式,這些必須牢記!
(1)、相遇問題:相遇時間×速度和=路程和
(2)、追及問題:追及時間×速度差=被追及問題
(3)、航行問題:順水速度=靜水速度+水流速度
逆水速度=靜水速度-水流速度
(4)、飛行問題:類比航行問題
(5)、環路問題:甲乙同時同地背向而行:甲路程—乙路程=環路一周的距離
甲乙同時同地同向而行:快者的路程—慢者的路程=環路一周的距離
㈤ 如何在數的認識中發揮數軸的作用
【案例背景】
北師大版數學第八冊第一單元小數的認識和加減法是在三年級下冊「元、角、分與小數」及「分數的初步認識」基礎上進行的,包括「小數的意義」「測量活動」「比大小」等內容。「小數的意義」把小數的認識范圍擴大,不僅元角分以元為單位可以用小數表示,生活中很多事情都可以用小數表示。通過對這些例子的討論,使學生體會小數與現實生活的密切關系。然後,藉助直觀模型使學生體會到小數與十進分數之間的關系,並通過計數器介紹小數部分的數位名稱及數位的相互關系,使學生進一步理解小數的意義。「測量活動」目的是使學生加深對小數的理解,並能進行簡單的復名數與單名數之間的轉化。「比大小」通過演講比賽選手的得分情況,學習如何比較小數的大小。
【教學片斷一】
課件展示教材第6面的第3題的第一幅圖
師:拿出你手中的直尺,你看把這一厘米平均分成10份,你取了其中的7份,在什麼位置,怎樣用小數表示?
生1:可以找到,就是7毫米。
生2:也就是7/10,用小數表示是0.7,它們是相對應的,相等的。
師:你說的真好!那我們如果取10份,也就是10/10,也就是1㎝,那10個就0.1就是多少呢?
生3:10個0.1就是1。
師:那我們一起來看這根長1米的木尺,課件展示米尺。
把1米平均分成100份,其中1份是幾厘米?1份就是幾分之幾米?用小數表示是多少?
生4:其中一份就是1㎝,就是1/100米,用小數表示就是0.01米。
師:其中的10份是幾㎝?其中10份是幾分之幾米?是用小數表示是多少米?
生5:其中10份就是10㎝,是10/100米,用小數表示是0.1米。
師:那也就是說10個0.01是多少?在小數部分每相鄰的兩個數量單位之間的進率是多少?
生7:10個0.01是0.1.
生8:每相鄰的兩個數量單位之間的進率是10。
【教學片斷二】
師:現在我們請兩個男生來測量教室前門的高度,誰願意?
生9:我們測量的門高2米4分米,
師:那我們怎樣用小數來表示呢?是多少米呢? 教師展示皮尺。
生10:2米還是2米,4分米從皮尺上看佔了一米的4/10,也就是0.4米,那它們合起來就是2.4米。
【教學反思】
1、巧用數軸幫助學生理解小數的意義及小數部分十進制計數法
在小數的認識這一內容中,教材的編排意圖體現了讓學生在熟悉的生活背景下學習小數。如元、角、分、體重、身高,但是認識小數是學生對數的認識的又一次擴展,對學生來說,小數所表示的意義與他們的生活經驗還有一定的距離,所以我充分引導學生藉助手中的直尺,這一比較熟悉的素材讓學生來加深理解。
教師是學生思維的引導者。使學生初步感受小數與實際生活的緊密聯系,以此促進學生學好數學知識的興趣和信心。直尺、米尺在這里實際上就是一個拿在手中的數軸,上面有毫米、厘米、分米,正好幫助學生來理解1/10、1/100,滿十進一,從而理解了小數的意義。
2、,巧用數軸幫助學生在測量活動中體會小數在日常生活中的應用。
由於學生測量生活經驗少,教材安排了教室內的實際測量活動情景,我們在教學時,可以利用米尺、皮尺,幫助學生利用數軸來理解小數的意義,讓學生討論這些長度用「米」怎樣表示,在討論幾分米或幾厘米寫成米作單位時,可以先寫成分母是10或100的分數,再寫成小數。當測量到門高2米4分米,這時讓學生觀察米尺、皮尺,體會2米4分米的含義及用米作單位的含義,即2米4分米=2.4分米。這個難點,就在米尺這個形象的數軸的幫助下,輕松突破了。在課外我還安排學生回家用直尺和父母一起量電視屏、量凳子面的長、寬、量雜志的長、寬,又進一步鞏固了小數的知識,加深了學生對數學的認識。
3、巧用數軸讓學生直觀的比較小數的大小。
在教材第10面第一題中,充分讓學生動手找9.8的位置,讓學生說9.8和10.1的含義,這樣就比較直觀的讓學生理解了9.8< 10.1的道理。從而體會到數軸右邊的數始終大於左邊的數。
㈥ 2012北師大版七年級數學下冊的每一章詳細知識點總結。(要有像大括弧的)
北七下知識要點分章梳理
第一章:整式的運算
一、單項式
1、都是數字與字母的乘積的代數式叫做單項式。
2、單項式的數字因數叫做單項式的系數。
3、單項式中所有字母的指數和叫做單項式的次數。
4、單獨一個數或一個字母也是單項式。
5、只含有字母因式的單項式的系數是1或―1。
6、單獨的一個數字是單項式,它的系數是它本身。
7、單獨的一個非零常數的次數是0。
8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。
9、單項式的系數包括它前面的符號。
10、單項式的系數是帶分數時,應化成假分數。
11、單項式的系數是1或―1時,通常省略數字「1」。
12、單項式的次數僅與字母有關,與單項式的系數無關。
二、多項式
1、幾個單項式的和叫做多項式。
2、多項式中的每一個單項式叫做多項式的項。
3、多項式中不含字母的項叫做常數項。
4、一個多項式有幾項,就叫做幾項式。
5、多項式的每一項都包括項前面的符號。
6、多項式沒有系數的概念,但有次數的概念。
7、多項式中次數最高的項的次數,叫做這個多項式的次數。
三、整式
1、單項式和多項式統稱為整式。
2、單項式或多項式都是整式。
3、整式不一定是單項式。
4、整式不一定是多項式。
5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。
四、整式的加減
1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配律。
2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。
3、幾個整式相加減的一般步驟:
(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。
(2)按去括弧法則去括弧。
(3)合並同類項。
4、代數式求值的一般步驟:
(1)代數式化簡。
(2)代入計算
(3)對於某些特殊的代數式,可採用「整體代入」進行計算。
五、同底數冪的乘法
1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an
的結果叫做冪。
2、底數相同的冪叫做同底數冪。
3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n = am﹒an。
5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n =amn。
3、此法則也可以逆用,即:amn =(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數是乘積形式的乘方。
2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。
3、此法則也可以逆用,即:anbn =(ab)n。 八、三種「冪的運演算法則」異同點 1、共同點:
(1)法則中的底數不變,只對指數做運算。
(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多式)。
(3)對於含有3個或3個以上的運算,法則仍然成立
2、不同點:
(1)同底數冪相乘是指數相加。
(2)冪的乘方是指數相乘。
(3)積的乘方是每個因式分別乘方,再將結果相乘。
九、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n
(a≠0)。
2、此法則也可以逆用,即:am-n = am÷an
(a≠0)。 十、零指數冪
1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0
=1(a≠0)。 十一、負指數冪
1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:1(0)pp
a
aa
註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。 十二、整式的乘法
(一)單項式與單項式相乘
1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。 2、系數相乘時,注意符號。
3、相同字母的冪相乘時,底數不變,指數相加。
4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。 5、單項式乘以單項式的結果仍是單項式。
6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。 (二)單項式與多項式相乘
1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。 2、運算時注意積的符號,多項式的每一項都包括它前面的符號。 3、積是一個多項式,其項數與多項式的項數相同。
4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。 (三)多項式與多項式相乘
1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多
項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。
3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用「同號得正,異號得負」。
4、運算結果中有同類項的要合並同類項。
5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式
簡化運算:(x+a)(x+b)=x2
+(a+b)x+ab。 十三、平方差公式
1、(a+b)(a-b)=a2-b2
,即:兩數和與這兩數差的積,等於它們的平方之差。 2、平方差公式中的a、b可以是單項式,也可以是多項式。
3、平方差公式可以逆用,即:a2-b2
=(a+b)(a-b)。
4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成
(a+b)•(a-b)的形式,然後看a2與b2
是否容易計算。 十四、完全平方公式
1、222222
()2,()2,abaabbabaabb即:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍。 2、公式中的a,b可以是單項式,也可以是多項式。 3、掌握理解完全平方公式的變形公式:
(1)222222
12
()2()2[()()]ababababababab (2)22
()()4ababab
(3)22
14[()()]ababab 4、完全平方式:我們把形如:2222
2,2,aabbaabb的二次三項式稱作完全平方式。
5、當計算較大數的平方時,利用完全平方公式可以簡化數的運算。
6、完全平方公式可以逆用,即:222222
2(),2().aabbabaabbab 十五、整式的除法
(一)單項式除以單項式的法則
1、單項式除以單項式的法則:一般地,單項式相除,把系數、同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同它的指數一起作為商的一個因式。 2、根據法則可知,單項式相除與單項式相乘計算方法類似,也是分成系數、相同字母與不相同字母三部分分別進行考慮。 (二)多項式除以單項式的法則
1、多項式除以單項式的法則:多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。用字母表示為:().abcmambmcm 2、多項式除以單項式,注意多項式各項都包括前面的符號
2
即(ab)n=anbn
。
3、此法則也可以逆用,即:anbn =(ab)n
。 八、三種「冪的運演算法則」異同點 1、共同點:
(1)法則中的底數不變,只對指數做運算。
(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。
(3)對於含有3個或3個以上的運算,法則仍然成立。 2、不同點:
(1)同底數冪相乘是指數相加。 (2)冪的乘方是指數相乘。
(3)積的乘方是每個因式分別乘方,再將結果相乘。 九、同底數冪的除法
1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n
(a≠0)。
2、此法則也可以逆用,即:am-n = am÷an
(a≠0)。 十、零指數冪
1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0
=1(a≠0)。 十一、負指數冪
1、任何不等於零的數的―p次冪,等於這個數的p次冪的倒數,即:1(0)pp
a
aa
註:在同底數冪的除法、零指數冪、負指數冪中底數不為0。 十二、整式的乘法
(一)單項式與單項式相乘
1、單項式乘法法則:單項式與單項式相乘,把它們的系數、相同字母的冪分別相乘,其餘字母連同它的指數不變,作為積的因式。 2、系數相乘時,注意符號。
3、相同字母的冪相乘時,底數不變,指數相加。
4、對於只在一個單項式中含有的字母,連同它的指數一起寫在積里,作為積的因式。 5、單項式乘以單項式的結果仍是單項式。
6、單項式的乘法法則對於三個或三個以上的單項式相乘同樣適用。 (二)單項式與多項式相乘
1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。 2、運算時注意積的符號,多項式的每一項都包括它前面的符號。 3、積是一個多項式,其項數與多項式的項數相同。
4、混合運算中,注意運算順序,結果有同類項時要合並同類項,從而得到最簡結果。 (三)多項式與多項式相乘
1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多
項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進行,即一個多項式的每一項乘以另一個多項式的每一項。在未合並同類項之前,積的項數等於兩個多項式項數的積。
3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應用「同號得正,異號得負」。
4、運算結果中有同類項的要合並同類項。
5、對於含有同一個字母的一次項系數是1的兩個一次二項式相乘時,可以運用下面的公式
簡化運算:(x+a)(x+b)=x2
+(a+b)x+ab。 十三、平方差公式
1、(a+b)(a-b)=a2-b2
,即:兩數和與這兩數差的積,等於它們的平方之差。 2、平方差公式中的a、b可以是單項式,也可以是多項式。
3、平方差公式可以逆用,即:a2-b2
=(a+b)(a-b)。
4、平方差公式還能簡化兩數之積的運算,解這類題,首先看兩個數能否轉化成
(a+b)•(a-b)的形式,然後看a2與b2
是否容易計算。 十四、完全平方公式
1、222222
()2,()2,abaabbabaabb即:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍。 2、公式中的a,b可以是單項式,也可以是多項式。 3、掌握理解完全平方公式的變形公式:
(1)222222
12
()2()2[()()]ababababababab (2)22
()()4ababab
(3)22
14[()()]ababab 4、完全平方式:我們把形如:2222
2,2,aabbaabb的二次三項式稱作完全平方式。
5、當計算較大數的平方時,利用完全平方公式可以簡化數的運算。
6、完全平方公式可以逆用,即:222222
2(),2().aabbabaabbab 十五、整式的除法
(一)單項式除以單項式的法則
1、單項式除以單項式的法則:一般地,單項式相除,把系數、同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同它的指數一起作為商的一個因式。 2、根據法則可知,單項式相除與單項式相乘計算方法類似,也是分成系數、相同字母與不相同字母三部分分別進行考慮。 (二)多項式除以單項式的法則
1、多項式除以單項式的法則:多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。用字母表示為:().abcmambmcm 2、多項式除以單項式,注意多項式各項都包括前面的符號
㈦ 北師大版七年級數學上冊知識點
北師大版初一數學定理知識點匯總[七年級上冊]
第一章 豐富的圖形世界
¤1.
¤2.
¤3. 球體:由球面圍成的(球面是曲面)
¤4. 幾何圖形是由點、線、面構成的。
①幾何體與外界的接觸面或我們能看到的外表就是幾何體的表面。幾何的表面有平面和曲面;
②面與面相交得到線;
③線與線相交得到點。
※5. 棱:在稜柱中,任何相鄰兩個面的交線都叫做棱。
※6. 側棱:相鄰兩個側面的交線叫做側棱,所有側棱長都相等。
¤7. 稜柱的上、下底面的形狀相同,側面的形狀都是長方形。
¤8. 根據底面圖形的邊數,人們將稜柱分為三稜柱、四稜柱、五稜柱、六稜柱……它們底面圖形的形狀分別為三邊形、四邊形、五邊形、六邊形……
¤9. 長方體和正方體都是四稜柱。
¤10. 圓柱的表面展開圖是由兩個相同的圓形和一個長方形連成。
¤11. 圓錐的表面展開圖是由一個圓形和一個扇形連成。
※12. 設一個多邊形的邊數為n(n≥3,且n為整數),從一個頂點出發的對角線有(n-3)條;可以把n邊形成(n-2)個三角形;這個n邊形共有 條對角線。
◎13. 圓上兩點之間的部分叫做弧,弧是一條曲線。
◎14. 扇形,由一條弧和經過這條弧的端點的兩條半徑所組成的圖形。
¤15. 凸多邊形和凹多邊形都屬於多邊形。有弧或不封閉圖形都不是多邊形。
第二章 有理數及其運算
※
※數軸的三要素:原點、正方向、單位長度(三者缺一不可)。
※任何一個有理數,都可以用數軸上的一個點來表示。(反過來,不能說數軸上所有的點都表示有理數)
※如果兩個數只有符號不同,那麼我們稱其中一個數為另一個數的相反數,也稱這兩個數互為相反數。(0的相反數是0)
※在數軸上,表示互為相反數的兩個點,位於原點的側,且到原點的距離相等。
¤數軸上兩點表示的數,右邊的總比左邊的大。正數在原點的右邊,負數在原點的左邊。
※絕對值的定義:一個數a的絕對值就是數軸上表示數a的點與原點的距離。數a的絕對值記作|a|。
※正數的絕對值是它本身;負數的絕對值是它的數;0的絕對值是0。
0
-1
-2
-3
1
2
3
越來越大
或
※絕對值的性質:除0外,絕對值為一正數的數有兩個,它們互為相反數;
互為相反數的兩數(除0外)的絕對值相等;
任何數的絕對值總是非負數,即|a|≥0
※比較兩個負數的大小,絕對值大的反而小。比較兩個負數的大小的步驟如下:
①先求出兩個數負數的絕對值;
②比較兩個絕對值的大小;
③根據「兩個負數,絕對值大的反而小」做出正確的判斷。
※絕對值的性質:
①對任何有理數a,都有|a|≥0
②若|a|=0,則|a|=0,反之亦然
③若|a|=b,則a=±b
④對任何有理數a,都有|a|=|-a|
※有理數加法法則: ①同號兩數相加,取相同符號,並把絕對值相加。
②異號兩數相加,絕對值相等時和為0;絕對值不等時取絕對值較大的數的符號,並用較大數的絕對值減去較小數的絕對值。
③一個數同0相加,仍得這個數。
※加法的交換律、結合律在有理數運算中同樣適用。
¤靈活運用運算律,使用運算簡化,通常有下列規律:①互為相反的兩個數,可以先相加;
②符號相同的數,可以先相加;
③分母相同的數,可以先相加;
④幾個數相加能得到整數,可以先相加。
※有理數減法法則: 減去一個數,等於加上這個數的相反數。
¤有理數減法運算時注意兩「變」:①改變運算符號;
②改變減數的性質符號(變為相反數)
有理數減法運算時注意一個「不變」:被減數與減數的位置不能變換,也就是說,減法沒有交換律。
¤有理數的加減法混合運算的步驟:
①寫成省略加號的代數和。在一個算式中,若有減法,應由有理數的減法法則轉化為加法,然後再省略加號和括弧;
②利用加法則,加法交換律、結合律簡化計算。
(注意:減去一個數等於加上這個數的相反數,當有減法統一成加法時,減數應變成它本身的相反數。)
※有理數乘法法則: ①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘,積仍為0。
※如果兩個數互為倒數,則它們的乘積為1。(如:-2與 、 …等)
※乘法的交換律、結合律、分配律在有理數運算中同樣適用。
¤有理數乘法運算步驟:①先確定積的符號;
②求出各因數的絕對值的積。
¤乘積為1的兩個有理數互為倒數。注意:
①零沒有倒數
②求分數的倒數,就是把分數的分子分母顛倒位置。一個帶分數要先化成假分數。
③正數的倒數是正數,負數的倒數是負數。
※有理數除法法則: ①兩個有理數相除,同號得正,異號得負,並把絕對值相除。
②0除以任何非0的數都得0。0不可作為除數,否則無意義。
指數
底數
冪
※有理數的乘方
※注意:①一個數可以看作是本身的一次方,如5=51;
②當底數是負數或分數時,要先用括弧將底數括上,再在右上角寫指數。
※乘方的運算性質:
①正數的任何次冪都是正數;
②負數的奇次冪是負數,負數的偶次冪是正數;
③任何數的偶數次冪都是非負數;
④1的任何次冪都得1,0的任何次冪都得0;
⑤-1的偶次冪得1;-1的奇次冪得-1;
⑥在運算過程中,首先要確定冪的符號,然後再計算冪的絕對值。
※有理數混合運演算法則:①先算乘方,再算乘除,最後算加減。
②如果有括弧,先算括弧裡面的。
第三章 字母表示數
※代數式的概念:
用運算符號(加、減、乘除、乘方、開方等)把數與表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。
注意:①代數式中除了含有數、字母和運算符號外,還可以有括弧;
②代數式中不含有「=、>、<、≠」等符號。等式和不等式都不是代數式,但等號和不等號兩邊的式子一般都是代數式;
③代數式中的字母所表示的數必須要使這個代數式有意義,是實際問題的要符合實際問題的意義。
※代數式的書寫格式:
①代數式中出現乘號,通常省略不寫,如vt;
②數字與字母相乘時,數字應寫在字母前面,如4a;
③帶分數與字母相乘時,應先把帶分數化成假分數後與字母相乘,如 應寫作 ;
④數字與數字相乘,一般仍用「×」號,即「×」號不省略;
⑤在代數式中出現除法運算時,一般按照分數的寫法來寫,如4÷(a-4)應寫作 ;注意:分數線具有「÷」號和括弧的雙重作用。
⑥在表示和(或)差的代差的代數式後有單位名稱的,則必須把代數式括起來,再將單位名稱寫在式子的後面,如 平方米
※代數式的系數:
代數式中的數字中的數字因數叫做代數式的系數。如3x,4y的系數分別為3,4。
注意:①單個字母的系數是1,如a的系數是1;
②只含字母因數的代數式的系數是1或-1,如-ab的系數是-1。a3b的系數是1
※代數式的項:
代數式 表示6x2、-2x、-7的和,6x2、-2x、-7是它的項,其中把不含字母的項叫做常數項
注意:在交待某一項時,應與前面的符號一起交待。
※同類項:
所含字母相同,並且相同字母的指數也相同的項叫做同類項。
注意:①判斷幾個代數式是否是同類項有兩個條件:a.所含字母相同;b.相同字母的指數也相同。這兩個條件缺一不可;
②同類項與系數無關,與字母的排列順序無關;
③幾個常數項也是同類項。
※合差同類項:
把代數式中的同類項合並成一項,叫做合並同類項。
①合並同類項的理論根據是逆用乘法分配律;
②合並同類項的法則是把同類項的系數相加,所得結果作為系數,字母和字母的指數不變。
注意:
①如果兩個同類項的系數互為相反數,合並同類項後結果為0;
②不是同類項的不能合並,不能合並的項,在每步運算中都要寫上;
③只要不再有同類項,就是最後結果,結果還是代數式。
※根據去括弧法則去括弧:
括弧前面是「+」號,把括弧和它前面的「+」號去掉,括弧里各項都不改變符號;括弧前面是「-」號去掉,括弧里各項都改變符號。
※根據分配律去括弧:
括弧前面是「+」號看成+1,括弧前面是「-」號看成-1,根據乘法的分配律用+1或-1去乘括弧里的每一項以達到去括弧的目的。
※注意:
①去括弧時,要連同括弧前面的符號一起去掉;
②去括弧時,首先要弄清楚括弧前是「+」號還是「-」號;
③改變符號時,各項都變號;不改變符號時,各項都不變號。
第四章 平面圖形及位置關系
一. 線段、射線、直線
※1. 正確理解直線、射線、線段的概念以及它們的區別:
名稱
圖形
表示方法
端點
長度
直線
直線AB(或BA)
直線l
無端點
無法度量
射線
射線OM
1個
無法度量
線段
線段AB(或BA)
線段l
2個
可度量長度
※2. 直線公理:經過兩點有且只有一條直線.
b
鵬翔教圖2
A
O
B
鵬翔教圖1
二.比較線段的長短
※1. 線段公理:兩點間線段最短;兩之間線段的長度叫做這兩點之間的距離.
※2. 比較線段長短的兩種方法:
①圓規截取比較法;
②刻度尺度量比較法.
β
鵬翔教圖4
※3. 用刻度尺可以畫出線段的中點,線段的和、差、倍、分;
1
鵬翔教圖3
用圓規可以畫出線段的和、差、倍.
三.角的度量與表示
※1. 角:有公共端點的兩條射線組成的圖形叫做角;
這個公共端點叫做角的頂點;
平角
鵬翔教圖6
終邊
始邊
鵬翔教圖5
這兩條射線叫做角的邊.
※2. 角的表示法:角的符號為「∠」
①用三個字母表示,如圖1所示∠AOB
②用一個字母表示,如圖2所示∠b
③用一個數字表示,如圖3所示∠1
鵬翔教圖8
C
A
B
O
④用希臘字母表示,如圖4所示∠β
周角
鵬翔教圖7
※經過兩點有且只有一條直線。
※兩點之間的所有連線中,線段最短。
※兩點之間線段的長度,叫做這兩點之間的距離。
1º=60』 1』=60」
※角也可以看成是由一條射線繞著它的端點旋轉而成的。如圖5所示:
※一條射線繞它的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。如圖6所示:
※終邊繼續旋轉,當它又和始邊重合時,所成的角叫做周角。如圖7所示:
※從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
※經過直線外一點,有且只有一條直線與這條直線平行。
※如果兩條直線都與第三條直線平行,那麼這兩條直線互相平行。
※互相垂直的兩條直線的交點叫做垂足。
※平面內,過一點有且只有一條直線與已知直線垂直。
※如圖8所示,過點C作直線AB的垂線,垂足為O點,線段CO的長度叫做點C到直線AB的距離。
第五章 一元一次方程
※在一個方程中,只含有一個未知數x(元),並且未知數的指數是1(次),這樣的方程叫做一元一次方程。
※等式兩邊同時加上(或減去)同一個代數式,所得結果仍是等式。
※等式兩邊同時乘同一個數(或除以同一個不為0的數),所得結果仍是等式。
※解方程的步驟:解一元一次方程,一般要通過去分母、去括弧、移項、合並同類項、未知數的系數化為1等幾個步驟,把一個一元一次方程「轉化」成x=m的形式。
第六章 生活中的數據
※科學記數法:一般地,一個大於10的數可以表示成a×10n的形式,其中1≤a<10,n是正整數,這種記數方法叫做科學記數法。
※統計圖的特點:
折線統計圖:能夠清晰地反映同一事物在不同時期的變化情況。
條形統計圖:能夠清晰地反映每個項目的具體數目及之間的大小關系。
扇形統計圖:能夠清晰地表示各部分在總體中所佔的百分比及各部分之間的大小關系
統計圖對統計的作用:
(1)可以清晰有效地表達數據。
(2)可以對數據進行分析。
(3)可以獲得許多的信息。
(4)可以幫助人們作出合理的決策。
北師大版初一數學定理知識點匯總[七年級下冊]
第一章 整式的運算
一. 整式
※1. 單項式
①由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。
②單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數.
③一個單項式中,所有字母的指數和叫做這個單項式的次數.
※2.多項式
①幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數項.一個多項式中,次數最高項的次數,叫做這個多項式的次數.
②單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數.多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數.多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.
※3.整式單項式和多項式統稱為整式.
二. 整式的加減
¤1. 整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.
¤2. 括弧前面是「-」號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘.
三. 同底數冪的乘法
※同底數冪的乘法法則: (m,n都是正數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:
①法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;
②指數是1時,不要誤以為沒有指數;
③不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;
④當三個或三個以上同底數冪相乘時,法則可推廣為 (其中m、n、p均為正數);
⑤公式還可以逆用: (m、n均為正整數)
四.冪的乘方與積的乘方
※1. 冪的乘方法則: (m,n都是正數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆.
※2. .
※3. 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3
※4.底數有時形式不同,但可以化成相同。
※5.要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※6.積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數)。
※7.冪的乘方與積乘方法則均可逆向運用。
五. 同底數冪的除法
※1. 同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即 (a≠0,m、n都是正數,且m>n).
※2. 在應用時需要注意以下幾點:
①法則使用的前提條件是「同底數冪相除」而且0不能做除數,所以法則中a≠0.
②任何不等於0的數的0次冪等於1,即 ,如 ,(-2.50=1),則00無意義.
③任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即 ( a≠0,p是正整數), 而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的; 當a<0時,a-p的值可能是正也可能是負的,如 ,
④運算要注意運算順序.
六. 整式的乘法
※1. 單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
單項式乘法法則在運用時要注意以下幾點:
①積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;
②相同字母相乘,運用同底數的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;
④單項式乘法法則對於三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結果仍是一個單項式。
※2.單項式與多項式相乘
單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
單項式與多項式相乘時要注意以下幾點:
①單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;
②運算時要注意積的符號,多項式的每一項都包括它前面的符號;
③在混合運算時,要注意運算順序。
※3.多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
多項式與多項式相乘時要注意以下幾點:
①多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;
②多項式相乘的結果應注意合並同類項;
③對含有同一個字母的一次項系數是1的兩個一次二項式相乘 ,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:兩數和與這兩數差的積,等於它們的平方差,
※即 。
¤其結構特徵是:
①公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;
②公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。
八.完全平方公式
¤1. 完全平方公式:兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,
¤即 ;
¤口決:首平方,尾平方,2倍乘積在中央;
¤2.結構特徵:
①公式左邊是二項式的完全平方;
②公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。
¤3.在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現 這樣的錯誤。
九.整式的除法
¤1.單項式除法單項式
單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;
¤2.多項式除以單項式
多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
第二章 平行線與相交線
一.檯球桌面上的角
※1.互為餘角和互為補角的有關概念與性質
如果兩個角的和為90°(或直角),那麼這兩個角互為餘角;
如果兩個角的和為180°(或平角),那麼這兩個角互為補角;
注意:這兩個概念都是對於兩個角而言的,而且兩個概念強調的是兩個角的數量關系,與兩個角的相互位置沒有關系。
它們的主要性質:同角或等角的餘角相等;
同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:
①同位角相等,兩直線平行;
②內錯角相等,兩直線平行;
③同旁內角互補,兩直線平行。
三.平行線的特徵
※平行線的特徵即平行線的性質定理,共有三條:
①兩直線平行,同位角相等;
②兩直線平行,內錯角相等;
③兩直線平行,同旁內角互補。
四.用尺規作線段和角
※1.關於尺規作圖
尺規作圖是指只用圓規和沒有刻度的直尺來作圖。
※2.關於尺規的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
第三章生活中的數據
※1.科學記數法:對任意一個正數可能寫成a×10n的形式,其中1≤a<10,n是整數,這種記數的方法稱為科學記數法。
¤2.利用四捨五入法取一個數的近似數時,四捨五入到哪一位,就說這個近似數精確到哪一位;對於一個近似數,從左邊第一個不是0的數字起,到精確到的數位止,所有的數字都叫做這個數的有效數字。
¤3.統計工作包括:
①設定目標;②收集數據;③整理數據;④表達與描述數據;⑤分析結果。
第四章 概率
¤1.隨機事件發生與不發生的可能性不總是各佔一半,都為50%。
※2.現實生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學科。
※3.了解必然事件和不可能事件發生的概率。
必然事件發生的概率為1,即P(必然事件)=1;不可能事件發生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那麼0<P(A)<1
※4.了解幾何概率這類問題的計算方法
事件發生概率=
第五章 三角形
一.認識三角形
1.關於三角形的概念及其按角的分類
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
這里要注意兩點:
①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;
②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。
三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。
2.關於三角形三條邊的關系
根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。
三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。
對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。
設三角形三邊的長分別為a、b、c則:
①一般地,對於三角形的某一條邊a來說,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三條線段才能構成三角形;
②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b-c|<a,那麼這三條線段就能構成三角形。
3.關於三角形的內角和
三角形三個內角的和為180°
①直角三角形的兩個銳角互余;
②一個三角形中至多有一個直角或一個鈍角;
③一個三角中至少有兩個內角是銳角。
4.關於三角形的中線、高和中線
①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;
②任意一個三角形都有三條角平分線,三條中線和三條高;
③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖3。
④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。
二.圖形的全等
¤能夠完全重合的圖形稱為全等形。全等圖形的形狀和大小都相同。只是形狀相同而大小不同,或者說只是滿足面積相同但形狀不同的兩個圖形都不是全等的圖形。
四.全等三角形
¤1.關於全等三角形的概念
能夠完全重合的兩個三角形叫做全等三角形。互相重合的頂點叫做對應點,互相重合的邊叫做對應邊,互相重合的角叫做對應角
所謂「完全重合」,就是各條邊對應相等,各個角也對應相等。因此也可以這樣說,各條邊對應相等,各個角也對應相等的兩個三角形叫做全等三角形。
※2.全等三角形的對應邊相等,對應角相等。
¤3.全等三角形的性質經常用來證明兩條線段相等和兩個角相等。
五.探三角形全等的條件
※1.三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」
※2.有兩邊和它們的夾角對應相等的兩個三角形全等,簡寫成「邊角邊」或「SAS」
※3.兩角和它們的夾邊對應相等的兩個三角形全等,簡寫成「角邊角」或「ASA」
※4.兩角和其中一個角的對邊對應相等的兩個三角形全等,簡寫成「角角邊」或「AAS」
六.作三角形
1.已知兩個角及其夾邊,求作三角形,是利用三角形全等條件「角邊角」即(「ASA」)來作圖的。
2.已知兩條邊及其夾角,求作三角形,是利用三角形全等條件「邊角邊」即(「SAS」)來作圖的。
3.已知三條邊,求作三角形,是利用三角形全等條件「邊邊邊」即(「SSS」)來作圖的。
八.探索直三角形全等的條件
※1.斜邊和一條直角邊對應相等的兩個直角三角形全等。簡稱為「斜邊、直角邊」或「HL」。這只對直角三角形成立。
※2.直角三角形是三角形中的一類,它具有一般三角形的性質,因而也可用「SAS」、「ASA」、「AAS」、「SSS」來判定。
直角三角形的其他判定方法可以歸納如下:
①兩條直角邊對應相等的兩個直角三角形全等;
②有一個銳角和一條邊對應相等的兩個直角三角形全等。
③三條邊對應相等的兩個直角三角形全等。
第七章 生活中的軸對稱
※1.如果一個圖形沿某條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
※2.角平分線上的點到角兩邊距離相等。
※3.線段垂直平分線上的任意一點到線段兩個端點的距離相等。
※4.角、線段和等腰三角形是軸對稱圖形。
※5.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為「三線合一」。
※6.軸對稱圖形上對應點所連的線段被對稱軸垂直平分。
※7.軸對稱圖形上對應線段相等、對應角相等。
(註:※表示重點部分;¤表示了解部分;◎表示僅供參閱部分;)
㈧ 北師大版七年級上冊數學的復習提綱
七年級上冊】 數學復習提綱
第一章 有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號「—」的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上「+」)。
1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,並把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等於加這個數的相反數。
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大於10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的有效數字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號後移到另一邊,叫做移項。
第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等於90度(直角),就說這兩個叫互為餘角(compiementary angle),即其中每一個角是另一個角的餘角。
如果兩個角的和等於180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的餘角相等。
第四章 數據的收集與整理
收集、整理、描述和分析數據是數據處理的基本過程。