導航:首頁 > 數字科學 > 數學建模中相關特徵有哪些方法

數學建模中相關特徵有哪些方法

發布時間:2022-09-23 14:58:02

① 數學建模的方法有哪些

  1. 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);

  2. 歸類判別:歐氏距離判別、fisher判別等 ;

  3. 圖論:最短路徑求法 ;

  4. 最優化:列方程組 用lindo 或 lingo軟體解 ;

  5. 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 。

建模常用演算法,僅供參考:

  1. 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決 問題的演算法,同時間=可以通過模擬可以來檢驗自己模型的正確性,是比賽時必 用的方法) 。

  2. 數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數 據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具) 。

  3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多 數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通 常使用Lindo、Lingo 軟體實現) 。

  4. 圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算 法,涉及到圖論的問題可以用這些方法解決,需要認真准備) 。

  5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算 法設計中比較常用的方法,很多場合可以用到競賽中) 。

  6. 最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些 問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助, 但是演算法的實現比較困難,需慎重使用) 。

  7. 網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很 多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種 暴力方案,最好使用一些高級語言作為編程工具) 。

  8. 一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計 算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替 積分等思想是非常重要的) 。

  9. 數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分 析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編 寫庫函數進行調用) 。

  10. 圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文 中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問 題,通常使用Matlab 進行處理)。

② 數學建模都要用到那些方法啊

隨著科學技術的迅速發展,數學模型這個詞彙越來越多地出現在現代人的生產、工作和社會活動中。電氣工程師必須建立所要控制的生產過程的數學模型,用這個模型對控制裝置作出相應的設計和計算,才能實現有效的過程式控制制;氣象工作者為了得到准確的天氣預報,一刻也離不開根據氣象站、氣象衛星匯集的氣壓、雨量、風速等資料建立的數學模型;生理醫學家有了葯物濃度在人體內隨時間和空間變化的數學模型,就可以分析葯物的療效,有效地指導臨床用葯;廠長經理們要是能夠根據產品的需求狀況、生產條件和成本、貯存費用等信息,籌劃出一個合理安排生產和銷售的數學模型,一定可以獲得更大的經濟效益。對於廣大的科學技術人員和應用數學工作者來說,建立數學模型是溝通擺在面前的實際問題與他們掌握的數學工具之間的一座必不可少的橋梁。

那麼,什麼是數學模型,又是如何建立起這些形形色色的數學模型的呢?就讓我們走近數學模型看一看吧!

原型與模型

原型(Prototype):人們在現實世界裡關心、研究或者生產、管理的實際對象。

模型(Model):為特定的目的,將原型的某一部分信息簡縮、提煉而構造的原型替代物。

數學模型:對於現實世界的一個特定對象,為了一個特定目的,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。

注意數學模型(Mathematical Model)與數學建模(Mathematical Modelling)之間的聯系與區別。

建立數學模型的方法

一般說來建立數學模型可以分為表述、求解、解釋、驗證幾個階段,並且通過這些階段完成從現實對象到數學模型,再從數學模型回到現實對象。建立數學模型沒有固定的模式。一般這一過程可以如圖所示的幾個步驟:

數學模型的分類

基於不同的出發點可以有各種不同的分法:

按照模型的應用領域分:如人口模型、交通模型、環境模型、生態模型、城鎮規劃模型、水資源模型、再生資源利用模型、污染模型等。范疇更大一些則形成許多邊緣學科如生物數學、醫學數學、地質數學、數量經濟學、數學社會學等。

按照建立模型的方法分:如初等數學模型、幾何模型、微分方程模型、圖論模型、馬氏鏈模型、規劃論模型等。

按照模型的表現特性又有幾種分法:

確定行模型和隨機性模型 取決於是否考慮隨機因素的影響。近幾年來隨著數學的發展,又有所謂突變性模型和模糊性模型。

靜態模型和動態模型 取決於是否考慮隨機因數引起的變化。

離散模型和連續模型 指模型中的變數(主要是時間變數)取為離散是連續的。

線性模型和連續模型 取決於模型的基本關系,如微分方程是否是的。

按照建模目的分。有描述模型、分析模型、預報模型、優化模型、決策模型、控制模型等。

按照對模型的了解程度分。有所謂白箱模型、灰箱模型、黑箱模型等。它們分別意

味著人們對原型的內在機理了解清楚、不太清楚和不清楚。

數學模型的作用

數學是研究現實世界中的數量關系和空間形式的科學。它的產生和許多重大發展都和現實世界的生產活動和其他相應的學科的需要密切相關的。一般的說,當實際問題需要我們對所研究的現實對象提供分析、預報、決策、控制等方面的定量結果時,往往都離不開數學的應用,而建立數學模型則是這個過程的關鍵環節。

分析 通常是指定量研究現實對象的某種現象,或定量描述某種特性。例如 研究不同種群的生物在同一自然環境下生存時,相互競爭和依存的現象;描述葯物濃度在人體內的變化規律以分析葯物的療效。

預報 一般是根據對象的固有特性預測當時間或環境變化時對象的發展規律。人口預報、天氣預報以及傳染病蔓延高潮時刻的預報可以作為這方面的例子。

決策 其含義很廣,譬如根據對象滿足的規律作出使某個數量指標達到最優的決策。使經濟效益最大的價格策略,使總費用最少的設備維修方案都是這類決策。

控制 一般是指根據對象的特徵和某些指標給出盡可能滿意的控制方案。例如化工生產過程中溫度和流量的控制,利用紅綠燈對交流進行控制等

數學建模(mathematical modelling)

數學建模是構造刻劃客觀事物原型的數學模型並用析究和解決實際問題的種方法。運用這種科學方法,建模者必須從實際問題出發,遵循「實踐――認識――實踐」的辨證唯物主義認識規律,緊緊圍繞著建模的目的,運用觀察力、想像力和邏輯思維,對問題進行抽象、簡化,反復探索、逐步完善,直到構造出一個能夠用於分析、研究和解決實際問題的數學模型。因此,數學建模不僅僅是一種定量解決實際問題的科學方法,而且還是一種從無到有的創新活動過程。當代計算機的發展和廣泛應用,使得數學模型的方法如虎添翼,加速了數學向各個學科的滲透,產生了眾多的邊緣學科。當今幾乎所有重要的學科,只要在其名稱前面或後面加上「數學」或「計算」二字,就成了現有的一種國際學術雜志名稱。這表明各學科正在利用數學方法和數學成果來加速本學科的發展。就連計算機本身的產生和進步也是強烈地依賴於數學科學的發展,而計算機軟體技術說到底也是數學技術。

引用絕對嚇人的文字

③ 數學建模的方法有哪些

這是網上來的,寫得還不錯:
要重點突破:
1 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);
2 歸類判別:歐氏距離判別、fisher判別等 ;
3 圖論:最短路徑求法 ;
4 最優化:列方程組 用lindo 或 lingo軟體解 ;
5 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 ;
6 用到軟體:matlab lindo (lingo) excel ;
7 比賽前寫幾篇數模論文。

這是每年參賽的賽提以及獲獎作品的解法,你自己估量著吧……

賽題 解法
93A非線性交調的頻率設計 擬合、規劃
93B足球隊排名 圖論、層次分析、整數規劃
94A逢山開路 圖論、插值、動態規劃
94B鎖具裝箱問題 圖論、組合數學
95A飛行管理問題 非線性規劃、線性規劃
95B天車與冶煉爐的作業調度 動態規劃、排隊論、圖論
96A最優捕魚策略 微分方程、優化
96B節水洗衣機 非線性規劃
97A零件的參數設計 非線性規劃
97B截斷切割的最優排列 隨機模擬、圖論
98A一類投資組合問題 多目標優化、非線性規劃
98B災情巡視的最佳路線 圖論、組合優化
99A自動化車床管理 隨機優化、計算機模擬
99B鑽井布局 0-1規劃、圖論
00A DNA序列分類 模式識別、Fisher判別、人工神經網路
00B鋼管訂購和運輸 組合優化、運輸問題
01A血管三維重建 曲線擬合、曲面重建
01B 工交車調度問題 多目標規劃
02A車燈線光源的優化 非線性規劃
02B彩票問題 單目標決策
03A SARS的傳播 微分方程、差分方程
03B 露天礦生產的車輛安排 整數規劃、運輸問題
04A奧運會臨時超市網點設計 統計分析、數據處理、優化
04B電力市場的輸電阻塞管理 數據擬合、優化
05A長江水質的評價和預測 預測評價、數據處理
05B DVD在線租賃 隨機規劃、整數規劃

演算法的設計的好壞將直接影響運算速度的快慢,建議多用數學軟體(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),這里提供十種數學
建模常用演算法,僅供參考:
1、 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決
問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必
用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數
據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多
數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通
常使用Lindo、Lingo 軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算
法,涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算
法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些
問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,
但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很
多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種
暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計
算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替
積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分
析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編
寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文
中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問
題,通常使用Matlab 進行處理)

④ 數學建模都有哪些方法

這些是以前在網上整理的:
要重點突破:
1 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);
2 歸類判別:歐氏距離判別、fisher判別等 ;
3 圖論:最短路徑求法 ;
4 最優化:列方程組 用lindo 或 lingo軟體解 ;
5 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 ;
6 用到軟體:matlab lindo (lingo) excel ;
7 比賽前寫幾篇數模論文。

這是每年參賽的賽提以及獲獎作品的解法,你自己估量著吧……

賽題 解法
93A非線性交調的頻率設計 擬合、規劃
93B足球隊排名 圖論、層次分析、整數規劃
94A逢山開路 圖論、插值、動態規劃
94B鎖具裝箱問題 圖論、組合數學
95A飛行管理問題 非線性規劃、線性規劃
95B天車與冶煉爐的作業調度 動態規劃、排隊論、圖論
96A最優捕魚策略 微分方程、優化
96B節水洗衣機 非線性規劃
97A零件的參數設計 非線性規劃
97B截斷切割的最優排列 隨機模擬、圖論
98A一類投資組合問題 多目標優化、非線性規劃
98B災情巡視的最佳路線 圖論、組合優化
99A自動化車床管理 隨機優化、計算機模擬
99B鑽井布局 0-1規劃、圖論
00A DNA序列分類 模式識別、Fisher判別、人工神經網路
00B鋼管訂購和運輸 組合優化、運輸問題
01A血管三維重建 曲線擬合、曲面重建
01B 工交車調度問題 多目標規劃
02A車燈線光源的優化 非線性規劃
02B彩票問題 單目標決策
03A SARS的傳播 微分方程、差分方程
03B 露天礦生產的車輛安排 整數規劃、運輸問題
04A奧運會臨時超市網點設計 統計分析、數據處理、優化
04B電力市場的輸電阻塞管理 數據擬合、優化
05A長江水質的評價和預測 預測評價、數據處理
05B DVD在線租賃 隨機規劃、整數規劃

演算法的設計的好壞將直接影響運算速度的快慢,建議多用數學軟體(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),這里提供十種數學
建模常用演算法,僅供參考:
1、 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決
問題的演算法,同時可以通過模擬可以來檢驗自己模型的正確性,是比賽時必
用的方法)
2、數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數
據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具)
3、線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多
數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通
常使用Lindo、Lingo 軟體實現)
4、圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算
法,涉及到圖論的問題可以用這些方法解決,需要認真准備)
5、動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算
法設計中比較常用的方法,很多場合可以用到競賽中)
6、最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些
問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助,
但是演算法的實現比較困難,需慎重使用)
7、網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很
多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種
暴力方案,最好使用一些高級語言作為編程工具)
8、一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計
算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替
積分等思想是非常重要的)
9、數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分
析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編
寫庫函數進行調用)
10、圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文
中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問
題,通常使用Matlab 進行處理)

⑤ 數學建模方法和步驟

數學建模的主要步驟:

第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建

模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以

高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應

盡量使問題線性化、均勻化。

第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間

的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老

人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱

大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工

具愈簡單愈有價值。

第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,

特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計

算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作

出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差

分析,數據穩定性分析。

數學建模採用的主要方法有:

(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模

型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策

等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。

(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。

(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀

態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構


3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的

可能變化,人為地組成一個系統。

⑥ 數學建模中的分析方法有哪些

數學建模分析方法大體分為機理分析和測試分析兩種。
機理分析:根據對客觀事物特性的認識,找出反映內部機理的數量規律,建立的模型常有明確的物理或現實意義。
測試分析:將研究的對象看做一個「黑箱」系統(意思是它的內部機理看不清楚),通過對系統輸入、輸出數據的測量和統計分析,按照一定的准則找出與數據擬合最好的模型。
希望對你有幫助

⑦ 數學建模的步驟

數學建模的主要步驟:

第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。

第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建

模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以

高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應

盡量使問題線性化、均勻化。

第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間

的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老

人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱

大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工

具愈簡單愈有價值。

第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,

特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計

算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。

第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作

出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差

分析,數據穩定性分析。

數學建模採用的主要方法有:

(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模

型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策

等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。

(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型

1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由

於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。

(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀

態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構


3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的

可能變化,人為地組成一個系統。
希望能解決您的問題。

⑧ 數學建模的方法有哪些

數學建模就同列方程一樣

找出解決問題的方法,找出問題的規律(沒有規律也叫規律)

然後根據計算機的特點,確定計算方法(計算機不像我們人類,不能直接判斷問題的邏輯關系,我們只能利用計算機的一些特定語言來表達,使計算機能認識)。

課題的數學建模做好了,寫計算機程序就方便多了。

判定程序的優劣,首先就從數學建模開始。

⑨ 數學建模主要有哪些分析方法

2常用的建模方法(I)初等數學法。主要用於一些靜態、線性、確定性的模型。例如,席位分配問題,學生成績的比較,一些簡單的傳染病靜態模型。(2)數據分析法。從大量的觀測數據中,利用統計方法建立數學模型,常見的有:回歸分析法,時序分析法。(3)模擬和其他方法。主要有計算機模擬(是一種統計估計方法,等效於抽樣試驗,可以離散系統模擬和連續系統模擬),因子試驗法(主要是在系統上做局部試驗,根據試驗結果進行不斷分析修改,求得所需模型結構),人工現實法(基於對系統的了解和所要達到的目標,人為地組成一個系統)。(4)層次分析法。主要用於有關經濟計劃和管理、能源決策和分配、行為科學、軍事科學、軍事指揮、運輸、農業、教育、人才、醫療、環境等領域,以便進行決策、評價、分析、預測等。該方法關鍵的一步是建立層次結構模型。

⑩ 選擇三種數學建模方法,介紹其內容並說明其適用的問題類型,並舉例

摘要 對於大家來說,建模是大家覺得比較難的內容。那麼如何進行有效的建模呢?今天,滬江小編就為大家分享幾種常用的數學建模方法,一起來看看吧!

閱讀全文

與數學建模中相關特徵有哪些方法相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:741
乙酸乙酯化學式怎麼算 瀏覽:1407
沈陽初中的數學是什麼版本的 瀏覽:1354
華為手機家人共享如何查看地理位置 瀏覽:1046
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:888
數學c什麼意思是什麼意思是什麼 瀏覽:1412
中考初中地理如何補 瀏覽:1302
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:704
數學奧數卡怎麼辦 瀏覽:1391
如何回答地理是什麼 瀏覽:1027
win7如何刪除電腦文件瀏覽歷史 瀏覽:1059
大學物理實驗干什麼用的到 瀏覽:1488
二年級上冊數學框框怎麼填 瀏覽:1702
西安瑞禧生物科技有限公司怎麼樣 瀏覽:982
武大的分析化學怎麼樣 瀏覽:1251
ige電化學發光偏高怎麼辦 瀏覽:1340
學而思初中英語和語文怎麼樣 瀏覽:1655
下列哪個水飛薊素化學結構 瀏覽:1426
化學理學哪些專業好 瀏覽:1489
數學中的棱的意思是什麼 瀏覽:1061