❶ 一年級給多少同樣多的應用題解答方式
一般情況下是一種
應用題是用語言或文字敘述有關事實,反映某種數學關系(譬如:數量關系、位置關系等),並求解未知數量的題目。每個應用題都包括已知條件和所求問題
❷ 一年級數學68和什麼同樣多
摘要 您好,我是瀾瀾,是您本次的服務老師,很高興認識你,正在為您解答,請稍後哦。
❸ 一年級數學給多少一樣多的問題
如:小紅有卡片36張,小芳有卡片28張,小紅給小芳多少張卡片後,她倆的卡片一樣多?
解:在整個過程中她倆的卡片總數沒有變,當她倆的卡片一樣多時,她倆的卡片總數仍是36+28=64張。這時她倆各有卡片數是總數的一半,64÷2=32張。
可見小紅應給小芳36-32=4張。
❹ 小學一年級數學幾個和第幾個
有幾個表示一共有多少個,是一個基數。第幾個是一個序數,表示只有一個。
數學[英語:mathematics,源自古希臘語μθημα(máthēma);經常被縮寫為math或maths],是研究數量、結構、變化、空間以及信息等概念的一門學科。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
代數學可以說是最為人們廣泛接受的「數學」。可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起。從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程與三角函數。而其後更發展出更加精微的微積分。
❺ 一年級數學課程視頻教程是什麼
給小朋友講述基本的加減法和趣味數字。
發展歷史
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:mathematics或maths),其英語源自於古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。
另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦被用來指數學。
其在英語的復數形式,及在法語中的復數形式加-es,成mathématiques,可溯至拉丁文的中性復數(mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká)。
在中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一(六藝中稱為「數」)。
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。
代數學可以說是最為人們廣泛接受的「數學」。可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學。而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起。從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程與三角函數。而其後更發展出更加精微的微積分。