❶ 小學數學解題方法大全
小學數學的解題 方法 有哪些?很多人經常抓不住解題的精髓,以至於數學成績總是提不高。下面是我為大家整理的關於小學數學解題 方法大全 ,希望對您有所幫助。歡迎大家閱讀參考學習!
一、小學數學解題方法:形象思維方法
形象思維方法是指人們用形象思維來認識、解決問題的方法。它的思維基礎是具體形象,並從具體形象展開來的思維過程。
形象思維的主要手段是實物、圖形、表格和典型等形象材料。它的認識特點是以個別表現一般,始終保留著對事物的直觀性。它的思維過程表現為表象、類比、聯想、想像。它的思維品質表現為對直觀材料進行積極想像,對表象進行加工、提煉進而提示出本質、規律,或求出對象。它的思維目標是解決實際問題,並且在解決問題當中提高自身的思維能力。
1、實物演示法
利用身邊的實物來演示數學題目的條件和問題,及條件與條件,條件與問題之間的關系,在此基礎上進行分析思考、尋求解決問題的方法。
這種方法可以使數學內容形象化,數量關系具體化。比如:數學中的相遇問題。通過實物演示不僅能夠解決「同時、相向而行、相遇」等術語,而且為學生指明了思維方向。再如,在一個圓形(方形)水塘周圍栽樹問題,如果能進行一個實際操作,效果要好得多。
雞兔同籠問題。製作三個表格:第一張表格是逐一舉例法,根據雞與兔共20隻的條件,假設雞只有1隻,那麼兔就有19隻,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個以後發現了只數與腿數的規律,從而減少了列舉的次數;第三張表格是從中間開始列舉,由於雞與兔共20隻,所以各取10隻,接著根據實際的數據情況確定列舉的方向。
4、探索法
按照一定方向,通過嘗試來摸索規律、探求解決問題思路的方法叫做探究法。我國著名數學家華羅庚說過,在數學里,「難處不在於有了公式去證明,而在於沒有公式之前,怎樣去找出公式來。」蘇霍姆林斯基說過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個發現者、研究者、探索者,而在 兒童 的精神世界中,這種需要特別強烈。「學習要以探究為核心」,是新課程的基本理念之一。人們在難以把問題轉化為簡單的、基本的、熟悉的、典型的問題時,常常採取的一種好方法就是探究、嘗試。
第一、探究方向要准確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。例如,教學「比例尺」時,教師創設「學生出題考老師」的教學情境,師:「現在我們考試好不好?」學生一聽:很奇怪,正當學生疑惑之時,教師說:「今天改變過去的考試方法,由你們出題考老師,願意嗎?」學生聽後很感興趣。教師說:「這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實際距離,相信嗎?」於是學生紛紛上台度量、報數,教師都一個接一個地回答對應的實際距離。學生這時更感到奇怪,異口同聲地說:「老師您快告訴我們吧,您是怎樣算的?」教師說:「其實呀,有一位好朋友在暗中幫助老師,你們知道它是誰嗎?想認識它嗎?」於是引出所要學習的內容「比例尺」。
第二、定向猜測,反復實踐,在不斷分析、調整中尋找規律。
第三,獨立探究與合作探究結合。獨立,有自由的思維時空;合作,可以知識上互補,方法上互相借鑒,不時還能碰撞出智慧的火花。
5、觀察法
通過大量具體事例,歸納發現事物的一般規律的方法叫做觀察法。巴浦洛夫說:"應當先學會觀察,不學會觀察永遠當不了科學家.」
小學數學「觀察」的內容一般有:①數字的變化規律及位置特點;②條件與結論之間的關系;③題目的結構特點;④圖形的特點及大小、位置關系。
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個因數的位置,積不變。
「觀察」的要求:
第一、觀察要細致、准確。
第二、科學觀察。科學觀察滲透了更多的理性因素,它是有目的,有計劃地察看研究對象。比如,在教學長方體的認識時,要做到「有序」觀察:(1)面——形狀、個數、面與面之間的關系;(2)棱——棱的形成、條數、棱與棱之間的關系(相對的棱相等;相對的棱有四條;長方體的棱可以分為三組);(3)頂點——頂點的形成、個數,認識頂點的一個重要作用是引出長方體長、寬、高的概念。
6、典型法
針對題目去聯想已經解過的典型問題的解題規律,從而找出解題思路的方法叫做典型法。典型是相對於普遍而言的。解決數學問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總演算法、行程、工程、消同求異、平均數等。
運用典型法必須注意:
(1)要掌握典型材料的關鍵及規律。
(2)熟悉典型材料,並能敏捷地聯想到所適用的典型,從而確定所需要的解題方法。
(3)典型和技巧相聯系。
7、放縮法
通過對被研究對象的放縮估計來解決問題的方法叫做放縮法。放縮法靈活、巧妙,但有賴於知識的拓展能力及其想像能力。
思路一:「放大」。通過觀察發現,語、數、外三科成績在題目中各出現兩次,我們求197+199+196的和,這個和是「語數外成績的2倍」,除以2得三科成績之和,再減去任意兩科的成績,就得到第三科的成績。
思路二:「縮小」。我們用語數成績的和減去語外的成績,199-197=2(分),這是數學減英語成績的差。數學和英語的和是196分,再求數學的分數就不難了。
放縮法有時運用在估算和驗算上。
8、驗證法
你的結果正確嗎?不能只等教師的評判,重要的是自己心裡要清楚,對自己的學習有一個清楚的評價,這是優秀學生必備的學習品質。
驗證法應用范圍比較廣泛,是需要熟練掌握的一項基本功。應當通過實踐訓練及其長期體驗積累,不斷提高自己的驗證能力和逐步養成嚴謹細致的好習慣。
(1)用不同的方法驗證。教科書上一再提出:減法用加法檢驗,加法用減法檢驗,除法用乘法驗算,乘法用除法驗算。
(2)代入檢驗。解方程的結果正確嗎?用代入法,看等號兩邊是否相等。還可以把結果當條件進行逆向推算。
(3)是否符合實際。「千教萬教教人求真,千學萬學學做真人」陶行知先生的話要落實在教學中。比如,做一套衣服需要4米布,現有布31米,可以做多少套衣服?有學生這樣做:31÷4≈8(套)
按照「四捨五入法」保留近似數無疑是正確的,但和實際不符合,做衣服的剩餘布料只能捨去。教學中,常識性的東西予以重視。做衣服套數的近似計算要用「去尾法」。
(4)驗證的動力在猜想和質疑。牛頓曾說過:「沒有大膽的猜想,就做不出偉大的發現。」「猜」也是解決問題的一種重要策略。可以開拓學生的思維、激發「我要學」的願望。為了避免瞎猜,一定學會驗證。驗證猜測結果是否正確,是否符合要求。如不符合要求,及時調整猜想,直到解決問題。
二、小學數學解題方法: 抽象思維 方法
運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫 邏輯思維 。
抽象思維又分為:形式思維和辯證思維。客觀現實有其相對穩定的一面,我們就可以採用形式思維的方式;客觀存在也有其不斷發展變化的一面,我們可以採用辯證思維的方式。形式思維是辯證思維的基礎。
形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。
辯證思維能力:聯系、發展變化、對立統一律、質量互變律、否定之否定律。
小學、中學數學要培養學生初步的抽象思維能力,重點突出在:
(1)思維品質上,應該具備思維的敏捷性、靈活性、聯系性和創造性。
(2)思維方法上,應該學會有條有理,有根有據地思考。
(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。
(4) 思維訓練 上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理。
9、對照法
如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。
這個方法的思維意義就在於,訓練學生對數學知識的正確理解、牢固記憶、准確辨識。
10、公式法
運用定律、公式、規則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規則、法則有一個正確而深刻的理解,並能准確運用。
11、比較法
通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發現解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯系與區別,這是比較的實質。
(3)必須在同一種關系下(同一種標准)進行比較,這是「比較」的基本條件。
(4)要抓住主要內容進行比較,盡量少用「窮舉法」進行比較,那樣會使重點不突出。
(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
相關 文章 :
1. 小學數學常用解題思路
2. 小學數學公式大全(完整)
3. 小學數學的19種學習方法
4. 小學數學教法方法有哪些
5. 小學五年級數學學習方法和技巧大全
❷ 小學數學考試答題技巧
問題的關鍵在於臨場發揮,其好與壞直接關繫到數學考試的成敗。所以說,臨場發揮的技巧是打勝這場仗必不可少的一項武器。
首先,拿到試卷之後應該粗略地瀏覽一遍,除了看是否有印刷問題、缺漏頁之外,更重要的是看試卷的題量、結構、難易程度,先對試卷有一個總體上的把握,做到心裡有底。
其次,開始答題。答題也是講究順序的,一般按照先易後難、先簡後繁的順序作答。一般來說,試卷上的考題也是按照這種順序排列的,但是也不排除有例外。所以,答題的時候要合理地運用時間,不要卡在某一道題目上面,那樣的話只會浪費時間又拿不到分,不僅這道題做不出,後面會做的題目也來不及做了。
遇到比較容易的題目,應該格外地當心,因為有的時候並不是險峻的高山擋住了我們的去路,而是腳下的不起眼的小石子將我們絆倒。所以,每當遇到比較簡單的題目時,你要提醒自己特別留心,留心題目中會不會設什麼陷阱,留心計算中會不會有什麼差錯,留心解題的步驟是否嚴密,以保證將這些題目的分數收入囊中。
遇到稍微有點難度的題目,最重要的是使自己冷靜下來,並且給自己打氣,告訴自己「我能行」,然後再進行思考。思考時,可以先用常規的方法嘗試解決,當這條路走不通時,不妨「知難而退」,換一種方式進行,改變思考問題的角度,也許就能簡單地解決束手無策的問題。無法答出問題時,還可預先列舉與問題有關的一切條件,再配合需要來確認問題,將這些條件以各種角度來進行檢查,也許能找到解題的「鑰匙」。
當然,稍微有點難度的題目對於有一定基礎和能力的同學來說,還是可以正確地解答出來的,但是,當我們遇到感覺上非常難的題目時,此時「放棄」應該是最好的選擇。這一決定並不妨礙我們在考試中取得高分,因為一般非常難的題目在一次考試中所佔的分數並有多。這樣的話,只要保證其他題目都能夠做對,在考試中得高分還是很輕松的。所以,遇到這種題目時,我們必須有「壯士斷腕」的決心,做到「棄卒保帥」。
一般來講,試卷做完還有5-10分鍾左右,這個5-10分鍾應該是比較難熬的一段時間,我認為可以利用這一段時間檢查一下選擇、填空題。在這里我想說的是,除非有確切的證據證明你自己一開始的答案是錯誤的,對於拿不準的題目最好還是堅持自己的第一印象,防止在最後幾分鍾內將答案改錯,徒增遺憾。
❸ 小學數學應用題解題技巧有哪些
小學數學應用題解題技巧如下:
注意審題。即在作題之前先把題目讀上三遍,理解題目的意思、數量關系、問題是什麼、有幾問。明白符合加、減、乘、除的哪種算理,確定方法。確定需要幾步解答。
注意格式。小學三年級解答應用題的一般格式:算式、單位、答語。往往有些孩子因忘寫單位、忘寫答語而丟分。
注意特殊問題。如有餘數的,解答時既要寫余數又要寫商;和生活實際問題相關的,租車問題(有餘數時得數加1);載樹問題(兩頭都栽得數加1);有多餘條件的(不要給什麼條件都要用)。
做數學題注意事項
善於挖掘隱含條件
題目中的隱含條件,有時對題目的條件進行補充或結果進行限制。審題時,善於挖掘隱含條件,還其廬山真面目,便為解題提供了新的信息與依據,解題思路也油然而生。
仔細審題
數學語言的表達往往是十分精確,並具有特定的意義。審題時,就要仔細看清題目的每一個字、詞、句,只有領會確切的含義,才能尋找解題的突破口,叩開解答之門。
善於「轉化」和「建模」
一道數學題目,在審題時應先把文字語言「轉化」為數學語言,並結合題意,建立數學模型、構造數學算式。
總之,審題時,一定要對題目中的文字語言反復推敲,提取信息,處理信息,獲取解題的途徑。
讓孩子培養好的審題習慣,提高審題能力,並在審題中學會動腦,才能提高分析問題解決問題的能力,還可以無形中培養孩子的嚴謹做題習慣,真的是受益良多。
❹ 小學數學考試注意要點
以下是回答,請耐心看完!
希望能幫助你,還請及時採納謝謝!
一、要認真審題,不可粗心
有的同學對審題重視不夠,匆匆一看便急於下筆,以致題目的條件與要求都沒吃透,至於如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。只要耐心仔細地審題,准確地把握題目中的關鍵詞與量,從中獲取盡可能多的信息,才能迅速找准解題方向。
二、計算要細心,不可圖快
在題量大、時間緊的情況下,「准」字顯得尤為重要。只有「准」才能得分,只有「准」你才可以不必考慮再花時間檢查。而「快」是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。所以,適當地慢一點、准一點,可多得一點分,相反,快一點、錯一片,花了時間還得不到分。
三、要做到先易後難
拿到試卷後,就將全卷通覽一遍,一般來說,應按先易後難、先簡後繁的順序作答。有時考題的順序並不完全是難易的順序,因此在答題時要合理安排時間,不要在某個卡住的題上打「持久戰」,那樣既耗費了時間又拿不到分,會做的題又被耽誤了,也有一些看似容易的題也會有「咬手」的關卡,看似難做的題也有可能得分之處。所以考試中看到「容易」的題不可掉以輕心,看到新面孔的「難」題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。
四、要認真檢查
試卷完成以後,對有懷疑的題目要進行檢查,彌補答題時的不足或漏做的題目。
此外
1、准備工作:
活動鉛筆 2枝、刻度清楚的三角尺1把、橡皮1塊、比較新的草稿本1本(即「2+3」 )
2、考試要求和注意事項:
(1)認真讀題目要求,圈出關鍵字詞(明確有幾個要求,確保不漏讀題目要求)
(2)逐題完成,不可跳題做(如遇到有困難的可先做後面,最後回過來想)
(3)答卷時注意的地方:
①口算:注意0的個數、注意運算符號和「居心叵測」的陷阱題。
②計算:不要漏驗算,不需要驗算的也要在草稿本上驗算,橫式上的結果不要漏寫,尤其是余數(商不變,但余數會變)。
③填空題
重在仔細讀題,明確題目要求,對於容易出錯的地方,用符號標出
單位換算題:一要注意單位名稱、二要注意進率
關於圖形的題目要藉助畫圖幫助理解
④操作題
A、 明確操作要求
B、 畫平移注意起始的格點不算,旋轉要注意逆時針和順時針的區別,尤其關注關鍵邊的旋轉,同時旋轉的箭頭不要漏
⑤解決問題:讀題三遍方可下筆,關鍵字詞圈出提示自己注意
3、考試技巧
(1)基礎分要抓牢
①計算和口算務必保證拿滿分,堅決抵制「低級錯誤」,否則後果「相當嚴重」!
②操作題要用尺子認真畫,閱讀統計圖的題目審題要細致,回答要完整,說「數學話」!
③決問題的計算務必在草稿本上列式計算並檢查,
(2)合理分配時間
試卷爭取在50分鍾內完成,至少留10分鍾檢查;時間安排要前緊後松;解決問題和填空是容易失分的題目,務必做到認真審題
(3)檢查三遍的要求:
第一遍檢查是否漏題現象;第二遍檢查計算是否全部過關;第三遍重點檢查填空和解決問題中後面的幾道題。
❺ 小學數學題,用另一種方法解
兩個鐵環有一個重疊,三個鐵環有兩個重疊,10x10-2x9=82
❻ 小學數學解題思路和方法
數學難嗎?數學是大多數學生都重視的一門課,它讓人又愛又恨。因此,提升數學分數是很多家長和孩子茫然無措的難題。而解決這種情況的最有效辦法就是,學習完知識後,把所有知識全部過濾一遍,查漏補缺,把不熟練的熟練起來,不會的地方一定搞清楚,你會發現數學的高分就是這么簡單。
解題思路:
已知一個加數個位上是0,去掉0,就與第二個加數相同,可知第一個加數是第二個加數的10倍,那麼兩個加數的和572,就是第二個加數的(10+1)倍。
解:第一個加數:572÷(10+1)=52
第二個加數:52×10=520
答:這兩個加數分別是52和520。
❼ 小學數學考試需要注意什麼小學數學考試有什麼答題技巧
數學是小學的三大科目之一,也是很多小學生倍感頭疼的一門課程了,期末考試就要到來了,那麼要怎麼面對數學考試呢?下面我就來分享幾個數學考試需要注意的事項,希望對你考試有所幫助吧!
作者 | 紙盆
2、計算要細心
數學是需要計算的科目,所以計算的時候最好要在草稿紙上算一遍,不要貪圖快一點,就在計算上馬虎應對,這樣很可能會導致計算出錯,還有就是要留點時間自驗算上,驗算是檢驗你答案正不正確的一個好方法。
3、先易後難
拿到試卷後要先預覽一遍,了解試卷考察的是什麼,了解試卷的難度,做題的時候要先易後難,先熟後生,這樣安排時間會顯得更充裕一些,對待簡單的題目不要掉以輕心,很多時候就是你輕視了導致你栽跟頭了,而對於難題也不要怯戰,冷靜分析,聯系學過的知識,也許能從中找到解題的突破點。
❽ 小學數學考試時的小技巧
小學數學考試技巧一:每一場考試結束之後不要對答案,考完的課程就不要再理會了,全心全意地准備下一場考試。
小學數學考試技巧二:使用適合學習所處階段的考試技巧
一般的,學習處於不同階段,例如在初級階段,你應該採用相對固定的、適合這個學習階段的考試技巧。對於你總結出的考試技巧,你要在考試中盡量執行,考試時不要因感到考試題目簡單而沖動,也不要因感覺考試題目太難而亂了陣腳。
初級階段者考試時碰到某道沒有把握的題目,用邏輯推斷、考試技巧、「直覺」得出的結論都不同時,一般的,要以考試技巧得出的結論為正確的答案。這是因為初級階段者往往知識掌握的不好,判斷能力不行,直覺能力不夠。中級階段者考試時碰到某道沒有把握的題目時,用邏輯判斷、考試技巧、「直覺」得出的結論都不同時,往往應該以邏輯推斷的結論為正確答案。而高級階段者,可以把「直覺」作為判斷標准。
小學數學考試技巧三:拿到試卷後先整體瀏覽一下
拿到試卷之後,可以總體上瀏覽一下,根據以前積累的考試經驗,大致估計一下試卷中每部分應該分配的時間。
小學數學考試技巧四:安排好答題順序
關於考試時答題順序,一種策略是按照試卷從前到後的順序答題,另外一種策略是按照自己總結出的答題順序。無論採取哪種策略,你必須非常清楚每部分應該使用的最少和最多的答題時間。
按照自己總結的答題順序:先做那些即使延長答題時間,也不見得會得分更多的題目,後做那些需要仔細思考和推敲的題目。例如,數學先做會做的題目,再做難題,所謂難題,就是你思考了好幾分鍾仍然無法做出的題目。再例如,英語和語文,你可以先把填空、選擇、作文等題目做完,然後再做閱讀題目。
❾ 小學數學常考的典型題及解題技巧
小學數學題里的填空、計算、選擇題都不算很難,應用題里的工作效率、行程問題比較復雜,做題的關鍵是讀懂每個條件和問題,畫好解題示意圖,最好提前學一些方程,基本上就能解對了,實際上整個小學的難題在學會方程後,就變得簡單了,建議提前學中學的內容,應付考試就容易多了。
❿ 小學數學解題步驟
一、認真讀題審題
讀題就是為了審題,弄清楚題目所講的意思,明確要求的問題,以及題目中所含的條件。平時就發現,很多孩子題目草草看一下就馬上筆做題,或者就說不會做,這時你只要叫他把題目再讀一遍,他就豁然開朗了。讀題一般讀三遍,第一遍知道大概講什麼,第二遍明確要求的問題,帶著問題要讀一遍,這時要讀慢一點,邊讀邊想,把你認為重要的地方圈出來,想想要求題目中的問題要用到哪些條件,第三遍邊讀邊分析它們之間的數量關系。