導航:首頁 > 數字科學 > 數學算次方和開根有什麼訣竅

數學算次方和開根有什麼訣竅

發布時間:2022-09-24 15:58:37

㈠ 怎樣手算開方

過最好的是記住根號2,根號3,根號5等一些數值的值
因為很多數值都可以分解成這些數的乘積形式
[解題過程]
述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:

1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;

2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);

3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);

4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);

5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);

6.用同樣的方法,繼續求平方根的其他各位上的數.

徒手開n次方根的方法:
原理:設被開方數為X,開n次方,設前一步的根的結果為a,現在要試根的下一位,設為b,
則有:(10*a+b)^n-(10*a)^n<=c(前一步的差與本段合成);且b取最大值
用純文字描述比較困難,下面用實例說明:
我們求 2301781.9823406 的5次方根:
第1步:將被開方的數以小數點為中心,向兩邊每隔n位分段(下面用'表示);不足部分在兩端用0補齊;
23'01781.98234'06000'00000'00000'..........
從高位段向低位段逐段做如下工作:
初值a=0,差c=23(最高段)
第2步:找b,條件:(10*a+b)^n-(10*a)^n<=c,即b^5<=23,且為最大值;顯然b=1
差c=23-b^5=22,與下一段合成,
c=c*10^n+下一段=22*10^5+01781=2201781
第3步:a=1(計算機語言賦值語句寫作a=10*a+b),找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:(10+b)^5-10^5<=2201781,
b取最大值8,差c=412213,與下一段合成,
c=c*10^5+下一段=412213*10^5+98234=41221398234
第4步:a=18,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:(180+b)^5-180^5<=41221398234,
b取最大值7
說明:這里可使用近似公式估算b的值:
當10*a>>b時,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:
b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7
以下各步都更加可以使用此近似公式估算b之值
差c=1508808527;與下一段合成,
c=c*10^5+下一段=1508808527*10^5+06000=150880852706000
第5步:a=187,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:
(1870+b)^5-1870^5<=150880852706000,
b取最大值2,差c=28335908584368;與下一段合成,
c=c*10^5+下一段=2833590858436800000
第6步:a=1872,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:
(18720+b)^5-18720^5<=2833590858436800000,
b取最大值4,差c=376399557145381376;與下一段合成,
c=c*10^5+下一段=37639955714538137600000

㈡ 數學開方怎樣速記

筆算開方: 1、把被開方的整數部分從個位起向左每隔n位為一段,用撇號分開; 2、根據左邊第一段里的數,求得開n次算術根的最高位上的數,假設這個數為a; 3、從第一段的數減去求得的最高位上數的n次方,在它們的差的右邊寫上第二段數作為第一個余數; 4、用第一個余數除以n(10a)^(n-1),所得的整數部分試商(如果這個最大整數大於或等於10,就用9做試商); 5、設試商為b。如果(10a+b)^n-(10a)^n小於或等於余數,這個試商就是n次算術根的第二位;如果(10a+b)^n-(10a)^n大於余數,就把試商逐次減1再試,直到(10a+b)^n-(10a)^n小於或等於余數為止。 6、用同樣的方法,繼續求n次算術跟的其它各位上的數(如果已經算了k位數數字,則a要取為全部k位數字)。

㈢ 開根號的計算方法是什麼

開根號就像求一個數的幾次方的反義詞一樣,比如3的2次方是9,那麼9開根號2就是3。

在中學階段,涉及開平方的計算,一是查數學用表,一是利用計算器。而在解題時用的最多的是利用分解質因數來解決。如化簡√1024,因為1024=2^10,所以。

√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.

根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。

(3)數學算次方和開根有什麼訣竅擴展閱讀:

根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。

指求一個數的方根的運算,為乘方的逆運算。數a的n(n為自然數)次方根指的是n方冪等於a的數,也就是適合b的n次方=a的數b。

㈣ 開方怎麼算

舉個例子,1156是四位數,所以它的算術平方根的整數部分是兩位數,且易觀察出其中的十位數是3。於是問題的關鍵在於:如何求出它的個位數a?為此,我們從a所滿足的關系式來入手。

根據兩數和的平方公式,可以得到

1156=(30+a)^2=30^2+2×30a+a^2,

所以1156-30^2=2×30a+a^2,

即256=(30×2+a)a,

也就是說, a是這樣一個正整數,它與30×2的和,再乘以它本身,等於256。

為便於求得a,可用下面的豎式來進行計算:

根號上面的數3是平方根的十位數。將 256試除以30×2,得4(如果未除盡則取整數位).由於4與30×2的和64,與4的積等於256,4就是所求的個位數a。豎式中的余數是0,表示開方正好開盡。於是得到 1156=34^2, 或√1156=34.上述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:

開方的計算步驟

1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用「 ' 」這個符號分開(豎式中的11』56),分成幾段,表示所求平方根是幾位數;

2.根據左邊第一段里的數,求得平方根的最高位上的數(豎式中的3);

3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段數組成第一個余數(豎式中的256);

4.把求得的最高位數乘以20去試除第一個余數,所得的最大整數作為試商(20×3除256,所得的最大整數是 4,所以試商是4);

5.用商的最高位數的20倍加上這個試商再乘以試商,如果所得的積小於或等於余數,試商就是平方根的第二位數;如果所得的積大於余數,就把試商減小之後再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);

6.用相同的方法,繼續求平方根的其餘各位上的數。

如碰到開不盡的情況,可根據所要求的精確度求出它的近似值。例如求其近似值(精確到0.01),可列出上面右邊的豎式,並根據這個豎式得到。

筆算開平方運算較復雜,在實際中直接應用較少,但用這個方法可求出一個數的平方根的具有任意精確度的近似值。

㈤ 如何開方根

1、整數開平方步驟:

(1)將被開方數從右向左每隔2位用撇號分開;

(2)從左邊第一段求得算數平方根的第一位數字;

(3)從第一段減去這個第一位數字的平方,再把被開方數的第二段寫下來,作為第一個余數;

(4)把所得的第一位數字乘以20,去除第一個余數,所得的商的整數部分作為試商(如果這個整數部分大於或等於10,就改用9左試商,如果第一個余數小於第一位數字乘以20的積,則得試商0);

(5)把第一位數字的20倍加上試商的和,乘以這個試商,如果所得的積大於余數時,就要把試商減1再試,直到積小於或等於余數為止,這個試商就是算數平方根的第二位數字;

(6)用同樣方法繼續求算數平方根的其他各位數字。

2、小數部分開平方法:

求小數平方根,也可以用整數開平方的一般方法來計算,但是在用撇號分段的時候有所不同,分段時要從小數點向右每隔2段用撇號分開,如果小數點後的最後一段只有一位,就填上一個0補成2位,然後用整數部分開平方的步驟計算。

㈥ 開根號怎麼算

開根號就像求一個數的幾次方的反義詞一樣,比如3的2次方是9,那麼9開根號2就是3。

在中學階段,涉及開平方的計算,一是查數學用表,一是利用計算器。而在解題時用的最多的是利用分解質因數來解決。如化簡√1024,因為1024=2^10,所以。

√1024=2^5=32;又如√1256=√(2^3*157)=2*√(2*157)=2√314.

根號是一個數學符號。根號是用來表示對一個數或一個代數式進行開方運算的符號。若aⁿ=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用表示,被開方的數或代數式寫在符號左方√ ̄的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。

成立條件:a≥0,b>0,n≥2且n∈N。

根號的書寫在印刷體和手寫體是一模一樣的,這里只介紹手寫體的書寫規范。

1、寫根號:

先在格子中間畫向右上角的短斜線,然後筆畫不斷畫右下中斜線,同樣筆畫不斷畫右上長斜線再在格子接近上方的地方根據自己的需要畫一條長度適中的橫線,不夠再補足。(這里只重點介紹筆順和寫法,可以根據印刷體參考本條模仿寫即可,不硬性要求)

2、寫被開方的數或式子:

被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界,若被開方的數或代數式過長,則上方一橫必須延長確保覆蓋下方的被開方數或代數式。

3、寫開方數或者式子:

開n次方的n寫在符號√ ̄的左邊,n=2(平方根)時n可以忽略不寫,但若是立方根(三次方根)、四次方根等,是必須書寫。

㈦ 立方根開方技巧

將被開立方數的整數部分從個位起向左每三位分為一組;根據最左邊一組,求得立方根的最高位數;商後余數和後面緊跟著的三位,如果沒有就添三個0;將要試商的數代入式子「已商數×要試商數×(10×已商數+要試商數)×30+要商數的立方」最接近但不超過第三步得到的數者,即為這一位要商的數。然後重復直到除盡。

1、開立方簡介

求一個數的立方根的運算方法,叫做開立方。它是立方的逆運算,最早在我國的九章算術中有對開立方的記載。

由於任何實數均有唯一的立方與之對應且不存在兩個實數的立方相等,故任何實數都存在且僅存在唯一的立方根。

2、立方根簡介

如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。也就是說,如果x³=a,那麼x叫做a的立方根。

注意:在平方根中的根指數2可省略不寫,但立方根中的根指數3不能省略不寫。

㈧ 數學開根號怎麼算

開根號相對的運算是平方,其實開根號的計算方法就是按數的平方來推的。因為5的平方是25,所以根號下25等於5。

閱讀全文

與數學算次方和開根有什麼訣竅相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:741
乙酸乙酯化學式怎麼算 瀏覽:1407
沈陽初中的數學是什麼版本的 瀏覽:1354
華為手機家人共享如何查看地理位置 瀏覽:1046
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:887
數學c什麼意思是什麼意思是什麼 瀏覽:1412
中考初中地理如何補 瀏覽:1302
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:704
數學奧數卡怎麼辦 瀏覽:1389
如何回答地理是什麼 瀏覽:1027
win7如何刪除電腦文件瀏覽歷史 瀏覽:1059
大學物理實驗干什麼用的到 瀏覽:1488
二年級上冊數學框框怎麼填 瀏覽:1702
西安瑞禧生物科技有限公司怎麼樣 瀏覽:980
武大的分析化學怎麼樣 瀏覽:1251
ige電化學發光偏高怎麼辦 瀏覽:1340
學而思初中英語和語文怎麼樣 瀏覽:1655
下列哪個水飛薊素化學結構 瀏覽:1426
化學理學哪些專業好 瀏覽:1489
數學中的棱的意思是什麼 瀏覽:1061