1. 小學 1 --6 年級 數學 都學些啥呢人教版的 給資料 謝謝
《小學1-6年級數學學霸筆記(含資料匯編)》網路網盤資源免費下載
鏈接:https://pan..com/s/1o6VvvMbzpBZXH5o_eS8UDw
小學1-6年級數學學霸筆記(含資料匯編)|人教版小學各年級數學知識點歸納|【2】小學數學期中考試試卷合集(各年級上冊)|【1】小學1-6年級數學知識點歸納|【數學】一年級十大趣味數學2.pdf|【數學】一年級十大趣味數學.pdf|【數學】學而思網校內部奧數習題集.中年級.docx|【數學】學而思網校內部奧數習題集.高年級.doc|【數學】學而思網校內部奧數習題集.低年級.docx|【數學】小升初總復習數學歸類講解及訓練中(含答案).doc|【數學】第十八屆華杯賽初賽試卷_小學中年級組解析.pdf|【數學】第十八屆華杯賽初賽試卷_小學中年級組.pdf|【數學】第十八屆華杯賽初賽試卷_小學高年級組解析.pdf|【數學】第十八屆華杯賽初賽試卷_小學高年級組.pdf|蘇教版數學上冊期末試卷
2. 一到六年級數學學習了什麼數(人教版)都是什麼含義
整數和分數。1.整數(Integer):像-2,-1,0,1,2這樣的數稱為整數。(整數是表示物體個數的數,0表示有0個物體)整數是人類能夠掌握的最基本的數學工具。整數的全體構成整數集,整數集合是一個數環。在整數系中,自然數為0和正整數的統稱,稱0為零,稱-1、-2、-3、…、-n、… (n為整數)為負整數。正整數、零與負整數構成整數系。
一個給定的整數n可以是負數(n∈Z-),非負數(n∈Z*),零(n=0)或正數(n∈Z+).2.分數,把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做真分數。分母表示把一個物體平均分成幾份,分子表示取了其中的幾份。分數還有一個有趣的性質:一個分數不是有限小數,就是無限循環小數,像π等這樣的無限不循環小數,是不可能用分數代替的。
3. 一到六年級數學概念公式大全
一到六年級常用數學概念和公式大全,是考好數學的學生必須掌握的知識,為了讓大家更好地備考,我在這里為大家整理了小學一到六年級數學概念公式大全,快來學習學習吧!
算術
1、四則運算
加數+加數=和, 一個加數=和-另一個加數
被減數-減數=差, 減數=被減數-差, 被減數=減數+差
因數×因數=積, 一個因數=積÷另一個因數
被除數÷除數=商, 除數=被除數÷商,被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
2、加法交換律:兩數相加交換加數的位置,和不變。
3、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
4、乘法交換律:兩數相乘,交換因數的位置,積不變。
5、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
6、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
8、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
9、什麼叫方程式?答:含有未知數的等式叫方程式。
10、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的列法及計算。即列出代有χ的算式並計算。
11、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
12、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
13、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
14、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
15、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
16、分數除以整數(0除外),等於分數乘以這個整數的倒數。
17、真分數:分子比分母小的分數叫做真分數。
18、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
19、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
20、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
21、分數的四則運演算法則:
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
幾何
三角形的面積=底×高÷2,公式 S= a×h÷2
正方形的面積=邊長×邊長, 公式S= a×a
長方形的面積=長×寬, 公式S= a×b
平行四邊形的面積=底×高, 公式S= a×h
梯形的面積=(上底+下底)×高÷2, 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度
長方體的體積=長×寬×高,公式:V=abh
長方體(或正方體)的體積=底面積×高, 公式:V=abh
正方體的體積=棱長×棱長×棱長,公式:V=aaa
圓的周長=直徑×π, 公式:L=πd=2πr
圓的面積=半徑×半徑×π,公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高,公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積,公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高,公式:V=Sh
圓錐的體積=1/3底面×積高,公式:V=1/3Sh
度量
1公里=1千米,1千米=1000米
1米=10分米, 1分米=10厘米, 1厘米=10毫米
1平方米=100平方分米, 1平方分米=100平方厘米
1平方厘米=100平方毫米,
1立方米=1000立方分米, 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克, 1千克= 1000克= 1公斤 = 2市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
4. 小學六年級的數學學習內容有什麼(人教版)
上冊:位置、分數乘法、分數除法、圓、百分數、統計、數學廣角。
下冊:負數、圓柱與圓錐、比例、統計、數學廣角。
學生在一年級下冊已經學會了在具體的情境中,根據行、列確定物體的位置,並通過四年級下冊位置與方向的學習進一步認識了在平面內可以通過兩個條件確定物體的位置。本單元在此基礎上,讓學生學習在具體情境中用數對表示物體的位置或在方格紙上用數對確定位置,進一步提升學生的已有經驗,培養學生的空間觀念,為第三學段學習「圖形與坐標」的內容打下基礎。
結構
許多諸如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構。數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構。
5. 小學六年級數學都學有哪些知識詳細一點
小學六年級數學學的知識有: 上冊:長方體和正方體、分數乘法、分數除法、解決問題的策略(假設法)、分數四則混合運算、百分數 下冊:圓柱和圓錐、扇形統計圖、正反比例。
6. 1~6年級數學重點知識是什麼
1、自然數包括正整數和0,所以最小的自然數是0,沒有最大的自然數。
2、計數單位是指:個、十、百、千、萬、十萬、百萬、千萬、億等等。
3、每相鄰兩個計數單位之間的進率都是10,這樣的計數法叫做十進制計數法。
4、能被2整除的數叫做偶數,0也是偶數,不能被2整除的數叫做奇數。
5、一個數,如果只有1和它本身兩個約數,這樣的數叫做質數,如2、3、5、7、11、13等等。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如4、6、8、9、10都是合數。
6、最小的自然數是0,最小的質數是2,最小的合數是4。公因數只有1的兩個數叫做互質數。
7、為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。如·1254300000改寫成以萬做單位的數是125430萬;改寫成以億做單位的數12.543億。
8、近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。例如:1302490015省略億後面的尾數是13億。
9、四捨五入法:要省略的尾數的最高位上的數是4或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。
10、商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。
11、小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。
7. 小升初一至六年級數學知識點整理
水滴石穿,繩鋸木斷。備考小升初考試 ,也需要一點點積累才能到達好的效果,下面是我為大家帶來的有關小升初一至 六年級數學 知識點整理,希望大家喜歡。
▼▼目錄▼▼
1-6年級數學知識體系
必背定義、定理公式
小升初算術知識點
數量關系計算公式方面
一般運算規則
● 小升初數學知識點: 1-6年級知識體系
小學一年級九九乘法口訣表。學會基礎加減乘。
小學二年級完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級比例百分比概率,圓扇圓柱及圓錐。
>>>
● 小升初數學知識點: 必背定義、定理公式
三角形的面積=底×高÷2。公式S=a×h÷2
正方形的面積=邊長×邊長公式S=a×a
長方形的面積=長×寬公式S=a×b
平行四邊形的面積=底×高公式S=a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長公式:V=aaa
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
>>>
● 小升初數學知識點: 算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
>>>
● 小升初數學知識點: 數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和
一個加數=和+另一個加數
被減數-減數=差
減數=被減數-差
被減數=減數+差
因數×因數=積
一個因數=積÷另一個因數
被除數÷除數=商
除數=被除數÷商
被除數=商×除數
有餘數的除法:被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、1公里=1千米1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克
1千克=1000克=
1公斤=1市斤
1公頃=10000平方米。
1畝=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中的一個,叫做公約數。)
17、互質數:公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3.141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3.141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3.141592654……
34、什麼叫代數?代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x=ab+c
>>>
● 小升初數學知識點: 一般運算規則
1每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
21倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6加數+加數=和
和-一個加數=另一個加數
7被減數-減數=差
被減數-差=減數差+減數=被減數
8因數×因數=積
積÷一個因數=另一個因數
9被除數÷除數=商
被除數÷商=除數商×除數=被除數
四、小學數學圖形計算公式
1正方形
C周長S面積a邊長
周長=邊長×4C=4a
面積=邊長×邊長S=a×a
2正方體
V:體積a:棱長
表面積=棱長×棱長×6S表=a×a×6
體積=棱長×棱長×棱長V=a×a×a
3長方形
C周長S面積a邊長
周長=(長+寬)×2C=2(a+b)
面積=長×寬S=ab
4長方體
V:體積s:面積a:長b:寬h:高
表面積(長×寬+長×高+寬×高)×2S=2(ab+ah+bh)
體積=長×寬×高V=abh
5三角形
s面積a底h高
面積=底×高÷2s=ah÷2
三角形高=面積×2÷底三角形底=面積×2÷高
6平行四邊形
s面積a底h高
面積=底×高s=ah
7梯形
s面積a上底b下底h高
面積=(上底+下底)×高÷2s=(a+b)×h÷2
8圓形
S面積C周長∏d=直徑r=半徑
周長=直徑×∏=2×∏×半徑C=∏d=2∏r
面積=半徑×半徑×∏
9圓柱體
v:體積h:高s;底面積r:底面半徑c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10圓錐體
v:體積h:高s;底面積r:底面半徑
體積=底面積×高÷3
>>>
小升初一至六年級數學知識點整理相關 文章 :
★ 小升初一至六年級數學知識點整理
★ 小升初考試必備數學一到六年級的知識點
★ 六年級數學知識點梳理
★ 小升初數學考試知識點整理
★ 小升初數學知識考點歸納
★ 小升初數學知識點總結
★ 六年級數學知識點整理
★ 小升初數學考試必備知識點與易錯點
★ 小升初數學知識點講解:數量關系計算公式+數學知識點整理
★ 攻克小升初數學必考的知識點
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();8. 小學1到6年級數學知識重點
(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上.
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點.
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」.
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」.
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」.
5、精心設計練習,提高綜合計算能力(3課時).
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析.
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點.
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」.
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」.
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題.
1、簡單應用題的分析與整理(3課時).
2、復合應用題的分析與整理(6課時).
3、列方程解應用題的分析與整理(5課時).
4、分數應用題的分析與整理(10課時).
5、用比例知識解答應用題的分析與整理(3課時).
6、應用題的綜合訓練(3課時).
(四)、量的計量
本節重點放在名數的改寫和實際觀念上.
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」.
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」.
3、綜合訓練與應用(1課時).
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上.
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」.
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」.
3、加強對公式的應用,提高掌握計算方法(5課時).能實現周長、面積、體積的正確計算.
4、整體感知、實際應用(1課時).
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題.
1、求平均數的方法(1課時).
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」.
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題.
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整.
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點.
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整.既要全面學到知識,又要掌握復習知識的深淺程度.
北師:
小學數學四年級前四個單元知識點總結
1、路程速度時間公式:s=vt v=s÷t t=s÷v
2、正方形周長公式:C=4a
3、正方形面積公式:S=a2
4、長方形周長公式:C=2(a+b)
5、長方形面積公式:S=ab
6、加法交換律:a+b=b+a
7、加法結合律:a+b+c=a+(b+c)
8、乘法交換律:a·b=b·a
9、乘法結合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分類,從小到大是:銳角、直角、鈍角、平角、周角
12、銳角是小於90度的角,直角是90度,鈍角是大於90度而小於平角的角,平角是180度的角,周角是360度的角.
13、三角形按角分類:銳角三角形,直角三角形,鈍角三角形
14、三個角都是銳角是銳角的三角形叫銳角三角形;有一個角是直角的三角形叫直角三角形;有一個角是鈍角的三角形叫鈍角三角形.
15、三角形按邊分類有:不等邊三角形,等腰三角形,等邊三角形
16、從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底.
17、小數的計數單位是十分之一,百分之一,千分之一--------記作0.1,0.01,0.001-----
18、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變.
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有穩定性
22、三角形任意兩邊之和大於第三邊
23、三角形的內角和是180度
24、學會畫角
25、會比較小數的大小
26、單位換算
長度單位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
質量單位:1千克=1000克 1噸=1000千克=1000000克
錢的換算:1元=10角=100分 1角=10分
時間單位:1時=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小時
一三五七八十臘,三十一天永不差.四六九十一三十,平年二月二十八,閏年二月二十九.
面積單位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公頃=10000平方米 1平方千米=100公頃=1000000平方米
周長公式:長方形周長=(長+寬)×2 C=2(a+b)
正方形周長=邊長×4 C=4a
圓的周長=圓周率×直徑 C=πd C =2πr
半圓的周長=圓周長的一半+直徑 πr+d
面積公式:長方形面積=長×寬 S=ab
正方形面積=邊長×邊長 S=a2
平行四邊形面積=底×高 S=ah
三角形面積=底×高÷2 S=ah÷2
梯形面積=(上底+下底)×高÷2 S=(a+b)h÷2
圓的面積=圓周率×半徑的平方 S=πr2
圓柱的側面積=底面周長×高 S=Ch
表面積公式:長方體表面積=(長×寬+長×高+寬×高)×2
S=(ab+ah+bh)×2
正方體表面積=邊長×邊長×6 S=6a2
圓柱體側面積=底面周長×高 S=C h
圓柱體表面積=側面積+底面積×2 S=S側+2 S底
體積公式:長方體體積=長×寬×高 V=abh
正方體體積=棱長×棱長×棱長 V=a3
圓柱體體積=底面積×高 V=Sh
(將近似長方體平放得到:圓柱體體積=側面積的一半×半徑 V=Ch÷2×r=2πr÷2×r=πr×r)
圓錐體體積=底面積×高÷3 V=Sh÷3或1/3Sh
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
9. 1—6年級數學知識點有哪些
1—6年級數學知識點:
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什麼叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
10. 小升初考試必備數學一到六年級的知識點
小升初數學考的知識點是一到六年級的知識點,整理出不同年級的小學數學重要知識點,對於備考很有用,我在這里整理了相關資料,希望能幫助到那您。
一年級的知識重點
1數與計算
(1)20以內數的認識,加法和減法。
數數。數的組成、順序、大小、讀法和寫法。加法和減法。連加、連減和加減混合式題
(2)100以內數的認識。
加法和減法。數數。個位、十位。數的順序、大小、讀法和寫法。
兩位數加、減整十數和兩位數加、減一位數的口算。兩步計算的加減式題。
2量與計量
鍾面的認識(整時)。人民幣的認識和簡單計算。
3幾何初步知識
長方體、正方體、圓柱和球的直觀認識。
長方形、正方形、三角形和圓的直觀認識。
4應用題
比較容易的加法、減法一步計算的應用題。多和少的應用題(抓有效信息的能力)
5實踐活動
選擇與生活密切聯系的內容。例如根據本班男、女生人數,每組人數分布情況,想到哪些數學問題。
二年級的知識重點
1數與計算
(1)兩位數加、減兩位數。兩位數加、減兩位數。加、減法豎式。兩步計算的加減式題。
(2)表內乘法和表內除法。乘法的初步認識。乘法口訣。乘法豎式。除法的初步認識。用乘法口訣求商。除法豎式。有餘數除法。兩步計算的式題。
(3)萬以內數的讀法和寫法。數數。百位、千位、萬位。數的讀法、寫法和大小比較。
(4)加法和減法。加法,減法。連加法。加法驗算,用加法驗算減法。
(5)混合運算。先乘除後加減。兩步計算式題。小括弧。
2量與計量
時、分、秒的認識。
米、分米、厘米的認識和簡單計算。
千克(公斤)的認識。
3幾何初步知識
直線和線段的初步認識。角的初步認識。直角。
4應用題
加法和減法一步計算的應用題。乘法和除法一步計算的應用題。比較容易的兩步計算的應用題。
5實踐活動
與生活密切聯系的內容。例如調查家中本周各項消費的開支情況,想到哪些數學問題。
三年級的知識重點
1數與計算
(1)一位數的乘、除法。
一個乘數是一位數的乘法(另一個乘數一般不超過三位數)。0的乘法。連乘。除數是一位數的除法。0除以一個數。用乘法驗算除法。連除。
(2)兩位數的乘、除法。
一個乘數是兩位數的乘法(另一個乘數一般不超過三位數)。乘數末尾有0的簡便演算法。乘法驗算。除數是兩位數的除法。連乘、連除的簡便演算法。
(3)四則混合運算。
兩步計算的式題。小括弧的使用。
(4)分數的初步認識。
分數的初步認識,讀法和寫法。看圖比較分數的大小。簡單的同分母分數加、減法。
2量與計量
千米(公里)、毫米的認識和簡單計算。噸、克的認識和簡單計算。
3幾何初步知識
長方形和正方形的特徵。長方形和正方形的周長。平行四邊形的直觀認識。周長的含義。長方形、正方形的周長。
4應用題常見的數量關系。
解答兩步計算的應用題。
5實踐活動
聯系周圍接觸到的事物組織活動。例如記錄10天內的天氣情況,分類整理,並作簡單分析。
四年級的知識重點
1數與計算
(1)億以內數的讀法和寫法。
計數單位「十萬」、「百萬」、「千萬」。相鄰計數單位間的十進關系。讀法和寫法。數的大小比較。以萬作單位的近似數。
(2)加法和減法。
加法,減法。
接近整十、整百數的加、減法的簡便演算法。
加、減法算式中各部分之間的關系。求未知數x。
(3)乘、除數是三位數的乘、除法。
乘數是三位數的乘法。積的變化。除數是三位數的除法。商不變的性質。被除數和除數末尾有0的簡便演算法。
乘、除計算的簡單估算。
乘數接近整十、整百的簡便演算法。
乘、除法算式中各部分之間的關系。求未知數x。
(4)四則混合運算。
中括弧。三步計算的式題。
(5)整數及其四則運算的關系和運算定律。
自然數與整數。十進制計數法。讀法和寫法。
四則運算的意義。加法與減法、乘法與除法之間的關系。整除和有餘數的除法。
運算定律。簡便運算。
(6)小數的意義、性質,加法和減法。
小數的意義、性質。小數大小的比較。小數點移位引起小數大小的變化。小數的近似值加法和減法。加法運算定律推廣到小數。
2量與計量
年、月、日。平年、閏年。世紀。24時計時法。
角的度量。
面積單位。
3幾何初步知識
直線的測定。測量距離(工具測、步測、目測)。
射線。直角、銳角、鈍角、平角、*周角。垂線。畫垂線。平行線。畫平行線。
三角形的特徵。
三角形的內角和。
4統計初步知識
簡單數據整理。簡單統計圖表的初步認識。平均數的意義。求簡單的平均數。
5應用題列綜合算式
解答比較容易的三步計算的應用題。
五年級的知識重點
1計算
小數乘法,小數除法,簡易方程,觀察物體,多邊形的面積,統計與可能性,數學廣角和數學綜合運用等。
在前面學習整數四則運算和小數加、減法的基礎上,繼續培養學生小數的四則運算能力。
2方程
用字母表示數、等式的性質、解簡單的方程、用方程表示等量關系進而解決簡單的實際問題等內容,進一步發展學生的抽象思維能力,提高解決問題的能力。
3空間與物體
在空間與圖形方面,這一冊教材安排了觀察物體和多邊形的面積兩個單元。在已有知識和經驗的基礎上,通過豐富的現實的數學活動,讓學生獲得探究學習的經歷,能辨認從不同方位看到的物體的形狀和相對位置。
4圖形的轉換
探索並體會各種圖形的特徵、圖形之間的關系,及圖形之間的轉化,掌握平行四邊形、三角形、梯形的面積公式及公式之間的關系,滲透平移、旋轉、轉化的數學思想方法,促進學生空間觀念的進一步發展。
5統計與概率
教材讓學生學習有關可能性和中位數的知識。通過操作與實驗,讓學生體驗事件發生的等可能性以及游戲規則的公平性,學會求一些事件發生的可能性。
6平均數
理解平均數和中位數各自的統計意義、各自的特徵和適用范圍;進一步體會統計和概率在現實生活中的作用。
7實際應用
通過觀察、猜測、實驗、推理等活動向學生滲透初步的數字編碼的數學思想方法,體會運用數字的有規律排列可以使人與人之間的信息交換變得安全、有序、快捷,給人們的生活和工作帶來便利,感受數學的魅力。
六年級的知識重點
1數與計算
(1)分數的乘法和除法,分數乘法的意義,分數乘法,乘法的運算定律推廣到分數,倒數,分數除法的意義,分數除法。
(2)分數四則混合運算,分數四則混合運算。
(3)百分數,百分數的意義和寫法,百分數和分數、小數的互化。
2比和比例
比的意義和性質,比例的意義和基本性質,解比例,成正比例的量和成反比例的量。
3幾何初步知識
圓的認識,圓周率,畫圓,圓的周長和面積,扇形的認識,軸對稱圖形的初步認識,圓柱的認識,圓柱的表面積和體積,圓錐的認識,圓錐的體積,球和球的半徑、直徑的初步認識。
4統計初步知識
統計表,條形統計圖,折線統計圖,扇形統計圖。
5應用題
分數四則應用題(包括工程問題),百分數的實際應用(包括發芽率、合格率、利率、稅率等的計算),比例尺,按比例分配。
6實踐活動
聯系學生所接觸到的社會情況組織活動,例如就家中的卧室,畫一個平面圖。