⑴ 小學數學問題解決的基本模式有哪些
小學數學「問題解決」模式初探
摘
要:通過對解決問題過程的探索,使學生學會如何利用各種手段處理問題中隱含的信息,學會如何從問題中發現隱含的關系,學會如何多角度思考問題,進而獲得初步的分析問題、解決問題的能力。
關鍵詞:導問;探究;應用
《義務教育數學課程標准》指出:「教學中應尊重每一個學生的特徵,允許不同的學生從不同的角度認識問題,採用不同的方式表達自己的想法,用不同的知識與方法解決問題。鼓勵解決問題策略的多樣化,是因材施教、促進每一個學生充分發展的有效途徑。」使學生成為有效的問題解決者,既是小學數學教學的目標,又是對小學數學教師的挑戰。其最終目的是通過對解決問題過程的探索,使學生學會如何利用各種手段處理問題中隱含的信息,學會如何從問題中發現隱含的關系,學會如何多角度思考問題,進而獲得初步的分析問題、解決問題的能力。
我校正在進行小學數學「導問—探究—應用」教學的研究,流程如下:
一、創設情境,提出問題
二、合作探究,尋找策略
三、鞏固應用,發展能力
四、共同釋疑,解決問題
五、全課總結,拓展延伸
⑵ 小學數學分為幾大塊每塊都包括什麼內容
分為四大塊,分別是數與代數,圖形與幾何,統計與概率,綜合與實踐。
1、數與代數主要包括,數的讀寫方法(整數,小數,分數),數的改寫(化成用萬、億作單位的數,求近似數等),數的大小比較(整數,小數,分數的大小比較),四則運算(計演算法則,運算順序,運算定律等),
量的計量(質量,長度,面積,時間,體積(容積)、人民幣等,以及單位間的換算)。
2、幾何與圖形包括,認識圖形(圖形的名稱,各部分名稱,特點,性質,圖形之間的關系等等),觀察物體,計算平面圖形的面積、立體圖形的表面積和體積,圖形的運動(平移和旋轉),位置與方向等。
3、統計與概率主要包括:統計表,統計圖(條形,扇形,折線等等)平均數眾數,概率等。
(2)小學數學解決問題教材模塊是哪些擴展閱讀:
意義:
小學數學的基礎知識包括:概念、定律、性質、法則、公式等,其中數學概念不僅是數學基礎知識的重要組成部分,而且是學習其他數學知識的基礎。學生掌握基礎知識的過程,實際上就是掌握概念並運用概念進行判斷、推理的過程。數學中的法則都是建立在一系列概念的基礎上的。
⑶ 小學數學解決問題有哪些
手腦並用是提高創新意識的有效方法。學生的實際動手能力是衡量人才的重要重要指標,是從小學會學習、學會生活的重要內容。在教學中,可以引導學生利用實際操作這項活動來幫助學生掌握知識,具有創造性、開拓性。符合國家關於活動課開設的目的和意義。有利於數學教學的輔助過程,有利於創新能力的培養。在教學活動中,教師要注重提供各種機會讓學生參與活動,使學生在參與過程中掌握方法,促進思維的發展。教學中,經常設置一些懸念性的問題,鼓勵學生探索,喚起學生創新意識,改變教師的主體。學生的創新潛能得到挖掘,逐步形成創新能力。
優化教學模式,深化創新意識培養:傳統意義上教學的幾個重要的環節一般是:導入新課—新授—鞏固練習—布置作業。經過多年的改進,形式雖然有變化,但實質卻沒有什麼改動。其實,課堂不必套用這個模式,對小學來說,一本正經的像對成人那樣傳授知識,未免太呆板了些。活動教學、游戲教學、發現教學、探究教學、數學建模教學、競賽教學,根據不同的教學內容,都是可以採取的。比如:導入這一環節,完全可以用昀新的教學詞彙—創設情境來表示和演繹,情境是教師和學生共同面對的,它必然會起到導入的作用,但更重要的是面對著一個問題,藉以引起學生的興趣,激發學生的求知慾望,培養尋求解決問題的不同方法的意識。再比如:新授這一環節,完全可以改成探索與討論,而鞏固環節可以換成實踐與反思等等,這些改變並不是換換詞語那樣簡單,更重要的是教學觀念的改變與教學方式的更新,通過這些改變增強學生的主動性,從而更好的提高學生創新意識。
3
小學數學方法二
動手操作的策略:例如:教學四年級下冊第五單元《三角形》中《三角形邊的關系》時,我讓學生自己探索任意三根小棒能否圍成三角形,先猜想,再讓學生動手操作試圍,驗證自己的猜想。實驗結果有所不同,這樣使學生在具體的操作過程中產生思維沖突,從而提出數學問題「為什麼有的能圍成,有的圍不成呢?」,有效地激發了學生進一步探究的慾望,在進一步的探索交流中得出結論,即較短兩條邊的和等於或小於第三邊時不能圍成三角形,只有較短兩邊的和大於第三邊時才能圍成三角形。
再如:教學《三角形的內角和》一課時,根據學生已有的知識經驗和生活經驗,課前有一部分學生就能說出三角形內角和是180°這一知識點。但是如何讓學生明白為什麼三角形的內角和是180°,而不是僅僅知道這個結論而已。教學中我引導學生通過量一量、算一算、剪一剪、拼一拼、折一折等一系列操作活動,找到了幾種驗證三角形內角和是180°的方法,學生通過動手操作,自主探究得出結論後,體驗到了成功的喜悅。還有我在教《梯形的面積》時,引導學生探究「怎樣計算梯形的面積?」這一問題時,我給學生提供了硬紙片的梯形學具,把實際操作策略的選擇權留給學生,學生將這個問題轉化為一個已知的問題進行推導研究。學生在自主探索實現操作策略的多樣化:有的學生將它剪為兩個三角形;有的通過割、補將它轉化為長方形;或者把兩個完全一樣的梯形拼成一個平行四邊形。這種開放性的操作策略,不僅有可能獲得問題解決,而且還能培養學生的創造性思維。
⑷ 小學數學教材內容主要分為哪幾大類
1、義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:
--人人學有價值的數學;
--人人都能獲得必需的數學;
--不同的人在數學上得到不同的發展。
2、數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎。
(4)小學數學解決問題教材模塊是哪些擴展閱讀:
適當增加簡易方程、正負數等代數初步知識,以及三角形內角和、軸對稱等幾何初步知識;同時注意結合有關內容滲透一些集合、函數、統計等數學思想。在編排上,注意知識間的內在聯系,口算、筆算、珠算適當配合,形的認識與數的計算適當配合。
應用題的安排,前三個年級主要教學算術解法,後兩個年級算術解法與代數解法並重。在能力培養上, 注意在加強基礎知識教學的同時,培養學生的計算能力、初步的邏輯思維能力和空間觀念,以及解決簡單實際問題的能力,適當增加了一些思考題。
⑸ 小學數學分為幾大模塊
小學數學主要分為三大部分。
1、數與代數
數與代數主要包括數的讀寫方法(整數,小數,分數),數的改寫(化成用萬、億作單位的數,求近似數等),數的大小比較(整數,小數,分數的大小比較)。
四則運算(計演算法則,運算順序,運算定律等),量的計量(質量,長度,面積,時間,體積(容積)、人民幣等,以及單位間的換算)。
2、幾何與圖形
幾何與圖形包括認識圖形(圖形的名稱,各部分名稱,特點,性質,圖形之間的關系等等),觀察物體,計算平面圖形的面積、立體圖形的表面積和體積,圖形的運動(平移和旋轉),位置與方向等等。
3、統計與概率
統計與概率主要包括:統計表,統計圖(條形,扇形,折線等等)平均數眾數,概率等等。
⑹ 小學數學新課程標准 中解決問題包括哪些內容
1.數學課程應致力於實現義務教育階段的培養目標,人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展。
2.課程內容既要反映社會的需要、數學學科的特徵,也要符合學生的認知規律。它不僅包括數學的結論。課程內容的組織要處理好過程與結果的關系,直觀與抽象的關系,直接經驗與間接經驗的關系。課程內容的呈現應注意層次性和多樣性。
3.教學活動是師生積極參與、教師是數學學習的組織者、引導者與合作者。
⑺ 小學數學分為幾大板塊
按內容分為:數與代數,幾何與圖形,統計與概率,實踐與綜合應用。
按領域分為:知識與技能,數學思考,問題解決,情感與態度。
⑻ 請問小學數學四大板塊分別是什麼
按內容分為:數與代數,幾何與圖形,統計與概率,實踐與綜合應用.
按領域分為:知識與技能,數學思考,問題解決,情感與態度.
⑼ 小學數學數與代數部分解決問題內容有哪些
(一)數的認識
1整數【正數、0、負數】
一、一個物體也沒有,用0表示。0和1、2、3……都是自然數。自然數是整數。
二、最小的一位數是1,最小的自然數是0。
三、零上4攝氏度記作+4℃;零下4攝氏度記作-4℃。「+4」讀作正四。「-4」讀作負四。 +4也可以寫成4。
四、像 +4、19、+8844這樣的數都是正數。像-4、-11、-7、-155這樣的數都是負數。
五、0既不是正數,也不是負數。正數都大於0,負數都小於0。
六、通常情況下,比海平面高用正數表示,比海平面低用負數表示。
七、通常情況下,盈利用正數表示,虧損用負數表示。
八、通常情況下,上車人數用正數表示,下車人數用負數表示。
九、通常情況下,收入用正數表示,支出用負數表示。
十、通常情況下,上升用正數表示,下降用負數表示。
2小數【有限小數、無限小數】
一、分母是10、100、1000……的分數都可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
二、整數和小數都是按照十進制計數法寫出的數,個、十、百……以及十分之一、百分之一……都是計數單位。每相鄰兩個計數單位間的進率都是10。
三、每個計數單位所佔的位置,叫做數位。數位是按照一定的順序排列的。
四、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
五、根據小數的性質,通常可以去掉小數末尾的「0」,把小數化簡。
六、比較小數大小的一般方法:先比較整數部分的數,再依次比較小數部分十分位上的數,百分位上的數,千分位上的數,從左往右,如果哪個數位上的數大,這個小數就大。
七、把一個數改寫成用「萬」或「億」作單位的數,在萬位或億位右邊點上小數點,再在數的後面添寫「萬」字或「億」字。
八、求小數近似數的一般方法:1先要弄清保留幾位小數;2根據需要確定看哪一位上的數;3用「四捨五入」的方法求得結果。
3分數【真分數、假分數】
一、把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數,是這個分數的分數單位。
二、兩個數相除,它們的商可以用分數表示。即:a÷b=a/b(b≠0)
三、小數和分數的意義可以看出,小數實際上就是分母是10、100、1000…的分數。
四、分數可以分為真分數和假分數。
五、分子小於分母的分數叫做真分數。真分數小於1。
六、分子大於或等於分母的分數叫做假分數。假分數大於或等於1。
七、分子和分母只有公因數1的分數叫做最簡分數。
八、分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。