導航:首頁 > 數字科學 > 數學科學家製造了什麼

數學科學家製造了什麼

發布時間:2022-09-27 18:40:05

1. 古代科學家有哪些人他們發明了什麼

1、畢升出生於北宋時期的畢升,最開始在印刷鋪裡面打工。後來在長期的工作中總結了前人的經驗,發明了活字印刷術。對人類文明和社會發展作出了偉大貢獻。

2. 100懸賞,求中外10名數學家的生平事跡及對數學的重大貢獻

1.劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產.
《九章算術》約成書於東漢之初,共有246個問題的解法.在許多方面:如解聯立方程,分數四則運算,正負數運算,幾何圖形的體積面積計算等,都屬於世界先進之列,但因解法比較原始,缺乏必要的證明,而劉徽則對此均作了補充證明.在這些證明中,顯示了他在多方面的創造性的貢獻.他是世界上最早提出十進小數概念的人,並用十進小數來表示無理數的立方根.在代數方面,他正確地提出了正負數的概念及其加減運算的法則;改進了線性方程組的解法.在幾何方面,提出了"割圓術",即將圓周用內接或外切正多邊形窮竭的一種求圓面積和圓周長的方法.他利用割圓術科學地求出了圓周率π=3.14的結果.劉徽在割圓術中提出的"割之彌細,所失彌少,割之又割以至於不可割,則與圓合體而無所失矣",這可視為中國古代極限觀念的佳作.
《海島算經》一書中, 劉徽精心選編了九個測量問題,這些題目的創造性、復雜性和富有代表性,都在當時為西方所矚目.
劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是我國最早明確主張用邏輯推理的方式來論證數學命題的人.
劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富.
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
2. 祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
3.歐拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞爾(Basel)城,13歲就進巴塞爾大學讀書,得到當時最有名的數學家約翰·伯努利(Johann Bernoulli,1667-1748年)的精心指導.
歐拉淵博的知識,無窮無盡的創作精力和空前豐富的著作,都是令人驚嘆不已的!他從19歲開始發表論文,直到76歲,半個多世紀寫下了浩如煙海的書籍和論文.到今幾乎每一個數學領域都可以看到歐拉的名字,從初等幾何的歐拉線,多面體的歐拉定理,立體解析幾何的歐拉變換公式,四次方程的歐拉解法到數論中的歐拉函數,微分方程的歐拉方程,級數論的歐拉常數,變分學的歐拉方程,復變函數的歐拉公式等等,數也數不清.他對數學分析的貢獻更獨具匠心,《無窮小分析引論》一書便是他劃時代的代表作,當時數學家們稱他為"分析學的化身".
歐拉是科學史上最多產的一位傑出的數學家,據統計他那不倦的一生,共寫下了886本書籍和論文,其中分析、代數、數論佔40%,幾何佔18%,物理和力學佔28%,天文學佔11%,彈道學、航海學、建築學等佔3%,彼得堡科學院為了整理他的著作,足足忙碌了四十七年.
歐拉著作的驚人多產並不是偶然的,他可以在任何不良的環境中工作,他常常抱著孩子在膝上完成論文,也不顧孩子在旁邊喧嘩.他那頑強的毅力和孜孜不倦的治學精神,使他在雙目失明以後,也沒有停止對數學的研究,在失明後的17年間,他還口述了幾本書和400篇左右的論文.19世紀偉大數學家高斯(Gauss,1777-1855年)曾說:"研究歐拉的著作永遠是了解數學的最好方法."
歐拉的父親保羅·歐拉(Paul Euler)也是一個數學家,原希望小歐拉學神學,同時教他一點教學.由於小歐拉的才人和異常勤奮的精神,又受到約翰·伯努利的賞識和特殊指導,當他在19歲時寫了一篇關於船桅的論文,獲得巴黎科學院的獎的獎金後,他的父親就不再反對他攻讀數學了.
1725年約翰·伯努利的兒子丹尼爾·伯努利赴俄國,並向沙皇喀德林一世推薦了歐拉,這樣,在1727年5月17日歐拉來到了彼得堡.1733年,年僅26歲的歐拉擔任了彼得堡科學院數學教授.1735年,歐拉解決了一個天文學的難題(計算慧星軌道),這個問題經幾個著名數學家幾個月的努力才得到解決,而歐拉卻用自己發明的方法,三天便完成了.然而過度的工作使他得了眼病,並且不幸右眼失明了,這時他才28歲.1741年歐拉應普魯士彼德烈大帝的邀請,到柏林擔任科學院物理數學所所長,直到1766年,後來在沙皇喀德林二世的誠懇敦聘下重回彼得堡,不料沒有多久,左眼視力衰退,最後完全失明.不幸的事情接踵而來,1771年彼得堡的大火災殃及歐拉住宅,帶病而失明的64歲的歐拉被圍困在大火中,雖然他被別人從火海中救了出來,但他的書房和大量研究成果全部化為灰燼了.
沉重的打擊,仍然沒有使歐拉倒下,他發誓要把損失奪回來.在他完全失明之前,還能朦朧地看見東西,他抓緊這最後的時刻,在一塊大黑板上疾書他發現的公式,然後口述其內容,由他的學生特別是大兒子A·歐拉(數學家和物理學家)筆錄.歐拉完全失明以後,仍然以驚人的毅力與黑暗搏鬥,憑著記憶和心算進行研究,直到逝世,竟達17年之久.
歐拉的記憶力和心算能力是罕見的,他能夠復述年青時代筆記的內容,心算並不限於簡單的運算,高等數學一樣可以用心算去完成.有一個例子足以說明他的本領,歐拉的兩個學生把一個復雜的收斂級數的17項加起來,算到第50位數字,兩人相差一個單位,歐拉為了確定究竟誰對,用心算進行全部運算,最後把錯誤找了出來.歐拉在失明的17年中;還解決了使牛頓頭痛的月離問題和很多復雜的分析問題.
歐拉的風格是很高的,拉格朗日是稍後於歐拉的大數學家,從19歲起和歐拉通信,討論等周問題的一般解法,這引起變分法的誕生.等周問題是歐拉多年來苦心考慮的問題,拉格朗日的解法,博得歐拉的熱烈贊揚,1759年10月2日歐拉在回信中盛稱拉格朗日的成就,並謙虛地壓下自己在這方面較不成熟的作品暫不發表,使年青的拉格朗日的工作得以發表和流傳,並贏得巨大的聲譽.他晚年的時候,歐洲所有的數學家都把他當作老師,著名數學家拉普拉斯(Laplace)曾說過:"歐拉是我們的導師." 歐拉充沛的精力保持到最後一刻,1783年9月18日下午,歐拉為了慶祝他計算氣球上升定律的成功,請朋友們吃飯,那時天王星剛發現不久,歐拉寫出了計算天王星軌道的要領,還和他的孫子逗笑,喝完茶後,突然疾病發作,煙斗從手中落下,口裡喃喃地說:"我死了",歐拉終於"停止了生命和計算".
歐拉的一生,是為數學發展而奮斗的一生,他那傑出的智慧,頑強的毅力,孜孜不倦的奮斗精神和高尚的科學道德,永遠是值得我們學習的.〔歐拉還創設了許多數學符號,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等.
4. 我們現在所用的直角坐標系,通常叫做笛卡兒直角坐標系.是從笛卡兒 (Descartes R.,1596.3.31~1650.2.11)引進了直角坐標系以後,人們才得以用代數的方法研究幾何問題,才建立並完善了解析幾何學,才建立了微積分.
法國數學家拉格朗日(Lagrange J.L.,1736.1.25~1813.4.10)曾經說過:"只要代數同幾何分道揚鑣,它們的進展就緩慢,它們的應用就狹窄.但是,當這兩門科學結合成伴侶時,它們就互相吸取新鮮的活力.從那以後,就以快速的步伐走向完善."
我國數學家華羅庚(1910.11.12~1985.6.12)說過:"數與形,本是相倚依,焉能分作兩邊飛.數缺形時少直覺,形少數時難入微.形數結合百般好,隔裂分家萬事非.切莫忘,幾何代數統一體,永遠聯系,切莫分離!"
這些偉人的話,實際上都是對笛卡兒的貢獻的評價.
笛卡兒的坐標系不同於一個一般的定理,也不同於一段一般的數學理論,它是一種思想方法和技藝,它使整個數學發生了嶄新的變化,它使笛卡兒成為了當之無愧的現代數學的創始人之一.
笛卡兒是十七世紀法國傑出的哲學家,是近代生物學的奠基人,是當時第一流的物理學家,並不是專業的數學家.
笛卡兒的父親是一位律師.當他八歲的時候,他父親把他送入了一所教會學校,他十六歲離開該校,後進入普瓦界大學學習,二十歲畢業後去巴黎當律師.他於1617年進入軍隊.在軍隊服役的九年中,他一直利用業余時間研究數學.後來他回到巴黎,為望遠鏡的威力所激動,閉門鑽研光學儀器的理論與構造,同時研究哲學問題.他於1682年移居荷蘭,得到較為安靜自由的學術環境,在那裡住了二十年,完成了他的許多重要著作,如《思想的指導法則》、《世界體系》、《更好地指導推理和尋求科學真理的方法論》(包括三個著名的附錄:《幾何》、《折光》和《隕星》),還有《哲學原理》和《音樂概要》等.其中《幾何》這一附錄,是笛卡兒寫過的唯一本數學書,其中清楚地反映了他關於坐標幾何和代數的思想.笛卡兒於1649年被邀請去瑞典作女皇的教師.斯德哥爾摩的嚴冬對笛卡兒虛弱的身體產生了極壞的影響,笛卡兒於1650年2月患了肺炎,得病十天便與世長辭了.他逝世於1650年2月11日,差一個月零三周沒活到54歲.
笛卡兒雖然從小就喜歡數學,但他真正自信自己有數學才能並開始認真用心研究數學卻是因為一次偶然的機緣.
那是1618年11月,笛卡兒在軍隊服役,駐扎在荷蘭的一個小小的城填布萊達.一天,他在街上散步,看見一群人聚集在一張貼布告的招貼牌附近,情緒興奮地議論紛紛.他好奇地走到跟前.但由於他聽不懂荷蘭話,也看不懂布告上的荷蘭字,他就用法語向旁邊的人打聽.有一位能聽懂法語的過路人不以為然的看了看這個年青的士兵,告訴他,這里貼的是一張解數學題的有獎競賽.要想讓他給翻譯一下布告上所有的內容,需要有一個條件,就是士兵要給他送來這張布告上所有問題的答案.這位荷蘭人自稱,他是物理學、醫學和數學教師別克曼.出乎意料的是,第二天,笛卡兒真地帶著全部問題的答案見他來了;尤其是使別克曼吃驚地是,這位青年的法國士兵的全部答案竟然一點兒差錯都沒有.於是,二人成了好朋友,笛卡兒成了別克曼家的常客.
笛卡兒在別克曼指導下開始認真研究數學,別克曼還教笛卡兒學習荷蘭語.這種情況一直延續了兩年多,為笛卡兒以後創立解析幾何打下了良好的基礎.而且,據說別克曼教笛卡兒學會的荷蘭話還救過笛卡兒一命:
有一次笛卡兒和他的僕人一起乘一艘不大的商船駛往法國,船費不很貴.沒想到這是一艘海盜船,船長和他的副手以為笛卡兒主僕二人是法國人,不懂荷蘭語,就用荷蘭語商量殺害他們倆搶掠他們錢財的事.笛卡兒聽懂了船長和他副手的話,悄悄做准備,終於制服了船長,才安全回到了法國.
在法國生活了若干年之後,他為了把自己對事物的見解用書面形式陳述出來,他又離開了帶有宗教偏見和世俗的專制政體的法國,回到了可愛而好客的荷蘭,甚至於和海盜的沖突也抹然不了他對荷蘭的美好回憶.正是在荷蘭,笛卡兒完成了他的《幾何》.此著作不長,但堪稱幾何著作中的珍寶.
笛卡兒在斯德哥爾摩逝世十六年後,他的骨灰被轉送回巴黎.開始時安放在巴維爾教堂,1667年被移放到法國偉人們的墓地--神聖的巴黎的保衛者們和名人的公墓.法國許多傑出的學者都在那裡找到了自己最後的歸宿.
5.高斯(C.F.Gauss,1777.4.30~1855.2.23)是德國數學家、物理學家和天文學家,出生於德國布倫茲維克的一個貧苦家庭.父親格爾恰爾德·迪德里赫先後當過護堤工、泥瓦匠和園丁,第一個妻子和他生活了10多年後因病去世,沒有為他留下孩子.迪德里赫後來娶了羅捷雅,第二年他們的孩子高斯出生了,這是他們唯一的孩子.父親對高斯要求極為嚴厲,甚至有些過份,常常喜歡憑自己的經驗為年幼的高斯規劃人生.高斯尊重他的父親,並且秉承了其父誠實、謹慎的性格.1806年迪德里赫逝世,此時高斯已經做出了許多劃時代的成就.
在成長過程中,幼年的高斯主要是力於母親和舅舅.高斯的外祖父是一位石匠,30歲那年死於肺結核,留下了兩個孩子:高斯的母親羅捷雅、舅舅弗利德里希(Friederich).弗利德里希富有智慧,為人熱情而又聰明能幹投身於紡織貿易頗有成就.他發現姐姐的兒子聰明伶利,因此他就把一部分精力花在這位小天才身上,用生動活潑的方式開發高斯的智力.若干年後,已成年並成就顯赫的高斯回想起舅舅為他所做的一切,深感對他成才之重要,他想到舅舅多產的思想,不無傷感地說,舅舅去世使「我們失去了一位天才」.正是由於弗利德里希慧眼識英才,經常勸導姐夫讓孩子向學者方面發展,才使得高斯沒有成為園丁或者泥瓦匠.
在數學史上,很少有人象高斯一樣很幸運地有一位鼎力支持他成才的母親.羅捷雅直到34歲才出嫁,生下高斯時已有35歲了.他性格堅強、聰明賢慧、富有幽默感.高斯一生下來,就對一切現象和事物十分好奇,而且決心弄個水落石出,這已經超出了一個孩子能被許可的范圍.當丈夫為此訓斥孩子時,他總是支持高斯,堅決反對頑固的丈夫想把兒子變得跟他一樣無知.
羅捷雅真誠地希望兒子能幹出一番偉大的事業,對高斯的才華極為珍視.然而,他也不敢輕易地讓兒子投入當時尚不能養家糊口的數學研究中.在高斯19歲那年,盡管他已做出了許多偉大的數學成就,但她仍向數學界的朋友W.波爾約(W.Bolyai,非歐幾何創立者之一J.波爾約之父)問道:高斯將來會有出息嗎?W.波爾約說她的兒子將是「歐洲最偉大的數學家」,為此她激動得熱淚盈眶.
7歲那年,高斯第一次上學了.頭兩年沒有什麼特殊的事情.1787年高斯10歲,他進入了學習數學的班次,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這么一門課程.數學教師是布特納(Buttner),他對高斯的成長也起了一定作用.
在全世界廣為流傳的一則故事說,高斯10歲時算出布特納給學生們出的將1到100的所有整數加起來的算術題,布特納剛敘述完題目,高斯就算出了正確答案.不過,這很可能是一個不真實的傳說.據對高斯素有研究的著名數學史家E·T·貝爾(E.T.Bell)考證,布特納當時給孩子們出的是一道更難的加法題:81297+81495+81693+…+100899.
當然,這也是一個等差數列的求和問題(公差為198,項數為100).當布特納剛一寫完時,高斯也算完並把寫有答案的小石板交了上去.E·T·貝爾寫道,高斯晚年經常喜歡向人們談論這件事,說當時只有他寫的答案是正確的,而其他的孩子們都錯了.高斯沒有明確地講過,他是用什麼方法那麼快就解決了這個問題.數學史家們傾向於認為,高斯當時已掌握了等差數列求和的方法.一位年僅10歲的孩子,能獨立發現這一數學方法實屬很不平常.貝爾根據高斯本人晚年的說法而敘述的史實,應該是比較可信的.而且,這更能反映高斯從小就注意把握更本質的數學方法這一特點.
高斯的計算能力,更主要地是高斯獨到的數學方法、非同一般的創造力,使布特納對他刮目相看.他特意從漢堡買了最好的算術書送給高斯,說:「你已經超過了我,我沒有什麼東西可以教你了.」接著,高斯與布特納的助手巴特爾斯(J.M.Bartels)建立了真誠的友誼,直到巴特爾斯逝世.他們一起學習,互相幫助,高斯由此開始了真正的數學研究.
1788年,11歲的高斯進入了文科學校,他在新的學校里,所有的功課都極好,特別是古典文學、數學尤為突出.經過巴特爾斯等人的引薦,布倫茲維克公爵召見了14歲的高斯.這位朴實、聰明但家境貧寒的孩子贏得了公爵的同情,公爵慷慨地提出願意作高斯的資助人,讓他繼續學習.
布倫茲維克公爵在高斯的成才過程中起了舉足輕重的作用.不僅如此,這種作用實際上反映了歐洲近代科學發展的一種模式,表明在科學研究社會化以前,私人的資助是科學發展的重要推動因素之一.高斯正處於私人資助科學研究與科學研究社會化的轉變時期.
1792年,高斯進入布倫茲維克的卡羅琳學院繼續學習.1795年,公爵又為他支付各種費用,送他入德國著名的哥丁根大學,這樣就使得高斯得以按照自己的理想,勤奮地學習和開始進行創造性的研究.1799年,高斯完成了博士論文,回到家鄉布倫茲維克,正當他為自己的前途、生計擔憂而病倒時----雖然他的博士論文順利通過了,已被授予博士學位,同時獲得了講師職位,但他沒有能成功地吸引學生,因此只能回老家,又是公爵伸手救援他.公爵為高斯付諸了長篇博士論文的印刷費用,送給他一幢公寓,又為他印刷了《算術研究》,使該書得以在1801年問世;還負擔了高斯的所有生活費用.所有這一切,令高斯十分感動.他在博士論文和《算術研究》中,寫下了情真意切的獻詞:「獻給大公」,「你的仁慈,將我從所有煩惱中解放出來,使我能從事這種獨特的研究」.
1806年,公爵在抵抗拿破崙統帥的法軍時不幸陣亡,這給高斯以沉重打擊.他悲痛欲絕,長時間對法國人有一種深深的敵意.大公的去世給高斯帶來了經濟上的拮據,德國處於法軍奴役下的不幸,以及第一個妻子的逝世,這一切使得高斯有些心灰意冷,但他是位剛強的漢子,從不向他人透露自己的窘況,也不讓朋友安慰自己的不幸.人們只是在19世紀整理他的未公布於眾的數學手稿時才得知他那時的心態.在一篇討論橢圓函數的手搞中,突然插入了一段細微的鉛筆字:「對我來說,死去也比這樣的生活更好受些.」
慷慨、仁慈的資助人去世了,因此高斯必須找一份合適的工作,以維持一家人的生計.由於高斯在天文學、數學方面的傑出工作,他的名聲從1802年起就已開始傳遍歐洲.彼得堡科學院不斷暗示他,自從1783年歐拉去世後,歐拉在彼得堡科學院的位置一直在等待著象高斯這樣的天才.公爵在世時堅決勸阻高斯去俄國,他甚至願意給高斯增加薪金,為他建立天文台.現在,高斯又在他的生活中面臨著新的選擇.
為了不使德國失去最偉大的天才,德國著名學者洪堡(B.A.Von Humboldt)聯合其他學者和政界人物,為高斯爭取到了享有特權的哥丁根大學數學和天文學教授,以及哥丁根天文台台長的職位.1807年,高斯赴哥丁根就職,全家遷居於此.從這時起,除了一次到柏林去參加科學會議以外,他一直住在哥丁根.洪堡等人的努力,不僅使得高斯一家人有了舒適的生活環境,高斯本人可以充分發揮其天才,而且為哥丁根數學學派的創立、德國成為世界科學中心和數學中心創造了條件.同時,這也標志著科學研究社會化的一個良好開端.
高斯的學術地位,歷來為人們推崇得很高.他有「數學王子」、「數學家之王」的美稱、被認為是人類有史以來「最偉大的三位(或四位)數學家之一」(阿基米德、牛頓、高斯或加上歐拉).人們還稱贊高斯是「人類的驕傲」.天才、早熟、高產、創造力不衰、……,人類智力領域的幾乎所有褒獎之詞,對於高斯都不過份.
高斯的研究領域,遍及純粹數學和應用數學的各個領域,並且開辟了許多新的數學領域,從最抽象的代數數論到內蘊幾何學,都留下了他的足跡.從研究風格、方法乃至所取得的具體成就方面,他都是18----19世紀之交的中堅人物.如果我們把18世紀的數學家想像為一系列的高山峻嶺,那麼最後一個令人肅然起敬的巔峰就是高斯;如果把19世紀的數學家想像為一條條江河,那麼其源頭就是高斯.
雖然數學研究、科學工作在18世紀末仍然沒有成為令人羨慕的職業,但高斯依然生逢其時,因為在他快步入而立之年之際,歐洲資本主義的發展,使各國政府都開始重視科學研究.隨著拿破崙對法國科學家、科學研究的重視,俄國的沙皇以及歐洲的許多君主也開始對科學家、科學研究刮目相看,科學研究的社會化進程不斷加快,科學的地位不斷提高.作為當時最偉大的科學家,高斯獲得了不少的榮譽,許多世界著名的科學泰斗都把高斯當作自己的老師.
1802年,高斯被俄國彼得堡科學院選為通訊院士、喀山大學教授;1877年,丹麥政府任命他為科學顧問,這一年,德國漢諾威政府也聘請他擔任政府科學顧問.
高斯的一生,是典型的學者的一生.他始終保持著農家的儉朴,使人難以想像他是一位大教授,世界上最偉大的數學家.他先後結過兩次婚,幾個孩子曾使他頗為惱火.不過,這些對他的科學創造影響不太大.在獲得崇高聲譽、德國數學開始主宰世界之時,一代天驕走完了生命旅程.

6.畢達哥拉斯(Pythagoras,572BC?~497BC?),古希臘數學家、哲學家.
畢達哥拉斯和他的學派在數學上有很多創造,尤其對整數的變化規律感興趣.例如,把(除其本身以外)全部因數之和等於本身的數稱為完全數(如6,28,496等),而將本身大於其因數之和的數稱為盈數;將小於其因數之和的數稱為虧數.他們還發現了「直角三角形兩直角邊平方和等於斜邊平方」,西方人稱之為畢達哥拉斯定理,我國稱為勾股定理.
在幾何學方面,畢達哥拉斯學派證明了「三角形內角之和等於兩個直角」的論斷;研究了黃金分割;發現了正五角形和相似多邊形的作法;還證明了正多面體只有五種——正四面體、正六面體、正八面體、正十二面體和正二十面體.

7.錢學森1911年出生在上海市,1934年畢業於上海交通大學.他為了更好地報效祖國,於1935年考取美國麻省理工學院進行深造學習,並於1936年轉入加州理工學院繼續學習,並拜著名的航空科學家馮·卡門為師,學習航空工程理論.錢學森學習十分努力,三年後便獲得了博士學位並留校任教.在馮·卡門的指導下,錢學森對火箭技術產生了濃厚的興趣,並在高速空氣動力學和噴氣推進研究領域中突飛猛進.不久,經馮·卡門的推薦,錢學森成了加州理工學院最年輕的終身教授.
從1935年到1950年的15年間,錢學森在學術上取得了巨大的成就,生活上享有豐厚的待遇,但是他始終想念著自己的祖國.
1950年朝鮮戰爭爆發,錢學森想回國報效祖國的願望落空了,錢學森因為是中國人而遭到了迫害.直到1955年6月,錢學森寫信給當時的全國人大常委會副委員長陳叔通同志,請求黨和政府幫助他早日回到祖國的懷抱.周總理得知後非常重視此事,並指示有關人員在適當時機辦理此事.經過努力,1955年10月18日,錢學森一家人終於回到闊別20年的祖國.不久,他便被任命為中國科學院力學研究所所長.
為了提高我國的國防能力,保衛我們國家的安全,1956年10月8日,我國第一個導彈研究機構――國防部第五研究院成立,錢學森被任命為第一任院長.在錢學森的指導下,經過艱苦的努力,1960年10月,我國第一枚國產導彈終於製造成功.

3. 數學家的貢獻

「數學之神」——阿基米德

阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。
後來阿基米德成為兼數學家與力學家的偉大學者,並且享有"力學之父"的美稱。其原因在於他通過大量實驗發現了杠桿原理,又用幾何演澤方法推出許多杠桿命題,給出嚴格的證明。其中就有著名的"阿基米德原理",他在數學上也有著極為光輝燦爛的成就。盡管阿基米德流傳至今的著作共只有十來部,但多數是幾何著作,這對於推動數學的發展,起著決定性的作用。
《砂粒計算》,是專講計算方法和計算理論的一本著作。阿基米德要計算充滿宇宙大球體內的砂粒數量,他運用了很奇特的想像,建立了新的量級計數法,確定了新單位,提出了表示任何大數量的模式,這與對數運算是密切相關的。
《圓的度量》,利用圓的外切與內接96邊形,求得圓周率π為: <π< ,這是數學史上最早的,明確指出誤差限度的π值。他還證明了圓面積等於以圓周長為底、半徑為高的正三角形的面積;使用的是窮舉法。
《球與圓柱》,熟練地運用窮竭法證明了球的表面積等於球大圓面積的四倍;球的體積是一個圓錐體積的四倍,這個圓錐的底等於球的大圓,高等於球的半徑。阿基米德還指出,如果等邊圓柱中有一個內切球,則圓柱的全面積和它的體積,分別為球表面積和體積的 。在這部著作中,他還提出了著名的"阿基米德公理"。
《拋物線求積法》,研究了曲線圖形求積的問題,並用窮竭法建立了這樣的結論:"任何由直線和直角圓錐體的截面所包圍的弓形(即拋物線),其面積都是其同底同高的三角形面積的三分之四。"他還用力學權重方法再次驗證這個結論,使數學與力學成功地結合起來。
《論螺線》,是阿基米德對數學的出色貢獻。他明確了螺線的定義,以及對螺線的面積的計算方法。在同一著作中,阿基米德還導出幾何級數和算術級數求和的幾何方法。
《平面的平衡》,是關於力學的最早的科學論著,講的是確定平面圖形和立體圖形的重心問題。
《浮體》,是流體靜力學的第一部專著,阿基米德把數學推理成功地運用於分析浮體的平衡上,並用數學公式表示浮體平衡的規律。
《論錐型體與球型體》,講的是確定由拋物線和雙曲線其軸旋轉而成的錐型體體積,以及橢圓繞其長軸和短軸旋轉而成的球型體的體積。
丹麥數學史家海伯格,於1906年發現了阿基米德給厄拉托塞的信及阿基米德其它一些著作的傳抄本。通過研究發現,這些信件和傳抄本中,蘊含著微積分的思想,他所缺的是沒有極限概念,但其思想實質卻伸展到17世紀趨於成熟的無窮小分析領域里去,預告了微積分的誕生。
正因為他的傑出貢獻,美國的E.T.貝爾在《數學人物》上是這樣評價阿基米德的:任何一張開列有史以來三個最偉大的數學家的名單之中,必定會包括阿基米德,而另外兩們通常是牛頓和高斯。不過以他們的宏偉業績和所處的時代背景來比較,或拿他們影響當代和後世的深邃久遠來比較,還應首推阿基米德。

祖沖之

祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".

數學之父——塞樂斯

塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。
塞樂斯的方法既巧妙又簡單:選一個天氣晴朗的日子,在金字塔邊豎立一根小木棍,然後觀察木棍陰影的長度變化,等到陰影長度恰好等於木棍長度時,趕緊測量金字塔影的長度,因為在這一時刻,金字塔的高度也恰好與塔影長度相等。也有人說,塞樂斯是利用棍影與塔影長度的比等於棍高與塔高的比算出金字塔高度的。如果是這樣的話,就要用到三角形對應邊成比例這個數學定理。塞樂斯自誇,說是他把這種方法教給了古埃及人但事實可能正好相反,應該是埃及人早就知道了類似的方法,但他們只滿足於知道怎樣去計算,卻沒有思考為什麼這樣算就能得到正確的答案。
在塞樂斯以前,人們在認識大自然時,只滿足於對各類事物提出怎麼樣的解釋,而塞樂斯的偉大之處,在於他不僅能作出怎麼樣的解釋,而且還加上了為什麼的科學問號。古代東方人民積累的數學知識,王要是一些由經驗中總結出來的計算公式。塞樂斯認為,這樣得到的計算公式,用在某個問題里可能是正確的,用在另一個問題里就不一定正確了,只有從理論上證明它們是普遍正確的以後,才能廣泛地運用它們去解決實際問題。在人類文化發展的初期,塞樂斯自覺地提出這樣的觀點,是難能可貴的。它賦予數學以特殊的科學意義,是數學發展史上一個巨大的飛躍。所以塞樂斯素有數學之父的尊稱,原因就在這里。 塞樂斯最先證明了如下的定理:
1.圓被任一直徑二等分。
2.等腰三角形的兩底角相等。
3.兩條直線相交,對頂角相等。
4.半圓的內接三角形,一定是直角三角形。
5.如果兩個三角形有一條邊以及這條邊上的兩個角對應相等,那麼這兩個三角形全等。 這個定理也是塞樂斯最先發現並最先證明的,後人常稱之為塞樂斯定理。相傳塞樂斯證明這個定理後非常高興,宰了一頭公牛供奉神靈。後來,他還用這個定理算出了海上的船與陸地的距離。
塞樂斯對古希臘的哲學和天文學,也作出過開拓性的貢獻。歷史學家肯定地說,塞樂斯應當算是第一位天文學家,他經常仰卧觀察天上星座,探窺宇宙奧秘,他的女僕常戲稱,塞樂斯想知道遙遠的天空,卻忽略了眼前的美色。數學史家Herodotus層考據得知Hals戰後之時白天突然變成夜晚(其實是日蝕),而在此戰之前塞樂斯曾對Delians預言此事。

數學奇才——伽羅華

1832年5月30日晨,在巴黎的葛拉塞爾湖附近躺著一個昏迷的年輕人,過路的農民從槍傷判斷他是決斗後受了重傷,就把這個不知名的青年抬到醫院。第二天早晨十點鍾,他就離開了人世。數學史上最年輕、最有創造性的頭腦停止了思考。人們說,他的死使數學發展推遲了好幾十年。這個青年就是死時不滿21歲的伽羅華。
伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。
1828年,17歲的伽羅華開始研究方程論,創造了「置換群」的概念和方法,解決了幾百年來使人頭痛的方程來解決問題。伽羅華最重要的成就,是提出了「群」的概念,用群論改變了整個數學的面貌。1829年5月,伽羅華把他的成果寫成論文,遞交法國科學院,但伴隨著這篇傑作而來的是一連串的打擊和不幸。先是父親因不堪忍受教士誹謗而自殺,接著因他的答辯既簡捷又深奧令考官們不滿而未能進入著名的巴黎綜合技術學校。至於他的論文,先是被認為新概念太多又過於簡略而要求重寫;第二份推導詳盡的稿子又因審稿人病逝而下落不明;1831年1月提交的第三份論文又因評閱人不能全部看懂而被否定。
青年伽羅華一方面追求數學的真知,另一方面又獻身於追求社會正義的事業。在1831年法國的「七月革命」中,作為高等師范學校新生,伽羅華率領群眾走上街頭,抗議國王的專制統治,不幸被捕。在獄中,他染上了霍亂。即使在這樣的惡劣條件下,伽羅華仍然繼續搞他的數學研究,並且寫成了論文,准備出獄後發表。出獄不久,因為捲入一場無聊的「愛情」糾葛而決斗身亡。
他去世後16年,他留存下來的60頁手稿才得以發表,科學界才傳遍了他的名字。

歐拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞爾(Basel)城,13歲就進巴塞爾大學讀書,得到當時最有名的數學家約翰·伯努利(Johann Bernoulli,1667-1748年)的精心指導。 歐拉是科學史上最多產的一位傑出的 數學家歐拉
數學家,據統計他那不倦的一生,共寫下了886本書籍和論文,其中分析、代數、數論佔40%,幾何佔18%,物理和力學佔28%,天文學佔11%,彈道學、航海學、建築學等佔3%,彼得堡科學院為了整理他的著作,足足忙碌了四十七年。19世紀偉大數學家高斯(Gauss,1777-1855年)曾說:"研究歐拉的著作永遠是了解數學的最好方法。" 過度的工作使他得了眼病,並且不幸右眼失明了,這時他才28歲。1741年歐拉應普魯士彼德烈大帝的邀請,到柏林擔任科學院物理數學所所長,直到1766年,後來在沙皇喀德林二世的誠懇敦聘下重回彼得堡,不料沒有多久,左眼視力衰退,最後完全失明。不幸的事情接踵而來,1771年彼得堡的大火災殃及歐拉住宅,帶病而失明的64歲的歐拉被圍困在大火中,雖然他被別人從火海中救了出來,但他的書房和大量研究成果全部化為灰燼了。 沉重的打擊,仍然沒有使歐拉倒下,他發誓要把損失奪回來。在他完全失明之前,還能朦朧地看見東西,他抓緊這最後的時刻,在一塊大黑板上疾書他發現的公式,然後口述其內容,由他的學生特別是大兒子A·歐拉(數學家和物理學家)筆錄。歐拉完全失明以後,仍然以驚人的毅力與黑暗搏鬥,憑著記憶和心算進行研究,直到逝世,竟達17年之久。 歐拉的記憶力和心算能力是罕見的,他能夠復述年青時代筆記的內容,心算並不限於簡單的運算,高等數學一樣可以用心算去完成。 歐拉的風格是很高的,拉格朗從19歲起和歐拉通信,討論等周問題的一般解法,這引起變分法的誕生。等周問題是歐拉多年來苦心考慮的問題,拉格朗日的解法,博得歐拉的熱烈贊揚,歐拉充沛的精力保持到最後一刻,1783年9月18日下午,歐拉為了慶祝他計算氣球上升定律的成功,請朋友們吃飯,那時天王星剛發現不久,歐拉寫出了計算天王星軌道的要領,還和他的孫子逗笑,喝完茶後,突然疾病發作,煙斗從手中落下,口裡喃喃地說:「我死了」。歐拉終於「停止了生命和計算」。

高斯

高斯[1](Johann Carl Friedrich Gauss)(1777年4月30日—1855年2月 高斯
23日),生於不倫瑞克,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。 高斯的成就遍及數學的各個領域,在數論、非歐幾何、微分幾何、超幾何級數、復變函數論以及橢圓函數論等方面均有開創性貢獻。他十分注重數學的應用,並且在對天文學、大地測量學和磁學的研究中也偏重於用數學方法進行研究。 高斯雖然幼時家境貧困,但聰敏異常,受一貴族資助進學校受教育。1795~1798年在哥廷根大學學習,1798年轉入黑爾姆施泰特大學,翌年因證明代數基本定理獲博士學位。從1807年起擔任格丁根大學教授兼格丁根天文台台長直至逝世。 1792年,15歲的高斯進入Braunschweig學院。在那裡,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的「二次互反律」(Law of Quadratic Reciprocity)、「質數分布定理」(prime numer theorem)、及「算術幾何平均」(arithmetic-geometric mean)。 1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上極重要的結果,就是《正十七邊形尺規作圖之理論與方法》。5年以後,高斯又證明了形如"Fermat素數"邊數的正多邊形可以由尺規作出。 1855年2月23日清晨,高斯於睡夢中去世。

牛頓

艾薩克·牛頓(Isaac Newton)是英國偉大的數學家、物理學家、天文學家和自然哲學家,其研究領域包括了物理學、數學、天文學、神學、自然哲學和煉金術。牛頓的主要貢獻有發明了微積分,發現了萬有引力定律和經典力學,設計並實際製造了第一架反射式望遠鏡等等,被譽為人類歷史上最偉大,最有影響力的科學家。為了紀念牛頓在經典力學方面的傑出成就,「牛頓」後來成為衡量力的大小的物理單位。

近代科學的始祖:笛卡爾

勒奈·笛卡爾(Rene Descartes),1596年3月31日生於法國都蘭城。笛卡爾是偉大的哲學家、物理學家、數學家、生理學家。解析幾何的創始人。笛卡兒是歐洲近代資產階級哲學的奠基人之一,黑格爾稱他為「現代哲學之父」。他自成體系,熔唯物主義與唯心主義於一爐,在哲學史上產生了深遠的影響。同時,他又是一位勇於探索的科學家,他所建立的解析幾何在數學史上具有劃時代的意義。笛卡兒堪稱17世紀的歐洲哲學界和科學界最有影響的巨匠之一,被譽為「近代科學的始祖」。

萊布尼茨

戈特弗里德·威廉·凡·萊布尼茨,德國最重要的自然科學家、數學家、物理學家、歷史學家和哲學家,一位舉世罕見的科學天才,和牛頓(1643年1月4日—1727年3月31日)同為微積分的創建人。他的研究成果還遍及力學、邏輯學、化學、地理學、解剖學、動物學、植物學、氣體學、航海學、地質學、語言學、法學、哲學、歷史、外交等等,「世界上沒有兩片完全相同的樹葉」就是出自他之口,他還是最早研究中國文化和中國哲學的德國人,對豐富人類的科學知識寶庫做出了不可磨滅的貢獻。

拉格朗日
約瑟夫·拉格朗日,全名約瑟夫·路易斯·拉格朗日(Joseph-Louis Lagrange 1735~1813)法國數學家、物理學家。1736年1月25日生於義大利都靈,1813年4月10日卒於巴黎。他在數學、力學和天文學三個學科領域中都有歷史性的貢獻,其中尤以數學方面的成就最為突出。
近百餘年來,數學領域的許多新成就都可以直接或間接地溯源於拉格朗日的工作。所以他在數學史上被認為是對分析數學的發展產生全面影響的數學家之一。被譽為「歐洲最大的數學家」。

業余數學家之王——費馬

費馬一生從未受過專門的數學教育,數學研究也不過是業余之愛好。然而,在17世紀的法國還找不到哪位數學家可以與之匹敵:他是解析幾何的發明者之一;對於微積分誕生的貢獻僅次於艾薩克·牛頓、戈特弗里德·威廉·凡·萊布尼茨,概率論的主要創始人,以及獨承17世紀數論天地的人。此外,費馬對物理學也有重要貢獻。一代數學天才費馬堪稱是17世紀法國最偉大的數學家之一。

華羅庚

華羅庚(1910.11.12—1985.6.12.),世界著名數學家,中國解析數論、矩陣幾何學、典型群、自安函數論等多方面研究的創始人和開拓者。國際上以華氏命名的數學科研成果就有「華氏定理」、「懷依—華不等式」、「華氏不等式」、「普勞威爾—加當華定理」、「華氏運算元」、「華—王方法」等。

劉徽

劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產劉徽思想敏捷,方法靈活,既提倡推理又主張直觀.他是中國最早明確主張用邏輯推理的方式來論證數學命題的人.劉徽的一生是為數學刻苦探求的一生.他雖然地位低下,但人格高尚.他不是沽名釣譽的庸人,而是學而不厭的偉人,他給我們中華民族留下了寶貴的財富。

畢達哥拉斯

畢達哥拉斯(Pythagoras,572 BC?—497 BC?)古希臘數學家、哲學家。無論是解說外在物質世界,還是描寫內在精神世界,都不能沒有數學!最早悟出萬事萬物背後都有數的法則在起作用的,是生活在2500年前的畢達哥拉斯。 畢達哥拉斯出生在愛琴海中的薩摩斯島(今希臘東部小島),自幼聰明好學,曾在名師門下學習幾何學、自然科學和哲學。以後因為嚮往東方的智慧,經過萬水千山來到巴比倫、印度和埃及(有爭議),吸收了阿拉伯文明和印度文明(公元前480年)。

泰勒斯

古希臘時期的思想家、科學家、哲學家,希臘最早的哲學學派——米利都學派(也稱愛奧尼亞學派)的創始人。希臘七賢之一,西方思想史上第一個有記載有名字留下來的思想家。「科學和哲學之祖」,泰勒斯是古希臘及西方第一個自然科學家和哲學家。泰勒斯的學生有阿那克西曼德、阿那克西米尼等。
泰勒斯在數學方面劃時代的貢獻是引入了命題證明的思想。它標志著人們對客觀事物的認識從經驗上升到理論,這在數學史上是一次不尋常的飛躍。在數學中引入邏輯證明,它的重要意義在於:保證了命題的正確性;揭示各定理之間的內在聯系,使數學構成一個嚴密的體系,為進一步發展打下基礎;使數學命題具有充分的說服力,令人深信不疑。他曾發現了不少平面幾何學的定理,諸如:「直徑平分圓周」、「三角形兩等邊對等角」、「兩條直線相交、對頂角相等」、「三角形兩角及其夾邊已知,此三角形完全確定」、「半圓所對的圓周角是直角」等,這些定理雖然簡單,而且古埃及、古巴比倫人也許早已知道,但是,泰勒斯把它們整理成一般性的命題,論證了它們的嚴格性,並在實踐中廣泛應用。據說他可以利用一根標桿,測量、推算出金字塔的高度。據說,一年春天,泰勒斯來到埃及,人們想試探一下他的能力,就問他是否能解決這個難題。泰勒斯很有把握地說可以,但有一個條件——法老必須在場。第二天,法老如約而至,金字塔周圍也聚集了不少圍觀的老百姓。泰勒斯來到金字塔前,陽光把他的影子投在地面上。每過一會兒,他就讓別人測量他影子的長度,當測量值與他的身高完全吻合時,他立刻將大金字塔在地面的投影處作一記號,然後在丈量金字塔底到投影尖頂的距離。這樣,他就報出了金字塔確切的高度。在法老的請求下,他向大家講解了如何從「影長等於身長」推到「塔影等於塔高」的原理。也就是今天所說的相似三角形定理。在科學上,他倡導理性,不滿足於直觀的感性的特殊的認識,崇尚抽象的理性的一般的知識。譬如,等腰三角形的兩底角相等,並不是指我們所能畫出的、個別的等腰三角形,而應該是指「所有的」等腰三角形。這就需要論證、推理,才能確保數學命題的正確性,才能使數學具有理論上的嚴密性和應用上的廣泛性。泰勒斯的積極倡導,為畢達哥拉斯創立理性的數學奠定了基礎。

4. 偉大科學家祖沖之貢獻是什麼,祖沖之怎麼死的 39

祖沖之貢獻是什麼
祖沖之是我國南北朝時期偉大的科學家,其主要的貢獻是在數學、天文歷法和機械製造方面,雖然我們現代人來看其成就已經沒有實用價值,但是在一千五百年之前,在科學水平非常低下的時代,祖沖之取得的成就是非常偉大的,對於當時的社會生產、生活和科學研究都具有非常重要的價值。

祖沖之
首先說祖沖之在數學上的貢獻,祖沖之最大的貢獻就是將圓周率精確到了小數點之後的七位,為當時的生產生活中需要運用圓周率的地方提供了精確的圓周率。一折瘋搶,百萬禮包盡在風林購,網路搜索風林購,查看更多熱門活動。另外祖沖之還寫作了《綴術》被收錄到了《算經十書》中,並且在唐代被當做數學課本。祖沖之還與兒子一起得出了圓球的體積計算公式。
其次祖沖之在天文歷法上也取得了很大的成就,編制了《大明歷》,並且在公元510年,被當時的統治者確定為通用的歷法,祖沖之還最早引入了年差,採用了391年加144個閏月的新閏周,並且首次測出檢點月日數,回歸年日數,發明了採用圭表測算冬至的方法,算出了木星的公轉周期,這些成就都記載在了其《大明歷》中。
再者祖沖之還在機械製造方面取得了成就,一折瘋搶,百萬禮包盡在風林購,網路搜索風林購,查看更多熱門活動。設計製造了指南車、水碓磨、千里船和定時器等等。
另外祖沖之還是一個多才多藝的人,不僅僅精通音律,而且還擅長下棋,愛好文學,並且寫出了小說《述異記》。
祖沖之是我國非常偉大的科學家,是一個博學多才的人,其最重要的貢獻是圓周率,因此圓周率也被當時的人們稱為「祖率」。
祖沖之是哪裡人
祖沖之是我國偉大的科學家,也是世界上最偉大的科學家之一,祖沖之祖籍是現在的河北省淶水縣,因為南北朝時期戰亂紛紛,祖沖之的祖父祖昌為了躲避戰亂,從河北遷到了江南,祖昌曾經擔任過劉宋的「大匠卿」,管理土木工程,祖沖之的父親也是朝中的官員,可以說祖沖之的科學細胞是源自家傳基因。

5. 數學家的故事、貢獻

1.20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.
伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。
阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。

20世紀即將過去,21世紀就要到來.我們站在世紀之交的大門檻,回顧20世紀科學技術的輝煌發展時,不能不提及20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".
約翰·馮·諾依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生於匈牙利的布達佩斯,父親是一個銀行家,家境富裕,十分注意對 孩子的教育.馮·諾依曼從小聰穎過人,興趣廣泛,讀書過目不忘.據說他6歲時就能用古 希臘語同父親閑談,一生掌握了七種語言.最擅德語,可在他用德語思考種種設想時,又能以閱讀的速度譯成英語.他對讀過的書籍和論文.能很快一句不差地將內容復述出來,而且若干年之後,仍可如此.1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.1921年一1923年在蘇黎世大學學習.很快又在1926年以優異的成績獲得了布達佩斯大學數學博士學位,此時馮·諾依曼年僅22歲.1927年一1929年馮·諾依曼相繼在柏林大學和漢堡大學擔任數學講師。1930年接受了普林斯頓大學客座教授的職位,西渡美國.1931年成為該校終身教授.1933年轉到該校的高級研究所,成為最初六位教授之一,並在那裡工作了一生. 馮·諾依曼是普林斯頓大學、賓夕法尼亞大學、哈佛大學、伊斯坦堡大學、馬里蘭大學、哥倫比亞大學和慕尼黑高等技術學院等校的榮譽博士.他是美國國家科學院、秘魯國立自然科學院和義大利國立林且學院等院的院土. 1954年他任美國原子能委員會委員;1951年至1953年任美國數學會主席.
1954年夏,馮·諾依曼被使現患有癌症,1957年2月8日,在華盛頓去世,終年54歲.
馮·諾依曼在數學的諸多領域都進行了開創性工作,並作出了重大貢獻.在第二次世界大戰前,他主要從事運算元理論、鼻子理論、集合論等方面的研究.1923年關於集合論中超限序數的論文,顯示了馮·諾依曼處理集合論問題所特有的方式和風格.他把集會論加以公理化,他的公理化體系奠定了公理集合論的基礎.他從公理出發,用代數方法導出了集合論中許多重要概念、基本運算、重要定理等.特別在 1925年的一篇論文中,馮·諾依曼就指出了任何一種公理化系統中都存在著無法判定的命題.
1933年,馮·諾依曼解決了希爾伯特第5問題,即證明了局部歐幾里得緊群是李群.1934年他又把緊群理論與波爾的殆周期函數理論統一起來.他還對一般拓撲群的結構有深刻的認識,弄清了它的代數結構和拓撲結構與實數是一致的. 他對其子代數進行了開創性工作,並莫定了它的理論基礎,從而建立了運算元代數這門新的數學分支.這個分支在當代的有關數學文獻中均稱為馮·諾依曼代數.這是有限維空間中矩陣代數的自然推廣. 馮·諾依曼還創立了博奕論這一現代數學的又一重要分支. 1944年發表了奠基性的重要論文《博奕論與經濟行為》.論文中包含博奕論的純粹數學形式的闡述以及對於實際博奕應用的詳細說明.文中還包含了諸如統計理論等教學思想.馮·諾依曼在格論、連續幾何、理論物理、動力學、連續介質力學、氣象計算、原子能和經濟學等領域都作過重要的工作.
馮·諾依曼對人類的最大貢獻是對計算機科學、計算機技術和數值分析的開拓性工作.
現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接見天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進.
馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(Electronic Discrete Variable AutomaticCompUter的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力.
EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.EDVAC機還有兩個非常重大的改進,即:(1)採用了二進制,不但數據採用二進制,指令也採用二進制;(2建立了存儲程序,指令和數據便可一起放在存儲器里,並作同樣處理.簡化了計算機的結構,大大提高了計算機的速度. 1946年7,8月間,馮·諾依曼和戈爾德斯廷、勃克斯在EDVAC方案的基礎上,為普林斯頓大學高級研究所研製IAS計算機時,又提出了一個更加完善的設計報告《電子計算機邏輯設計初探》.以上兩份既有理論又有具體設計的文件,首次在全世界掀起了一股"計算機熱",它們的綜合設計思想,便是著名的"馮·諾依曼機",其中心就是有存儲程序
原則--指令和數據一起存儲.這個概念被譽為'計算機發展史上的一個里程碑".它標志著電子計算機時代的真正開始,指導著以後的計算機設計.自然一切事物總是在發展著的,隨著科學技術的進步,今天人們又認識到"馮·諾依曼機"的不足,它妨礙著計算機速度的進一步提高,而提出了"非馮·諾依曼機"的設想. 馮·諾依曼還積極參與了推廣應用計算機的工作,對如何編製程序及搞數值計算都作出了傑出的貢獻. 馮·諾依曼於1937年獲美國數學會的波策獎;1947年獲美國總統的功勛獎章、美國海軍優秀公民服務獎;1956年獲美國總統的自由獎章和愛因斯坦紀念獎以及費米獎.
馮·諾依曼逝世後,未完成的手稿於1958年以《計算機與人腦》為名出版.他的主要著作收集在六卷《馮·諾依曼全集》中,1961年出版.

6. 數學家高斯有什麼成就

高斯總結了復數的應用,並且嚴格證明了每一個n階的代數方程必有n個實數或者復數解。在他的第一本著名的著作《算術研究》中,做出了二次互反律的證明,成為數論繼續發展的重要基礎。在這部著作的第一章,導出了三角形全等定理的概念。

高斯在最小二乘法基礎上創立的測量平差理論的幫助下,測算天體的運行軌跡。他用這種方法,測算出了小行星穀神星的運行軌跡。

天賦異稟:

當高斯12歲時,已經開始懷疑元素幾何學中的基礎證明。當他16歲時,預測在歐氏幾何之外必然會產生一門完全不同的幾何學,即非歐幾里得幾何學。他導出了二項式定理的一般形式,將其成功的運用在無窮級數,並發展了數學分析的理論。

高斯的老師Bruettner與他助手 Martin Bartels 很早就認識到了高斯在數學上異乎尋常的天賦,同時Herzog Carl Wilhelm Ferdinand von Braunschweig也對這個天才兒童留下了深刻印象。

於是他們從高斯14歲起便資助其學習與生活。這也使高斯能夠在公元1792-1795年在Carolinum學院(布倫瑞克工業大學的前身)學習。18歲時,高斯轉入哥廷根大學學習。在他19歲時,第一個成功的證明了正十七邊形可以用尺規作圖。

7. 計算機的發明與數學家的關系

第一台計算機(ENIAC)於1946年2月,在美國誕生。提出程序存儲的是美國的數學家 馮^諾依曼, 在美國陸軍部的資助下,與1943年開始了ENIAC的研製,1946年完成;負責人是John W.Mauchly 和J.Presper Eckert,重30 噸,用了18000 個電子管,功率25 千瓦,主要用於計算彈道和氫彈的研製。

電子計算機的出現盡管只有60年的時間,但它的誕生卻是人類數百年努力的積累。早在17世紀,一批歐洲數學家就已開始研製計算機。1642年,為了協助擔任稅務局長的父親,年僅19歲的法國數學家帕斯卡成功地製造了第一台鍾表齒輪式機械計算機,但僅能做加減法運算。在此基礎上,德國數學家萊布尼茲於1678年發明了可做乘除運算的計算機。但這些機械計算機的性能過於落後,遠遠滿足不了人們的需要。一百多年後,英國數學家巴貝奇於1822年設計出了一種更為先進的計算機。遺憾的是,由於當時工業水平所限,巴貝奇的設計根本無法實現。

此後一百年間,人類在電磁學、電工學、電子學領域不斷取得重大進展,為電子計算機的出現奠定了堅實的基礎。二戰爆發後,美國陸軍軍械部為研製和開發新型大炮,在馬里蘭州的阿伯丁設立了「彈道研究實驗室」。極為繁重的計算任務令那裡的研究人員大傷腦筋。盡管實驗室僱用了200多名計算快手,還是捉襟見肘。他們迫切需要一種新的計算機器,以提高工作效率。就在人們一籌莫展之時,賓夕法尼亞大學莫爾電機學院的莫克利博士提出了試制第一台電子計算機的設想。他的設想吸引了陸軍軍械部,他們立即要求莫爾學院擬定一份研製計劃。

按照科學家們的估計,製造一台電子計算機所需的經費為15萬美元,這在當時是一筆巨款,因此遭到了軍方內部很多人的堅決反對。眼看研製電子計算機的計劃就要夭折,美國著名數學家維伯倫博士堅定地站到了支持者的行列里,他最終說服了美國軍方。經過兩年多的緊張研製,第一台電子計算機終於在1946年2月14日問世。而它的開發經費幾經追加,最後達到48萬美元。

8. 數學家發明了什麼(中國)

祖沖之,在世界數學史上第一次將圓周率(π)值計算到小數點後六位,即3.1415926到3.1415927之間。他提出約率22/7和密率355/113,這一密率值是世界上最早提出的,比歐洲早一千多年,所以有人主張叫它「祖率」也就是圓周率的祖先。他將自己的數學研究成果匯集成一部著作,名為《綴術》,唐朝國學曾經將此書定為數學課本。

9. 數學科學家有哪些

阿基米德(Archimedes,約前287—212),誕生於希臘敘拉古附近的一個小村莊。他出生於貴族,與敘拉古的赫農王(King Hieron)有親戚關系,家庭十分富有。阿基米德的父親是天文學家兼數學家,學識淵博,為人謙遜。阿基米德受家庭的影響,從小就對數學、天文學特別是古希臘的幾何學產生了濃厚的興趣。當他剛滿十一歲時,藉助與王室的關系,被送到埃及的亞歷山大里亞城去學習。亞歷山大位於尼羅河口,是當時文化貿易的中心之一。這里有雄偉的博物館、圖書館,而且人才薈萃,被世人譽為「智慧之都」。阿基米德在這里學習和生活了許多年,曾跟很多學者密切交往。他兼收並蓄了東方和古希臘的優秀文化遺產,在其後的科學生涯中作出了重大的貢獻。公元前二一二年,古羅馬軍隊入侵敘拉古,阿基米德被羅馬士兵殺死,終年七十五歲。阿基米德的遺體葬在西西里島,墓碑上刻著一個圓柱內切球的圖形,以紀念他在幾何學上的卓越貢獻。 阿基米德的成就

阿基米德無可爭議的是古代希臘文明所產生的最偉大的數學家及科學家,他在諸多科學領域所作出的突出貢獻,使他贏得同時代人的高度尊敬。

阿基米德求得了拋物線弓形、螺線、圓形的面積和體積以及橢球體、拋物面體等復雜幾何體的體積。在推演這些公式的過程中,他熟練的啟用了「窮竭法」,即我們今天所說的逐步近似求極限的方法,因而被公認為微積分計算的鼻祖。他還利用此法估算出∏值在 和 之間,並得出了三次方程的解法。面對古希臘繁冗的數字表示方式,阿基米德提出了一套有重要意義的按級計演算法,並利用它解決了許多數學難題。 阿基米德在力學方面的成績最為突出,這些成就主要集中在靜力學和流體靜力學方面。他在研究機械的過程中,發現了杠桿原理,並利用這一原理設計製造了許多機械。他在研究浮體的過程中發現了浮力定律,也就是有名的阿基米德定律。

阿基米德不僅是個理論家,也是個實踐家,他一生熱衷於將其科學發現應用於實踐,從而把二者結合起來。在埃及,公元前一千五百年前左右,就有人用杠桿來抬起重物,不過人們不知道它的道理。阿基米德潛心研究了這個現象並發現了杠桿原理。

赫農王對阿基米德的理論一向持半信半疑的態度。他要求阿基米德將它們變成活生生的例子以使人信服。阿基米德說:「給我一個支點,我就能移動地球。」國王說:「這恐怕實現不了,你還是來幫我拖動海岸上的那條大船吧。」這條船是赫農王為埃及國王製造的,體積大,相當重,因為不能挪動,擱淺在海岸上已經很多天了。阿基米德滿口答應下來。 阿基米德設計了一套復雜的杠桿滑輪系統安裝在船上,將繩索的一端交到赫農王手上。赫農王輕輕拉動繩索,奇跡出現了,大船緩緩地挪動起來,最終下到海里。國王驚訝之餘,十分佩服阿基米德,並派人貼出告示「今後,無論阿基米德說什麼,都要相信他。」

金冠之謎

赫農王讓金匠替他做了一頂純金的王冠,做好後,國王疑心工匠在金冠中摻了銀子,但這頂金冠確與當初交給金匠的純金一樣重,到底工匠有沒有搗鬼呢?既想檢驗真假,又不能破壞王冠,這個問題不僅難倒了國王,也使諸大臣們面面相覷。後來,國王將它交給了阿基米德。阿基米德冥思苦想出很多方法,但都失敗了。有一天,他去澡堂洗澡,他一邊坐進澡盆里,一邊看到水往外溢,同時感到身體被輕輕拖起。他突然恍然大悟,跳出澡盆,連衣服都顧不得穿就直向王宮奔去,一路大聲很著「尤里卡」, 「尤里卡」(Fureka,我知道了)原來他想到,如果王冠放入水中後,排出的水量不等於同等重量的金子排出的水量,那肯定是摻了別的金屬。這就是有名的浮力定律,既浸在液體中的物體受到向上的浮力,其大小等於物體所排出液體的重量。後來,該定律就被命名為阿基米德定律。

愛國者阿基米德

在阿基米德晚年時,羅馬軍隊入侵敘拉古,阿基米德指導同胞們製造了很多攻擊和防禦的武器。當侵略軍首領馬塞勒塞率眾攻城時,他設計的投石機把敵人打得哭爹喊娘。他製造的鐵爪式起重機,能將敵船提起並倒轉,拋至大海深處。傳說他還率領敘拉古人民製作了一面大凹鏡,將陽光聚焦在靠近的敵船上,使它們焚燒起來。羅馬士兵在這頻頻的打擊中已經心驚膽戰,草木皆兵,一見到有繩索或木頭從城裡扔出,他們就驚呼「阿基米德來了」,隨之抱頭鼠竄。羅馬軍隊被阻入城外達三年之久。最終,於公元前二一二年,羅馬人趁敘拉古城防務稍有鬆懈,大舉進攻闖入了城市。此時,阿基米德正在潛心研究一道深奧的數學題,一個羅馬士兵闖入,用腳踐踏他所畫的圖形,阿基米德憤怒地與之爭論,殘暴的士兵哪裡肯聽,只見他舉刀一揮,一位璀璨的科學巨星就此隕落。
12、華羅庚(1910年11月12日—1985年6月12日),出生於金壇金城鎮,是世界著名數學家,是中國解析數論、矩陣幾何學、典型群、自安函數論等多方面研究的創始人和開拓者。在國際上以華氏命名的數學科研成果就有「華氏定理」、「懷依—華不等式」、「華氏不等式」、「普勞威爾—加當華定理」、「華氏運算元」、「華—王方法」等。他為中國數學的發展作出了舉世矚目的貢獻。美國著名數學家貝特曼著文稱:「華羅庚是中國的愛因斯坦,足夠成為全世界所有著名科學院院士」。被列為芝加哥科學技術博物館中當今世界88位數學偉人之一。

閱讀全文

與數學科學家製造了什麼相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1301
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1026
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:979
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1653
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1060