❶ a在數學里是什麼意思
a在數學里表示一個未知數,還可以表示正方形的邊長。
未知數(unknown
number)是在解方程中有待確定的值,也用來比喻還不知道的事情。
任何字母都可以代表未知數,最常用的是x,y,z,a,b,c。像這樣有未知數的的等式,叫做數學方程。
如:二元一次方程:ax+by+c=0(a、b≠0)
另外若C為正方形的周長,a為正方形的邊長。
則有:C=4a
(1)數學中集合里的a代表什麼意思是什麼擴展閱讀:
「a」在其他領域的運用:
在國際單位制詞頭,a表示atto(10-18)
。
a有時與z在一起,表示「從頭到尾」。另外,a和b表示「起點」。
西班牙語中a為前置詞。
日語中,羅馬字A代表平假名あ或者片假名ア發漢字「啊」音。
a在網路用語中,也有「啊」的意思。
字母a的產生有可能是由於一個牛頭符號,像在古埃及文字里並很早出現在閃族的書面當中,大約在公元前1500年的西奈半島。
參考資料來源:
網路-未知數
網路-二元一次方程
網路-正方形
❷ 【數學】數集的專用符號A表示的是什麼啊
A
無實義
大寫之母表示集合
❸ A在數學里的意思,是什麼
數學中|a|表示a的絕對值。
數學中a表示一個字母,用這個字母可以代替數字。
如果a與1互為相反數,則a=-1,|-1|=1。
絕對值是指一個數在數軸上所對應點到原點的距離,用「| |」來表示。|b-a|或|a-b|表示數軸上表示a的點和表示b的點的距離。
(3)數學中集合里的a代表什麼意思是什麼擴展閱讀:
絕對值的一些性質:
(1)正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值還是0。特殊的零的絕對值既是它的本身又是它的相反數。
(2)任何有理數的絕對值都是非負數,也就是說任何有理數的絕對值都大於等於0。
(3)兩個負數比較大小,絕對值大的反而小。
(4)一對相反數的絕對值相等。
❹ R,N,N ,Q,A在數學中都代表什麼
R代表實數集 N代表自然數集 N+表示正整數集 Q表示有理數集 A可以表示任何一個集合
❺ 集合中的A是什麼意思
一般地我們用大寫字母A、B、C表示集合,集合中的每一個個體稱之為集合中的元素,一般地集合中的元素用小寫字母a,b,c,…表示.
如果元素a是集合A中元素,我們說a屬於A.
如果a不是A中元素,我們說a不屬於A.
❻ 集合A\B是什麼意思
AB={x|x∈A,且x不∈B}
A的右上角有個C,其實就是求A的補集。
屬於符號上有個橫線就是不屬於的意思。不同的教材習慣用不同的方法,這很正常。
集合是指具有某種特定性質的具體的或抽象的對象匯總而成的集體。其中,構成集合的這些對象則稱為該集合的元素 。
例如,全中國人的集合,它的元素就是每一個中國人。通常用大寫字母如A,B,S,T,...表示集合,而用小寫字母如a,b,x,y,...表示集合的元素。若x是集合S的元素,則稱x屬於S,記為x∈S。若y不是集合S的元素,則稱y不屬於S,記為y∉S。
集合中元素的數目稱為集合的基數,集合A的基數記作card(A)。當其為有限大時,集合A稱為有限集,反之則為無限集。一般的,把含有有限個元素的集合叫做有限集,含無限個元素的集合叫做無限集。
假設有實數x < y:
①[x,y] :方括弧表示包括邊界,即表示x到y之間的數以及x和y;
②(x,y):小括弧是不包括邊界,即表示大於x、小於y的數 。
特性:
確定性:給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現 。
互異性:一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
無序性:一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。
❼ 數學中A代表什麼
A 是某個指定的集合。
在題目中應該有A的說明。
❽ 數學中,集合有哪幾種字母,分別是什麼意思
數學中的集合字母和意思:
N:非負整數集合或自然數集合{0,1,2,3,……}
N*或N+:正整數集合{1,2,3,……}
Z:整數集合{……,-1,0,1,……}
P:質數集合
Q:有理數集合
Q+:正有理數集合
Q-:負有理數集合
R:實數集合
R+:正實數集合
R-:負實數集合
C:復數集合
∅:空集合(不含有任何元素的集合稱為空集合)
U:全集合(包含了某一問題中所討論的所有元素的集合)
(8)數學中集合里的a代表什麼意思是什麼擴展閱讀:
一、集合的特性:
(1)確定性
給定一個集合,任給一個元素,該元素或者屬於或者不屬於該集合,二者必居其一,不允許有模稜兩可的情況出現。
(2)互異性
一個集合中,任何兩個元素都認為是不相同的,即每個元素只能出現一次。有時需要對同一元素出現多次的情形進行刻畫,可以使用多重集,其中的元素允許出現多次。
(3)無序性
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關系,定義了序關系後,元素之間就可以按照序關系排序。但就集合本身的特性而言,元素之間沒有必然的序。(參見序理論)
(4)符號表示規則
元素則通常用a,b,c,d或x等小寫字母來表示;而集合通常用A,B,C,D或X等大寫字母來表示。當元素a屬於集合A時,記作a∈A。假如元素a不屬於A,則記作a∉A。如果A和B兩個集合各自所包含的元素完全一樣,則二者相等,寫作A=B。
二、集合的運算定律:
(1)交換律:A∩B=B∩A;A∪B=B∪A
(2)結合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C
(3)分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)
(4)對偶律:(A∪B)^C=A^C∩B^C;(A∩B)^C=A^C∪B^C
(5)同一律:A∪∅=A;A∩U=A
(6)求補律:A∪A'=U;A∩A'=∅
(7)對合律:A''=A
(8)等冪律:A∪A=A;A∩A=A
(9)零一律:A∪U=U;A∩∅=∅
(10)吸收律:A∪(A∩B)=A;A∩(A∪B)=A
(11)反演律(德·摩根律):(A∪B)'=A'∩B';(A∩B)'=A'∪B'。文字表述:1.集合A與集合B的交集的補集等於集合A的補集與集合B的補集的並集; 2.集合A與集合B的並集的補集等於集合A的補集與集合B的補集的交集。
(12)容斥原理(特殊情況):
card(A∪B)=card(A)+card(B)-card(A∩B)
card(A∪B∪C)=card(A)+card(B)+card(C)-card(A∩B)-card(B∩C)-card(C∩A)+card(A∩B∩C)
❾ 大學里高級數學A代表什麼意思
我見到過的就是表示映射時用到過。|→表示自變數到因變數的對應。例如:f是從集合A到集合B的映射,並把A中的任意一個元素a變為f(a),那麼,表達如下:f:A→B(這里只有箭頭)a|→f(a)(這里有豎線)之所以加上一條短豎線就是為了和上面的集合的關系區分開。