導航:首頁 > 數字科學 > 七年級下冊數學課怎麼講

七年級下冊數學課怎麼講

發布時間:2022-09-28 07:58:36

『壹』 人教版初一數學下冊知識點

關於人教版初一數學下冊課本中的知識點有哪些呢?學習從來無捷徑,循序漸進登高峰。這是我整理的人教版初一數學下學期的知識點,希望你能從中得到感悟!
人教版初一數學下冊知識點第五章 相交線與平行線
5.1 相交線

對頂角相等。

過一點有且只有一條直線與已知直線垂直。

連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短。本知識點可會出現的填空題中來考)。

5.2 平行線 (重點知識必考)

1、經過直線外一點,有且只有一條直線與這條直線平行。

2、 如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

3、直線平行的條件:

4、兩條直線被第三條直線所截,如果同位角相等,那麼兩直線平行 兩條直線被第三條直線所截,如果內錯角相等,那麼兩直線平行(內錯角相等,兩直線平行)。

5、兩條直線被第三條直線所截,如果同旁內角互補,那麼兩直線平行(同旁內角互補,兩直線平行)。

5.3 平行線的性質 (重點知識必考)

1、兩條平行線被第三條直線所截,同位角相等(兩直線平行,同位角相等)。

2、兩條平行線被第三條直線所截,內錯角相等(兩直線平行,內錯角相等)。

3、兩條平行線被第三條直線所截,同旁內角互補(兩直線平行,同旁內角互補)。 判斷一件事情的語句,叫做命題(本考點可能會出現在填空題中命題的改寫和選擇題中判斷命題的真假性)。

本章知識考點分析:

1、平行線的性質及判定必考內容

2、命題的真假性、將命題改寫

3、證明題(完型填空、自主證明)

4、選擇題、填空題中相關知識的考點(相交線、平行線的性質;垂線段最短、過直線外一點有且只有一條直線平行於已知直線)
人教版初一數學下冊知識點第六章 實數
6.1 平方根

若一個數的平方等a,那這個數叫做a的平方根;(即若x2=a,那麼x叫做a的平方根,其中a為非負數,即a≥0.表示方式為x2=ax=a,其中xa叫做a的算術平方根),(本知識考點重點出現在填空題、選擇題與計算題中相關的應用)。

6.2立方根

若一個數的立方等a,那麼這個數叫做a的立方根(即若x3=a,那麼x叫做a的立方根,表示方式:x3=axa立方根只有一個),(本知識考點重點出現在填空題、選擇題與計算題中相關的應用)。

6.3 實數

無限不循環小數又叫做無理數。

有理數和無理數統稱實數。

考點分析:

1、有理數與無理數在填空和選擇題可能會出現

2、一個數的平方根和一個代數式的平方根的區別(細心點呀)

3、一個正數的平方根有兩個且這兩個平方根互為相反數(即它們的和等於0)

4、唯一性:平方根等於它本身的數只有0;立方根等於它本身的數有1、-1和0共三個;算術平方根等於它本身的數有1和0兩個。
人教版初一數學下冊知識點第七章 平面直角坐標系
7.1 平面直角坐標系

含有兩個數的詞來表示一個確定的位置,其中兩個數各自表示不同的含義,我們把這種有順序的兩個數a和b組成的數對,叫做有序數對。

本章知識考點可能會出現在:

1、判斷某個點在第幾象限或某個點在第幾象限再求相應未知數的值;

2、在平面直角坐標系中將某個圖形作一次或兩次平移後求出平前或平移後各對應點的坐標。
人教版初一數學下冊知識點第八章 二元一次方程組
8.1 二元一次方程組

1、方程中含有未知數(如:x和y),並且未知數的指數(或未知項的次數)都是1,像這樣的方程叫做二元一次方程(本知識考點會出現在填空題和選擇題中,注意次數為1和系數不為0)。

2、把兩個含有相同未知數二元一次方程合在一起,就組成了一個二元一次方程組。

3、使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解(二元一次方程的解可能會出現在選擇題中驗根問題)。

4、二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解(二元一次方程組的解可能會出現在選擇題中驗根問題)。

8.2 消元

5、將未知數的個數由多化一(最終解一元一次方程然後反代解決二元三元、逐一解決的想法,叫做消元思想。

6、本章知識考點

a、計算題

b、選擇、填空

c、應用題
人教版初一數學下冊知識點第九章 不等式與不等式組
9.1 不等式

1、用小於號或大於號表示大小關系的式子,叫做不等式。

2、使不等式成立的未知數的值叫做不等式的解。

3、能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集。

4、含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。

5、不等式的性質:

不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。

不等式兩邊乘(或除以)同一個正數,不等號的方向不變。

不等式兩邊乘(或除以)同一個負數,不等號的方向改變。

三角形中任意兩邊之差小於第三邊。

三角形中任意兩邊之和大於第三邊。

9.3 一元一次不等式組

6、把兩個一元一次不等式合在起來,就組成了一個一元一次不等式組。

7、本章知識考點

a、選擇題

b、計算題)

c、簡單的一元一次不等式的應用題
人教版初一數學下冊知識點第十章 數據的收集、整理與描述
一、知識要點

1、全面調查:對全體對象的調查叫做全面調查(優點:調查結果比較精確; 缺點:費時、費力)。

2、抽樣調查:只抽取一部分對象進行調查,然後根據調查數據推斷全體對象的情況,這種調查 方法 叫做抽樣調查(優點:投入少、操作方便,而且有時只能用抽樣的方式去調查;缺點:調查結果與總體的結果可能有一些誤差)

3、總體:要考察的全體對象稱為總體.

4、個體:組成總體的每一個考察對象稱為個體.

5、樣本:被抽取的那些個體組成一個樣本.

6、樣本容量:樣本中個體的數目稱為樣本容量.

7、簡單隨機抽樣調查:抽取樣本的過程中,總體中的每一個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單的隨機抽樣。

二、統計圖的分類:

1.條形統計圖——適用於顯示不同對象之間的數量特徵,根據長方形(條形)的高度能直觀地看出被統計對象的量的大小、多少等。

2.折線統計圖——適用於顯示同一事物在不同的數量變化特徵,根據折線的變化能直觀地看出事物的變化(如上升或下降、增長快慢等)趨勢。

3.扇形統計圖——用圓代表整體,能直觀地顯示各部分(不同的統計對象)所佔的百分比,適用於顯示不同對象之間數量上的比例關系。

注意:求圓心角度數=所佔百分比×3600

4.頻數分布直方圖——對收集得到的數據,可通過“劃計”的方法整理成頻數分布表,畫出頻數分布直方圖.它①能夠顯示數據的分布情況,②易於顯示各組之間的頻數差別.製作頻數分布直方圖的步驟為 :①找出所有數據中的最大值和最小值,並算出它們的

極差極差或組距差(極差=最大值-最小值).②決定組距和組數(組數=).③列出頻組距組數數分布表.④畫頻數分布直方圖。

5.本章知識考點分析:

1、總體、樣本、個體與樣本容量會在選擇題出現

2、四類統計圖的考點中重點注意條形統計圖、扇形統計圖和直方圖的補全及頻數的補全等。

『貳』 初一數學重要知識點總結

知識是取之不盡,用之不竭的。只有限度地挖掘它,才能體會到學習的樂趣。任何一門學科的知識都需要大量的記憶和練習來鞏固。雖然辛苦,但也伴隨著快樂!下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初中 一年級數學 上冊知識點

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

2021七年級下冊數學知識點

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

初一 數學 學習 方法 技巧

1、做好預習:

單元預習時粗讀,了解近階段的學習內容,課時預習時細讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。

2、認真聽課:

聽課應包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善於聯想、類比和歸納,二是要敢於質疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。

3、認真解題:

課堂練習是最及時最直接的反饋,一定不能錯過。不要急於完成作業,要先看看你的 筆記本 ,回顧學習內容,加深理解,強化記憶。

4、及時糾錯:

課堂練習、作業、檢測,反饋後要及時查閱,分析錯題的原因,必要時強化相關計算的訓練。不明白的問題要及時向同學和老師請教了,不能將問題處於懸而未解的狀態,養成今日事今日畢的好習慣。

5、學會 總結 :

馮老師說:「數學一環扣一環,知識間的聯系非常緊密,階段性總結,不僅能夠起到復習鞏固的作用,還能找到知識間的聯系,做到瞭然於心,融會貫通。

6、學會管理:

管理好自己的筆記本,作業本,糾錯本,還有做過的所有練習卷和測試卷。馮老師稱,這可是大考復習時最有用的資料,千萬不可疏忽。

目前初中學生學習數學存在一個嚴重的問題就是不善於讀數學教材,他們往往是死記硬背。重視閱讀方法對提高初中學生的學習能力是至關重要的。新學一個章節內容,先粗粗讀一遍,即瀏覽本章節所學內容的枝幹,然後一邊讀一邊勾,粗略懂得教材的內容及其重點、難點所在,對不理解的地方打上記號。然後細細地讀,即根據每章節後的學習要求,仔細閱讀教材內容,理解數學概念、公式、法則、思想方法的實質及其因果關系,把握重點、突破難點。再次帶著研究者的態度去讀,即帶著發展的觀點研討知識的來龍去脈、結構關系、編排意圖,並歸納要點,把書讀懂,並形成知識網路,完善認識結構,當學生掌握了這三種讀法,形成習慣之後,就能從本質上改變其學習方式,提高學習效率了。

提高聽課質量要培養會聽課,聽懂課的習慣。注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最後的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由「聽會」轉變為「會聽」。

有疑必問是提高學習效率的有效辦法學習過程中,遇到疑問,抓緊時間問老師和同學,把沒有弄懂,沒有學明白的知識,最短的時間內掌握。建立自己的錯題本,經常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學習效率。


初一數學重要知識點總結相關 文章 :

★ 初一數學重要知識點總結

★ 初一數學上冊知識點歸納

★ 初一數學課本知識點總結

★ 初一數學上冊重點知識整理

★ 初一數學上冊知識點匯總歸納

★ 初一數學知識點歸納與學習方法

★ 初一數學知識點歸納梳理

★ 初一數學知識點歸納

★ 初一數學主要知識點

★ 初一數學知識點小歸納

『叄』 七年級下冊數學知識點總結歸納

這篇文章我給大家分享七年級下冊數學課本的內容,一起看一下具體的內容,僅供參考。

平面直角坐標系

1.有序數對:有順序的兩個數a與b組成的數對,叫做有序數對,記作(a,b)。

2.坐標平面內的點與有序實數對一一對應。

3.在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱直角坐標系。

4.兩條數軸分別置於水平位置與垂直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或橫軸,垂直的數軸叫做y軸或縱軸,x軸y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

5.x軸y軸將坐標平面分成了四個象限,右上方的部分叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。第一、三象限角平分線上的點橫、縱坐標相等;第二、四象限角平分線上的點橫、縱坐標互為相反數。

6.第一象限中的點的橫坐標(x)大於0,縱坐標(y)大於0

7.第二象限中的點的橫坐標(x)小於0,縱坐標(y)大於0。

8.第三象限中的點的橫坐標(x)小於0,縱坐標(y)小於0。

9.第四象限中的點的橫坐標(x)大於0,縱坐標(y)小於0。

10.x軸上的點,縱坐標都為0。

11.y軸上的點,橫坐標都為0。

12.與x軸做軸對稱變換時,x不變,y變為相反數。

13.與y軸做軸對稱變換時,y不變,x變為相反數。

14.與原點做軸對稱變換時,y與x都變為相反數。

相交線與平行線

1.相交線

在同一平面內,兩條直線的位置關系有相交和平行兩種。如果兩條直線只有一個公共點時,稱這兩條直線相交。

2.垂線

當兩條直線相交所成的四個角中,有一個角是直角時,即兩條直線互相垂直,其中一條直線叫做另一直線的垂線,交點叫垂足。

3.同位角

兩條直線a,b被第三條直線c所截(或說a,b相交c),在截線c的同旁,被截兩直線a,b的同一側的角,我們把這樣的兩個角稱為同位角。

4.內錯角

兩條直線被第三條直線所截,兩個角分別在截線的兩側,且夾在兩條被截直線之間,具有這樣位置關系的一對角叫做內錯角。

5.同旁內角

兩條直線被第三條直線所截,在截線同旁,且在被截線之內的兩角,叫做同旁內角。

6.平行線

幾何中,在同一平面內,永不相交(也永不重合)的兩條直線叫做平行線。

平行線的性質:①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。

7.平移

平移,是指在同一平面內,將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運動叫做圖形的平移運動,簡稱平移。

平方根

1.平方根的定義:如果一個數x的平方等於a,那麼這個數x就叫做a的平方根.即:如果x2=a,那麼x叫做a的平方根.

2.開平方的定義:求一個數的平方根的運算,叫做開平方.開平方運算的被開方數必須是非負數才有意義。

3.平方與開平方互為逆運算:±3的平方等於9,9的平方根是±3

4.一個正數有兩個平方根,即正數進行開平方運算有兩個結果;一個負數沒有平方根,即負數不能進行開平方運算;0的平方根是0.

5.符號:正數a的正的平方根可用。

表示,也是a的算術平方根;正數a的負的平方根可用-表示。

6.a是x的平方<—>x的平方是a;x是a的平方根<—>a的平方根是x。

代數式

1.代數式:用運算符號「+-×÷……」連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)

2.列代數式的幾個注意事項:

(1)數與字母相乘,或字母與字母相乘通常使用「·」乘,或省略不寫;

(2)數與數相乘,仍應使用「×」乘,不用「·」乘,也不能省略乘號;

(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;

(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;

(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;

(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a。

『肆』 初一下冊數學知識點總結梳理

學習必須與實干相結合。每一門科目都有自己的 學習 方法 ,但其實都是萬變不離其中的,數學其實和語文英語一樣,也是要記、要背、要練的。下面是我給大家整理的一些初一數學的知識點,希望對大家有所幫助。

初一下冊數學知識點 總結

相交線

有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

兩條直線相交有4對鄰補角。

有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。

兩條直線相交,有2對對頂角。

對頂角相等。

兩條直線相交,所成的四個角中有一個角是直角,那麼這兩條直線互相垂直。其中一條直線叫做另一條直線的.垂線,它們的交點叫做垂足。

平行線及其判定

性質1:兩直線平行,同位角相等。

性質2:兩直線平行,內錯角相等。

性質3:兩直線平行,同旁內角互補。

平行線的性質

性質1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

性質2兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

性質3兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

平移

向左平移a個單位長度,可以得到對應點(x-a,y)

向上平移b個單位長度,可以得到對應點(x,y+b)

向下平移b個單位長度,可以得到對應點(x,y-b)

初一下冊數學復習資料

概念知識

1、單項式:數字與字母的積,叫做單項式。

2、多項式:幾個單項式的和,叫做多項式。

3、整式:單項式和多項式統稱整式。

4、單項式的次數:單項式中所有字母的指數的和叫單項式的次數。

5、多項式的次數:多項式中次數的項的次數,就是這個多項式的次數。

6、餘角:兩個角的和為90度,這兩個角叫做互為餘角。

7、補角:兩個角的和為180度,這兩個角叫做互為補角。

8、對頂角:兩個角有一個公共頂點,其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。

9、同位角:在「三線八角」中,位置相同的角,就是同位角。

10、內錯角:在「三線八角」中,夾在兩直線內,位置錯開的角,就是內錯角。

11、同旁內角:在「三線八角」中,夾在兩直線內,在第三條直線同旁的角,就是同旁內角。

12、有效數字:一個近似數,從左邊第一個不為0的數開始,到精確的那位止,所有的數字都是有效數字。

13、概率:一個事件發生的可能性的大小,就是這個事件發生的概率。

14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

15、三角形的角平分線:在三角形中,一個內角的角平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。

16、三角形的中線:在三角形中連接一個頂點與它的對邊中點的線段,叫做這個三角形的中線。

17、三角形的高線:從一個三角形的一個頂點向它的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。

18、全等圖形:兩個能夠重合的圖形稱為全等圖形。

19、變數:變化的數量,就叫變數。

20、自變數:在變化的量中主動發生變化的,變叫自變數。

21、因變數:隨著自變數變化而被動發生變化的量,叫因變數。

22、軸對稱圖形:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形

叫做軸對稱圖形。

初一數學主要知識點

代數初步知識

1. 代數式:用運算符號「+ - × ÷ …… 」連接數及表示數的字母的式子稱為代數式.注意:用字母表示數有一定的限制,首先字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式。

2. 幾個重要的代數式:(m、n表示整數)

(1)a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;

(2)若a、b、c是正整數,則兩位整數是: 10a+b ,則三位整數是:100a+10b+c;

(3)若m、n是整數,則被5除商m余n的數是: 5m+n ;偶數是:2n ,奇數是:2n+1;三個連續整數是: n-1、n、n+1 ;

(4)若b>0,則正數是:a2+b ,負數是: -a2-b ,非負數是: a2 ,非正數是:-a2 .

有理數

凡能寫成q/p(p,q為整數且p≠0)形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0既不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加;

(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;

(3)一個數與0相加,仍得這個數.

有理數加法的運算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結合律:(a+b)+c=a+(b+c).

有理數減法法則:減去一個數,等於加上這個數的相反數;即a-b=a+(-b).

有理數乘法法則:

(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;

(2)任何數同零相乘都得零;

(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.

有理數乘法的運算律:

(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數。


初一數學知識點總結相關 文章 :

★ 初一數學課本知識點總結

★ 初一數學知識點歸納梳理

★ 初一數學知識點梳理歸納

★ 初一數學上冊知識點歸納

★ 初一數學知識點歸納與學習方法

★ 初一數學學習方法指導與學習方法總結

★ 初一上冊數學知識點歸納整理

★ 初一數學的知識點歸納

★ 七年級數學知識點大全

★ 初一數學知識點小歸納

『伍』 初一數學下冊知識點匯總

學習,是每個學生每天都在做的事情,學生們從學習中獲得大量的知識,下面是我整理的關於初一數學下冊知識點匯總,歡迎閱讀,希望能幫助到大家,謝謝!



初一數學下冊知識點匯總

一、三角形的基本概念:

1、三角形的概念:由不在同一條直線上的三條線段首尾順次相接所組成的圖形。

三角形ABC記作:△ABC。

2、相關概念:

三角形的邊:組成三角形的三條線段。記作:AB、AC、BC。

三角形的內角:每兩條邊所組成的角(簡稱三角形的角)。

記作:∠A、∠B、∠C

3、三角形的分類:

二、三角形三邊關系:

1、三角形任何兩邊的和大於第三邊。

幾何語言:若a、b、c為△ABC的三邊,則a+b>c,a+c>b,b+c>a.

想一想:這個在實際解題中該怎樣應用?

2、三邊關系也可表述為:三角形任何兩邊的差都小於第三邊。

三、三角形的內角和定理:

三角形三個內角的和等於1800。

幾何語言:△ABC中,∠A+∠B+∠C=1800。

四、三角形的三線:

問題1、如何作三角形的高線、角平分線、中線?

問題2、三角形的高線、角平分線、中線各有多少條,它們的交點在什麼位置?

問題3、三角形的中線有什麼應用?

初一數學下冊知識點匯總

1.已知面積和底邊長求高

回想三角形的面積公式。三角形的面積公式是A=1/2bh。

A=三角形的面積

b=三角形底邊長

h=三角形底邊的高

看一下你的三角形,確定哪些變數是已知的。在本例中,你已經知道了面積,可以將面積的數值代入公式中的A。你也已知底邊長的大小,可以將數值代入公式中的"'b'"。如果你不知道面積或底邊長,那麼你只能嘗試 其它 的 方法 了。

無論三角形是如何繪制的,三角形的任意一邊都可以作為底邊。為了更形象地展示它,你可以想像把三角形進行旋轉,直到已知邊長位於底部。

例如,如果已知三角形面積是20,一邊長為4,那麼帶入得A=20,b=4。

將數值代入公式A=1/2bh,然後進行計算。首先將底邊長(b)乘以1/2,然後用面積(A)除以它。運算得到的結果應該就是三角形的高!

本例中:20=1/2(4)h

20=2h

10=h

2.求等邊三角形的高

回憶等邊三角形的特徵。等邊三角形有三條相等大小的側邊,每個夾角都是60度。如果你將等邊三角形分成兩半,就會得到兩個相同的直角三角形。

在本例中,我們使用邊長為8的等邊三角形。

回憶勾股定理。勾股定理將兩個直角邊描述為a和b、斜邊為c:a2+b2=c2。我們可以使用這個定理求出等邊三角形的高!

將等邊三角形對半切開,並將數值代入變數a、b和c。斜邊c等於原始的斜邊長。直角邊a的長度就變成了邊長的1/2,直角邊b就是所求的三角形的高。

以邊長為8的等邊三角形為例,其中c=8,a=4。

將數值代入勾股定理的公式,求出b2。邊長c和a分別乘以自身求平方值。然後用c2減去a2。

42+b2=82

16+b2=64

b2=48

求出b2的開方值就得到三角形的高了!使用計算機的開根號計算求得Sqrt(2)。得到的結果就是等邊三角形的高!

b=Sqrt(48)=6.93

3.已知邊長和角求高

確定你已知的變數。如果你知道三角形的一個夾角和一條邊長,如果這個角是底邊和已知側邊的夾角,或是已知三條邊長,你就能求出三角形的高。我們將三角形的三邊稱之為a、b和c,三角為A、B和C。

如果你已知三角形的三邊邊長,可以使用海倫公式來求出三角形的高。

如果你已知兩條邊長和一個角,可以使用面積公式A=1/2ab(sinC)來求解。

如果你已知三條邊長也可以使用海倫公式。海倫公式分為兩部分。首先,你必須求解出變數s,它等於三角形周長的一半。你可以使用這個公式:s=(a+b+c)/2求出。

例如,三角形三邊長為a=4、b=3和c=5,故而s=(4+3+5)/2,也就是s=(12)/2。求出s=6。

然後使用海倫公式的第二部分。面積=sqr(s(s-a)(s-b)(s-c)。再將面積代入含有高的面積公式:1/2bh(或1/2ah、1/2ch)。

計算求出高。在本例中,就是1/2(3)h=sqr(6(6-4)(6-3)(6-5)。化簡得3/2h=sqr(6(2)(3)(1),也就是3/2h=sqr(36)。使用計算器計算開方,得到3/2h=6。因此,使用邊長b作為底邊,得出,三角形的高等於4。

如果已知一條邊長和一個夾角,使用兩邊和一角的面積公式來求解。用三角形面積公式1/2bh來代替上述公式中的面積。公式就變成了1/2bh=1/2ab(sinC),化簡得到h=a(sinC),這樣可以消除一條未知邊長的變數。

根據已知變數來求解等式。例如,已知a=3、C=40度,代入公式得「h=3(sin40)。使用計算器來計算等式,得到高h約等於1.928。

初一數學下冊知識點匯總

從一個角的頂點引出一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的角平分線(bisectorofangle).三角形三個角平分線的交點叫做內心.

角平分線的性質

1.角平分線上的一點到角的兩邊距離相等.2.角的內部到角的兩邊距離相等的點在角的平分線上.(逆運用)三角形頂點到其內角的角平分線交對邊的點連的一條線段,叫三角形的角平分線.三角形的角平分線不是角的平分線:一個是線段,一個是射線.三角形角平分線有個有趣的性質:三角形ABC中角A的平分線為AD,則AB:AC=BD:CD.三角形的三條角平分線相交於一點,該點為三角形的內心,且內心到三條邊的距離相等.

3.角平分線是到角兩邊距離相等的所有點的集合.

中線

連接一個頂點與它對邊中點的線段,叫做三角形的中線.中線的交點為重心,重心分中線2:1(頂點到重心:重心到對邊中點).中線:三角形中,連結一個頂點和它所對邊的中點的連線段叫做三角形的中線.中線也是線段,一個三角形有3條中線.在一個角為30°直角三角形中.60°角所對應的邊上的中線為斜邊的一半.在一個三角形中,其一短邊為斜邊的一半,且這個三角形為30°的直角三角行,那麼,60°角所對的邊上的中線在此三角形中有三個等量.

圖形變換的簡單應用

考點一、平移(3~5分)

1、定義

把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。

2、性質

(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動

(2)連接各組對應點的線段平行(或在同一直線上)且相等。

考點二、軸對稱(3~5分)

1、定義

把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那麼就說這兩個圖形關於這條直線成軸對稱,該直線叫做對稱軸。

2、性質

(1)關於某條直線對稱的兩個圖形是全等形。

(2)如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線。

(3)兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上。

3、判定

如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱。

4、軸對稱圖形

把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。

考點三、旋轉(3~8分)

1、定義

把一個圖形繞某一點O轉動一個角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動的角叫做旋轉角。

2、性質

(1)對應點到旋轉中心的距離相等。

(2)對應點與旋轉中心所連線段的夾角等於旋轉角。

考點四、中心對稱(3分)

1、定義

把一個圖形繞著某一個點旋轉180°,如果旋轉後的圖形能夠和原來的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

2、性質

(1)關於中心對稱的兩個圖形是全等形。

(2)關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。

(3)關於中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。

3、判定

如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱。

4、中心對稱圖形

把一個圖形繞某一個點旋轉180°,如果旋轉後的圖形能夠和原來的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。

考點五、坐標系中對稱點的特徵(3分)

1、關於原點對稱的點的特徵

兩個點關於原點對稱時,它們的坐標的符號相反,即點P(x,y)關於原點的對稱點為P』(-x,-y)

2、關於x軸對稱的點的特徵

兩個點關於x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關於x軸的對稱點為P』(x,-y)

3、關於y軸對稱的點的特徵

兩個點關於y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關於y軸的對稱點為P』(-x,y)

初一數學下冊知識點匯總相關 文章 :

★ 初一數學下冊基本知識點總結

★ 初一數學下冊知識點

★ 初一數學下冊知識點歸納總結

★ 初一下期數學知識點總結

★ 初一下冊數學預習方法以及知識點匯總

★ 初一數學知識點歸納與學習方法

★ 初一下冊數學重點知識點總結歸納

★ 初一數學下冊知識點總結

★ 初一下數學知識點歸納

★ 初一數學課本知識點總結

『陸』 初一下冊數學知識點總結

學習是快樂的,學習是幸福的,雖然在學習的道路上我們會遇到許多困難,但是只要努力解決這些困難後,你將會感覺到無比的輕松與快樂,下面我給大家分享一些初一下冊數學知識點,希望能夠幫助大家,歡迎閱讀!

初一下冊數學知識點1

1、整式的乘除的公式運用(六條)及逆運用(數的計算)。

(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an

(5)a0 (a≠0) (6)a-p= =

2、單項式與單項式、多項式相乘的法則。

3、整式的乘法公式(兩條)。

平方差公式:(a+b)(a-b)=

完全平方公式:(a+b)2 (a-b)2

常用公式:(x+m)(x+n)=

5、單項式除以單項式,多項式除以單項式(轉換單項式除以單項式)。

6、互為餘角和互為補角和

7、兩直線平行的條件:(角的關系線的平行) ①相等,兩直線平行;

② 相等,兩直線平行;

③ 互補,兩直線平行.

8、平行線的性質:兩直線平行。(線的平行

9、能判別變數中的自變數和因變數,會列列關系式(因變數=自變數與常量的關系)

10、變數中的圖象法,注意:(1)橫、縱坐標的對象。(2)起點、終點不同表示什麼意義

(3)圖象交點表示什麼意義(4)會求平均值。

11、三角形(1)三邊關系:角的關系)

(2)內角關系:

(3)三角形的三條重要線段:

(重點)(4)三角形全等的判別 方法 :(注意:公共邊、邊的公共部分對頂角、公共角、角的公共部分)

(5)全等三角形的性質:

(重點)(6)等腰三角形:(a)知邊求邊、周長方法

(b)知角求角方法

(c)三線合一:

(7)等邊三角形:

12、會判軸對稱圖形,會根據畫對稱圖形,(或在方格中畫)

13、常見的軸對稱圖形有:14、(1)等腰三角形: 對稱軸, 性質

(2)線段 : 對稱軸 ,性質

(3)角 : 對稱軸 ,性質

15、尺規作圖:(1) 作一線段等已知線段 (2)作角已知角 (3)作線段垂直平分線

(4)作角的平分線 (5)作三角形

16、事件的分類:,會求各種事件的概率

(1)摸球:P(摸某種球)=

(2)摸牌: P(摸某種牌)=

(3)轉盤: P(指向某個區域)=

(4)拋骰子: P(拋出某個點數)=

(5)方格(面積): P(停留某個區域)=

17、必然事件不可能事件,不確定事件

18、方法歸納:(1)求邊相等可以利用

(2)求角相等可以利用 。

(3)計算簡便可以利用 。

19、注意復習:合並同類項的法則,科學記數法,解一元一次方程,絕對值。

初一下冊數學知識點2

第六章實數

【知識點一】實數的分類

1、按定義分類: 2.按性質符號分類:

註:0既不是正數也不是負數.

【知識點二】實數的相關概念

1.相反數

(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.

(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關於原點對稱.

(3)互為相反數的兩個數之和等於0.a、b互為相反數 a+b=0.

2.絕對值 |a|≥0.

3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .

4.平方根

(1)如果一個數的平方等於a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.

(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .

5.立方根

如果x3=a,那麼x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.

【知識點三】實數與數軸

數軸定義: 規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.

【知識點四】實數大小的比較

1.對於數軸上的任意兩個點,靠右邊的點所表示的數較大.

2.正數都大於0,負數都小於0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.

3.無理數的比較大小:

【知識點五】實數的運算

1.加法

同號兩數相加,取相同的符號,並把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.

2.減法:減去一個數等於加上這個數的相反數.

3.乘法

幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.

4.除法

除以一個數,等於乘上這個數的倒數.兩個數相除,同號得正,異號得負,並把絕對值相除.0除以任何一個不等於0的數都得0.

5.乘方與開方

(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.

(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.

(3)零指數與負指數

【知識點六】有效數字和科學記數法

1.有效數字:

一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.

2.科學記數法:

把一個數用 (1≤ <10,n為整數)的形式記數的方法叫科學記數法.

初一下冊數學知識點3

多項式除以單項式

一、單項式

1、都是數字與字母的乘積的代數式叫做單項式。

2、單項式的數字因數叫做單項式的系數。

3、單項式中所有字母的指數和叫做單項式的次數。

4、單獨一個數或一個字母也是單項式。

5、只含有字母因式的單項式的系數是1或―1。

6、單獨的一個數字是單項式,它的系數是它本身。

7、單獨的一個非零常數的次數是0。

8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

9、單項式的系數包括它前面的符號。

10、單項式的系數是帶分數時,應化成假分數。

11、單項式的系數是1或―1時,通常省略數字「1」。

12、單項式的次數僅與字母有關,與單項式的系數無關。

二、多項式

1、幾個單項式的和叫做多項式。

2、多項式中的每一個單項式叫做多項式的項。

3、多項式中不含字母的項叫做常數項。

4、一個多項式有幾項,就叫做幾項式。

5、多項式的每一項都包括項前面的符號。

6、多項式沒有系數的概念,但有次數的概念。

7、多項式中次數的項的次數,叫做這個多項式的次數。

三、整式

1、單項式和多項式統稱為整式。

2、單項式或多項式都是整式。

3、整式不一定是單項式。

4、整式不一定是多項式。

5、分母中含有字母的代數式不是整式;而是今後將要學習的分式。

四、整式的加減

1、整式加減的理論根據是:去括弧法則,合並同類項法則,以及乘法分配率。

2、幾個整式相加減,關鍵是正確地運用去括弧法則,然後准確合並同類項。

3、幾個整式相加減的一般步驟:

(1)列出代數式:用括弧把每個整式括起來,再用加減號連接。

(2)按去括弧法則去括弧。

(3)合並同類項。

4、代數式求值的一般步驟:

(1)代數式化簡。

(2)代入計算

(3)對於某些特殊的代數式,可採用「整體代入」進行計算。

五、同底數冪的乘法

1、n個相同因式(或因數)a相乘,記作an,讀作a的n次方(冪),其中a為底數,n為指數,an的結果叫做冪。

2、底數相同的冪叫做同底數冪。

3、同底數冪乘法的運演算法則:同底數冪相乘,底數不變,指數相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開始底數不相同的冪的乘法,如果可以化成底數相同的冪的乘法,先化成同底數冪再運用法則。

六、冪的乘方

1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

2、冪的乘方運演算法則:冪的乘方,底數不變,指數相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數是乘積形式的乘方。

2、積的乘方運演算法則:積的乘方,等於把積中的每個因式分別乘方,然後把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種「冪的運演算法則」異同點

1、共同點:

(1)法則中的底數不變,只對指數做運算。

(2)法則中的底數(不為零)和指數具有普遍性,即可以是數,也可以是式(單項式或多項式)。

(3)對於含有3個或3個以上的運算,法則仍然成立。

2、不同點:

(1)同底數冪相乘是指數相加。

(2)冪的乘方是指數相乘。

(3)積的乘方是每個因式分別乘方,再將結果相乘。

九、同底數冪的除法

1、同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數冪

1、零指數冪的意義:任何不等於0的數的0次冪都等於1,即:a0=1(a≠0)。

初一下冊數學知識點4

1.有理數:

(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

(2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.

3.相反數:

(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

4.絕對值:

(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

(2)絕對值可表示為:

絕對值的問題經常分類討論;

(3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0.

初一下冊數學知識點5

二元一次方程組

1.二元一次方程:含有兩個未知數,並且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

4.二元一次方程組的解法:

(1)代入消元法;(2)加減消元法;

(3)注意:判斷如何解簡單是關鍵.

※5.一次方程組的應用:

(1)對於一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

(2)對於方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

(3)對於方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

一元一次不等式(組)

1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

2.不等式的基本性質:

不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

4.一元一次不等式:只含有一個未知數,並且未知數的次數是1,系數不等於零的不等式,叫做一元一次不等式;它的標准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.


初一下冊數學知識點 總結 相關 文章 :

★ 初一數學下冊知識點

★ 初一數學下冊基本知識點總結

★ 初一數學課本知識點總結

★ 初一下期數學知識點總結

★ 初一數學知識點小歸納

★ 人教版初一數學下冊知識點復習總結備戰中考

★ 初一數學知識點歸納

★ 北師大版初一下冊數學知識點復習總結

★ 初一數學知識點歸納與學習方法

初中數學下冊知識歸納

『柒』 初一數學下冊知識點

數學是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。下面是我為大家整理的初一數學下冊知識點,希望能幫助到大家。

目錄

初一數學下冊知識點

初一數學下冊知識點:實數

初一數學學習方法

初一數學下冊知識點

相交線與平行線

一、知識網路結構

二、知識要點

1、在同一平面內,兩條直線的位置關系有 兩 種: 相交 和 平行 , 垂直 是相交的一種特殊情況。

2、在同一平面內,不相交的兩條直線叫 平行線 。如果兩條直線只有 一個 公共點,稱這兩條直線相交;如果兩條直線 沒有 公共點,稱這兩條直線平行。

3、兩條直線相交所構成的四個角中,有 公共頂點 且有 一條公共邊 的兩個角是

鄰補角。鄰補角的性質: 鄰補角互補 。如圖1所示, 與 互為鄰補角,

與 互為鄰補角。 + = 180°; + = 180°; + = 180°;

+ = 180°。

4、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質:對頂角相等。如圖1所示, 與 互為對頂角。 = ;

= 。

5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,

其中一條叫做另一條的垂線。如圖2所示,當 = 90°時, ⊥ 。

垂線的性質:

性質1:過一點有且只有一條直線與已知直線垂直。

性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。

性質3:如圖2所示,當 a ⊥ b 時, = = = = 90°。

點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。

6、同位角、內錯角、同旁內角基本特徵:

①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側 ,這樣

的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;

與 是同位角; 與 是同位角; 與 是同位角。

②在兩條直線(被截線) 之間 ,並且在第三條直線(截線)的 兩側 ,這樣的兩個角叫 內錯角 。圖3中,共有 對內錯角: 與 是內錯角; 與 是內錯角。

③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內角 。圖3中,共有 對同旁內角: 與 是同旁內角; 與 是同旁內角。

7、平行公理:經過直線外一點有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。

平行線的性質:

性質1:兩直線平行,同位角相等。如圖4所示,如果a∥b,

則 = ; = ; = ; = 。

性質2:兩直線平行,內錯角相等。如圖4所示,如果a∥b,則 = ; = 。

性質3:兩直線平行,同旁內角互補。如圖4所示,如果a∥b,則 + = 180°;

+ = 180°。

性質4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。

8、平行線的判定:

判定1:同位角相等,兩直線平行。如圖5所示,如果 =

或 = 或 = 或 = ,則a∥b。

判定2:內錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。

判定3:同旁內角互補,兩直線平行。如圖5所示,如果 + = 180°;

+ = 180°,則a∥b。

判定4:平行於同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。

9、判斷一件事情的語句叫命題。命題由 題設 和 結論 兩部分組成,有 真命題 和 假命題 之分。如果題設成立,那麼結論 一定 成立,這樣的命題叫 真命題 ;如果題設成立,那麼結論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經過推理證實的,這樣的真命題叫定理,它可以作為繼續推理的依據。

10、平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。

平移後,新圖形與原圖形的 形狀 和 大小 完全相同。平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

平移性質:平移前後兩個圖形中①對應點的連線平行且相等;②對應線段相等;③對應角相等。


初一數學下冊知識點:實數

【知識點一】實數的分類

1、按定義分類: 2.按性質符號分類:

註:0既不是正數也不是負數.

【知識點二】實數的相關概念

1.相反數

(1)代數意義:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.

(2)幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關於原點對稱.

(3)互為相反數的兩個數之和等於0.a、b互為相反數 a+b=0.

2.絕對值 |a|≥0.

3.倒數 (1)0沒有倒數 (2)乘積是1的兩個數互為倒數.a、b互為倒數 .

4.平方根

(1)如果一個數的平方等於a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.

(2)一個正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作 .

5.立方根

如果x3=a,那麼x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.

【知識點三】實數與數軸

數軸定義: 規定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.

【知識點四】實數大小的比較

1.對於數軸上的任意兩個點,靠右邊的點所表示的數較大.

2.正數都大於0,負數都小於0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.

3.無理數的比較大小:

【知識點五】實數的運算

1.加法

同號兩數相加,取相同的符號,並把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,並用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數.

2.減法:減去一個數等於加上這個數的相反數.

3.乘法

幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0.

4.除法

除以一個數,等於乘上這個數的倒數.兩個數相除,同號得正,異號得負,並把絕對值相除.0除以任何一個不等於0的數都得0.

5.乘方與開方

(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數.

(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方.

(3)零指數與負指數

【知識點六】有效數字和科學記數法

1.有效數字:

一個近似數,從左邊第一個不是0的數字起,到精確到的數位為止,所有的數字,都叫做這個近似數的有效數字.

2.科學記數法:

把一個數用 (1≤ <10,n為整數)的形式記數的 方法 叫科學記數法.

平面直角坐標系

一、知識網路結構

二、知識要點

1、有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b) 。

2、平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。

3、橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。

4、坐標:對於平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標,記作P(a,b)。

5、象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。

6、各象限點的坐標特點①第一象限的點:橫坐標 0,縱坐標 0;②第二象限的點:橫坐標 0,縱坐標 0;③第三象限的點:橫坐標 0,縱坐標 0;④第四象限的點:橫坐標 0,縱坐標 0。

7、坐標軸上點的坐標特點①x軸正半軸上的點:橫坐標 0,縱坐標 0;②x軸負半軸上的點:橫坐標 0,縱坐標 0;③y軸正半軸上的點:橫坐標 0,縱坐標 0;④y軸負半軸上的點:橫坐

標 0,縱坐標 0;⑤坐標原點:橫坐標 0,縱坐標 0。(填「>」、「<」或「=」)

8、點P(a,b)到x軸的距離是 |b| ,到y軸的距離是 |a| 。

9、對稱點的坐標特點①關於x軸對稱的兩個點,橫坐標 相等,縱坐標 互為相反數;②關於y軸對稱的兩個點,縱坐標相等,橫坐標互為相反數;③關於原點對稱的兩個點,橫坐標、縱坐標分別互為相反數。

10、點P(2,3) 到x軸的距離是 ; 到y軸的距離是 ; 點P(2,3) 關於x軸對稱的點坐標為( , );點P(2,3) 關於y軸對稱的點坐標為( , )。

11、如果兩個點的 橫坐標 相同,則過這兩點的直線與y軸平行、與x軸垂直 ;如果兩點的 縱坐標相同,則過這兩點的直線與x軸平行、與y軸垂直 。如果點P(2,3)、Q(2,6),這兩點橫坐標相同,則PQ∥y軸,PQ⊥x軸;如果點P(-1,2)、Q(4,2),這兩點縱坐標相同,則PQ∥x軸,PQ⊥y軸。

12、平行於x軸的直線上的點的縱坐標相同;平行於y軸的直線上的點的橫坐標相同;在一、三象限角平分線上的點的橫坐標與縱坐標相同;在二、四象限角平分線上的點的橫坐標與縱坐標互為相反數。如果點P(a,b) 在一、三象限角平分線上,則P點的橫坐標與縱坐標相同,即 a = b ;如果點P(a,b) 在二、四象限角平分線上,則P點的橫坐標與縱坐標互為相反數,即 a = -b 。

13、表示一個點(或物體)的位置的方法:一是准確恰當地建立平面直角坐標系;二是正確寫出物體或某地所在的點的坐標。選擇的坐標原點不同,建立的平面直角坐標系也不同,得到的同一個點的坐標也不同。

14、圖形的平移可以轉化為點的平移。坐標平移規律:①左右平移時,橫坐標進行加減,縱坐標不變;②上下平移時,橫坐標不變,縱坐標進行加減;③坐標進行加減時,按「左減右加、上加下減」的規律進行。如將點P(2,3)向左平移2個單位後得到的點的坐標為( , );將點P(2,3)向右平移2個單位後得到的點的坐標為( , );將點P(2,3)向上平移2個單位後得到的點的坐標為( , );將點P(2,3)向下平移2個單位後得到的點的坐標為( , );將點P(2,3)先向左平移3個單位後再向上平移5個單位後得到的點的坐標為( , );將點P(2,3)先向左平移3個單位後再向下平移5個單位後得到的點的坐標為( , );將點P(2,3)先向右平移3個單位後再向上平移5個單位後得到的點的坐標為( , );將點P(2,3)先向右平移3個單位後再向下平移5個單位後得到的點的坐標為( , )。


初一 數學 學習方法

一、多看

主要是指認真閱讀數學課本。許多同學沒有養成這個習慣,把課本當成練習冊;也有一部分同學不知怎麼閱讀,這是他們學不好數學的主要原因之一。一般地,閱讀可以分以下三個層次:

1. 課前預習 閱讀。預習課文時,要准備一張紙、一支筆,將課本中的關鍵詞語、產生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助於理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。

2.課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批註,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。

3.課後復習閱讀。課後復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統化,加深和鞏固對課堂學習內容的理解和記憶。一節課後,必須先閱讀課本,然後再做作業;一個單元後,應全面閱讀課本,對本單元的內容前後聯系起來,進行綜合概括,寫出知識小結,進行查缺補漏。

二、多想

主要是指養成思考的習慣,學會思考的方法。獨立思考是學習數學必須具備的能力。

同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數學知識,歸納 總結 數學規律,靈活解決數學問題,這樣才能把老師講的、課本上寫的變成自己的知識。

三、多做

主要是指做習題,學數學一定要做習題,並且應該適當地多做些。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發靈活應用知識和培養獨立思考的能力;第三是融會貫通,把不同內容的數學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什麼方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。

四、多問

是指在學習過程中要善於發現和提出疑問,這是衡量一個學生學習是否有進步的重要標志之一。有 經驗 的老師認為:能夠發現和提出疑問的學生才更有希望獲得學習的成功;反之,那種一問三不知,自己又提不出任何問題的學生,是無法學好數學的。那麼,怎樣才能發現和提出問題呢?第一,要深入觀察,逐步培養自己敏銳的觀察能力;第二,要肯動腦筋,不願意動腦筋,不去思考,當然發現不了什麼問題,也提不出疑問。發現問題後,經過自己的獨立思考,問題仍得不到解決時,應當虛心向別人請教,向老師、同學、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善於提出問題、虛心學習的人,才有可能成為真正的學習上的強者。


初一數學下冊知識點相關 文章 :

★ 數學七年級下冊知識點

★ 七年級下冊數學知識點

★ 七年級數學下冊復習知識點

★ 初一下冊數學知識點歸納總結

★ 初一數學下冊單元知識點總結

★ 七年級下冊數學的知識點

★ 初一下冊數學重點知識點總結歸納

★ 新版初一數學下冊知識點歸納

★ 初一數學下冊知識點歸納

★ 七年級下數學知識點總結

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm..com/hm.js?"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

『捌』 初一下冊數學知識點歸納總結

初一數學的知識點並不是很難,但是也不能掉以輕心,對所學的知識點進行歸納總結還是很有必要的。以下是我分享給大家的初一下冊數學知識點歸納,希望可以幫到你!
初一下冊數學 知識點歸納
一、整式

單項式和多項式統稱整式。

a)由數與字母的積組成的代數式叫做單項式。單獨一個數或字母也是單項式。

b)單項式的系數是這個單項式的數字因數,作為單項式的系數,必須連同數字前面的性質符號,如果一個單項式只是字母的積,並非沒有系數,系數為1或-1。

c)一個單項式中,所有字母的指數和叫做這個單項式的次數(注意:常數項的單項式次數為0)

a)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中,不含字母的項叫做常數項。一個多項式中,次數最高項的次數,叫做這個多項式的次數.

b)單項式和多項式都有次數,含有字母的單項式有系數,多項式沒有系數。多項式的每一項都是單項式,一個多項式的項數就是這個多項式作為加數的單項式的個數。多項式中每一項都有它們各自的次數,但是它們的次數不可能都作是為這個多項式的次數,一個多項式的次數只有一個,它是所含各項的次數中最高的那一項次數.

a)整式的加減實質上就是去括弧後,合並同類項,運算結果是一個多項式或是單項式.

b)括弧前面是“-”號,去括弧時,括弧內各項要變號,一個數與多項式相乘時,這個數與括弧內各項都要相乘。

二、同底數冪的乘法

(m,n都是整數)是冪的運算中最基本的法則,在應用法則運算時,要注意以下幾點:

a)法則使用的前提條件是:冪的底數相同而且是相乘時,底數a可以是一個具體的數字式字母,也可以是一個單項或多項式;

b) 指數是1時,不要誤以為沒有指數;

c)不要將同底數冪的乘法與整式的加法相混淆,對乘法,只要底數相同指數就可以相加;而對於加法,不僅底數相同,還要求指數相同才能相加;

d)當三個或三個以上同底數冪相乘時,法則可推廣為(其中m、n、p均為整數);

e)公式還可以逆用:(m、n均為整數)

a)冪的乘方法則:(m,n都是整數數)是冪的乘法法則為基礎推導出來的,但兩者不能混淆。b)(m,n都為整數)

c) 底數有負號時,運算時要注意,底數是a與(-a)時不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3

d)底數有時形式不同,但可以化成相同。

e) 要注意區別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。

f) 積的乘方法則:積的乘方,等於把積每一個因式分別乘方,再把所得的冪相乘,即(ab)n=anbn (n為正整數)。

g) 冪的乘方與積乘方法則均可逆向運用。

三、同底數冪的除法

a)同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即(a≠0).

b)在應用時需要注意以下幾點:

1) 法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a0。

2)任何不等於0的數的0次冪等於1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),則00無意義。

c)任何不等於0的數的-p次冪(p是正整數),等於這個數的p的次冪的倒數,即( a≠0,p是正整數),而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的,當a<0時,a-p的值可能是正也可能是負的,如, d)運算要注意運算順序。

四、整式的乘法

單項式相乘,它們的系數、相同字母分別相乘,對於只在一個單項式里含有的字母,連同它的指數作為積的一個因式。

單項式乘法法則在運用時要注意以下幾點:

a)積的系數等於各因式系數積,先確定符號,再計算絕對值。這時容易出現的錯誤的是,將系數相乘與指數相加混淆;

b)相同字母相乘,運用同底數冪的乘法法則;

c)只在一個單項式里含有的字母,要連同它的指數作為積的一個因式;

d)單項式乘法法則對於三個以上的單項式相乘同樣適用;

e)單項式乘以單項式,結果仍是一個單項式。

單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。單項式與多項式相乘時要注意以下幾點:

a)單項式與多項式相乘,積是一個多項式,其項數與多項式的項數相同;

b)運算時要注意積的符號,多項式的每一項都包括它前面的符號;

c) 在混合運算時,要注意運算順序。

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項相乘,再把所得的積相加。

多項式與多項式相乘時要注意以下幾點:

a)多項式與多項式相乘要防止漏項,檢查的方法是:在沒有合並同類項之前,積的項數應等於原兩個多項式項數的積;

b)多項式相乘的結果應注意合並同類項;

c)對含有同一個字母的一次項系數是1的兩個一次二項式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項系數為1,一次項系數等於兩個因式中常數項的和,常數項是兩個因式中常數項的積。對於一次項系數不為1的兩個一次二項式(mx+a)和(nx+b)相乘可以得到。

五、平方差公式

兩數和與這兩數差的積,等於它們的平方差,即。

其結構特徵是:

a)公式左邊是兩個二項式相乘,兩個二項式中第一項相同,第二項互為相反數;

b) 公式右邊是兩項的平方差,即相同項的平方與相反項的平方之差。

六、完全平方公式

兩數和(或差)的平方,等於它們的平方和,加上(或減去)它們的積的2倍,即;

口訣:首平方,尾平方,2倍乘積在中央;

a)公式左邊是二項式的完全平方;

b)公式右邊共有三項,是二項式中二項的平方和,再加上或減去這兩項乘積的2倍。

c)在運用完全平方公式時,要注意公式右邊中間項的符號,以及避免出現這樣的錯誤。

七、整式的除法

單項式相除,把系數、同底數冪分別相除,作為商的因式,對於只在被除式里含有的字母,則連同它的指數作為商的一個因式;

多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加,其特點是把多項式除以單項式轉化成單項式除以單項式,所得商的項數與原多項式的項數相同,另外還要特別注意符號。
初一數學學習方法指導
一、數學學習方法的重要性

前蘇聯教學論專家巴班斯基曾指出的:" 教學方法是由學習方式和教學方式運用的協調一致的效果決定的。" 從國際教育改革和發展趨勢來看,教會學生學習、教會學生積極主動發展是世界各國的共同目標。在人類進入信息時代的新世紀,人們將面臨知識不斷更新,學習成為貫穿人的一生的事情,一方面不僅要關注學生素質發展的全面完善以及個性的健康和諧發展,另一方面還要關注到學生的學習和發展,更為重要的是要讓學生願意學習,學會學習,掌握學習的方法、技能,能夠積極主動的學習。

二、數學學習的常用方法

我國要求尊重學生的學習主體地位,要真正把學生作為學習的主人翁看待;關注學生的學習過程,倡導學生主動參與,使學生在自主、合作、探究的方式中積極主動地進行學習活動;培養學生的創新精神與實踐能力。特別是對於初中一年級,要為學生學習數學知識打下良好基礎,數學學習方法的學習顯得更具有時代性和前瞻性。數學學習方法指導是一個由非智力因素、學習方法、學習習慣、學習能力多元組成的統一整體,因此,應以系統整體的觀點進行學法指導,目的在於使學生加強學習修養,激發學習動機;指導學生掌握科學的學習方法;指導學生學習數學的良好習慣,進而提高學習能力及效果。

(1 )正確認識數學學習方法的重要性。

啟發學生認識到科學的學習方法是提高學習成績的重要因素,並把這一思想貫穿於整個教學過程之中。可以通過講述數學名人的故事,激勵學生,我結合《數軸》一課的內容,在班上講述笛卡爾在病床上發現數軸,最終開創了用數軸表示有理數的故事。讓孩子懂得了獲得數學知識,學習數學的方法才是關鍵。在班級中,我多次召開數學學法研討會,讓學習成績優秀的同學介紹經驗,開辟黑板報專欄進行學習方法的討論。

(2 )形成良好的非智力因素

非智力因素是學習方法指導得以進行的基礎。初一學生好奇心強烈,但學習的持久性不長,如果在教學中具有積極的非智力因素基礎,可以使學生學習的積極性長盛不衰。< 1> 激發學習動機,即激勵學生主體的內部心理機制,調動其全部心理活動的積極性。比如在學習《概率初步認識》一課中,教學引入時,我根據學生喜歡玩撲克牌的愛好,和他們來講撲克游戲,引發學生的興趣,使學生產生強烈的求知慾。有的課教師還可以運用形象生動、貼近學生、幽默風趣的語言來感染學生。

< 2> 鍛煉學習數學的意志。心理學家認為:意志在克服困難中表現,也在經受挫折、克服困難中發展,困難是培養學生意志力的" 磨刀石".我認為應該以練習為主,在初一的數學練習中,要經常給學生安排適當難度的練習題,讓他們付出一定的努力,在獨立思考中解決問題,但注意難度必須適當,因為若太難會挫傷學生的信心,太易又不能鍛煉學生的意志。

< 3> 養成良好的數學學習習慣。有的孩子習慣" 悶" 題目,盲目的以為多做題就是學好數學的方法,這個不良的學習習慣,在平時的教學中老師一定要注意糾正。

(3 )指導學生掌握科學的數學學習方法。

①合理滲透。在教學中要挖掘教材內容中的學法因素,把學法指導滲透到教學過程中。例如我在進行《完全平方公式》教學時,很多孩子老是漏掉系數2 乘以首尾兩項,於是我就給他們編了首順口溜," 頭平方,尾平方,頭尾組合2 拉走" ,這樣選取生動、有趣的記憶法來指導學生學習,有利於突破知識的難點。②隨機點撥。無論是在授課階段還是在學生練習階段,教師要有強烈的學法指導意識,抓住最佳契機,畫龍點睛地點撥學習方法。

③及時總結。在傳授知識、訓練技能時,教師要根據教學實際,及時引導學生把所學的知識加以總結。我在完成一個單元的學習之後都讓孩子們養成自己總結的習慣,使單元重點系統化,並找出規律性的東西。

④遷移訓練。總結所學內容,進行學法的理性反思,強化並進行遷移運用,在訓練中掌握學法。

(4 )開設數學學法指導課,並列入數學教學計劃。

在我所任教的初一年級里,我每兩周一課時給學生上數學學法的指導課。結合正反例子講,結合數學學科的具體知識和學法特點講,結合學生的思想實際講,邊講邊示範邊訓練。

數學學習能力包括觀察力、記憶力、思維力、想像力、注意力以及自學、交往、表達等能力。學習活動過程是一個需要深入探究的過程。在這一過程中,教師要挖掘教材因素,注意疏通信息渠道,善於引導學生積極思維,使學生不斷發現問題或提出假設,檢驗解決問題,從而形成勇於鑽研、不斷探究的習慣,架設起學生由知識向能力、能力與知識相融合的橋梁。總之,初一是學生知識奠定的根基時期,對學生數學學習方法的指導,要力求做到轉變思想與傳授方法結合,學法與教法結合,課堂與課後結合,教師指導與學生探求結合,建立縱橫交錯的學法指導網路,促進學生掌握正確的學習方法。為日後進一步進行數學學習打好良好的基礎。
初一數學學習攻略
1.讀的方法。同學們往往不善於讀數學書,在讀的過程中,易沿用死記硬背的方法。那麼如何有效地讀數學書呢?平時應做到:

一是粗讀。先粗略瀏覽教材的枝幹,並能粗略掌握本章節知識的概貌,重、難點;

二是細讀。對重要的概念、性質、判定、公式、法則、思想方法等反復閱讀、體會、思考,領會其實質及其因果關系,並在不理解的地方作上記號(以便求教);

三是研讀。要研究知識間的內在聯系,研討書本知識安排意圖,並對知識進行分析、歸納、總結,以形成知識體系,完善認知結構。

讀書,先求讀懂,再求讀透,使得自學能力和實際應用能力得到很好的訓練。

2.聽的方法。“聽”是直接用感官去接受知識,而初中同學往往對課程增多、課堂學習量加大不適應,顧此失彼,精力分散,使聽課效果下降。因此應在聽德智課程時注意做到:

(1)聽每節課的學習要求;

(2)聽知識的引入和形成過程;

(3)聽懂教學中的重、難點(尤其是預習中不理解的或有疑問的知識點);

(4)聽例題關鍵部分的提示及應用的數學思想方法;

(5)做好課後小結。

3.思考的方法。“思”指同學的思維。數學是思維的體操,學習離不開思維,數學更離不開思維活動,善於思考則學得活,效率高;不善於思考則學得死,效果差。可見,科學的思維方法是掌握好知識的前提。七年級學生的思維往往還停留在小學的思維中,思維狹窄。因此在學習中要做到:

(1)敢於思考、勤於思考、隨讀隨思、隨聽隨思。在看書、聽講、練習時要多思考;

(2)善於思考。會抓住問題的關鍵、知識的重點進行思考;

(3)反思。要善於從回顧解題策略、方法的優劣進行分析、歸納、總結。

4.問的方法。孔子曰:“敏而好學,不恥不問。”愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學科的學習無不是從問題開始的。但七年級同學往往不善於問,不懂得如何問。因此,同學在平時學習中應掌握問問題的一些方法,主要有:

(1)追問法。即在某個問題得到回答後,順其思路對問題緊追不舍,刨根到底繼續發問;

(2)反問法。根據教材和教師所講的內容,從相反的方向把問題提出來;

(3)類比提問法。據某些相似的概念、定理、性質等的相互關系,通過比較和類推提出問題;

(4)聯系實際提問法。結合某些知識點,通過對實際生活中一些現象的觀察和分析提出問題。

此外,在提問時不僅要問其然,還要問其所以然。

5.記筆記的方法。很大一部分學生認為數學沒有筆記可記,有記筆記的學生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此,學生作筆記時應做到以下幾點:

(1)在“聽”,“思”中有選擇地記錄;

(2)記學習內容的要點,記自己有疑問的疑點,記書中沒有的知識及教師補充的知識點;

(3)記解題思路、思想方法;

(4)記課堂小結。並使學生明確筆記是為補充“聽”“思”的不足,是為最後復習准備的,好的筆記能使復習達到事倍功半的效果。

正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐。所以暑期期間每天給自己一些時間學習數學是很有必要的。

猜你喜歡:

1. 7年級上冊數學知識點歸納

2. 初一數學上冊知識點匯總整理

3. 初中數學知識點全總結

4. 初一數學知識點整理

5. 初一數學重點知識總結歸納

『玖』 人教版初一數學下冊知識點復習總結備戰中考

學習對每個人的重要性大家都知道,我們都知道學習代表未來,成績代表過去,學習成就人生,學習改變命運。那麼你們知道關於人教版初一數學下冊知識點復習 總結 備戰中考內容還有哪些呢?下面是我為大家准備2021人教版初一數學下冊知識點復習總結備戰中考,歡迎參閱。

人教版初一數學下冊知識點復習總結章一

篇一:直線、射線、線段

(1)直線、射線、線段的表示 方法

①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB.

②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.

③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。

(2)點與直線的位置關系:

①點經過直線,說明點在直線上;

②點不經過直線,說明點在直線外。

二:兩點間的距離

(1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。

(2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離。

三:正方體

(1)對於此類問題一般方法是用紙按圖的樣子折疊後可以解決,或是在對展開圖理解的基礎上直接想像.

(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.

(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況後再認真確定哪兩個面的對面.

四:一元一次方程的解

定義:使一元一次方程左右兩邊相等的未知數的值叫做一元一次方程的解。

把方程的解代入原方程,等式左右兩邊相等。

13、解一元一次方程:

1.解一元一次方程的一般步驟

去分母、去括弧、移項、合並同類項、系數化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

2.解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括弧,且括弧外的項在乘括弧內各項後能消去分母,就先去括弧。

3.在解類似於「ax+bx=c」的方程時,將方程左邊,按合並同類項的方法並為一項即(a+b)x=c。

使方程逐漸轉化為ax=b的最簡形式體現化歸思想。

將ax=b系數化為1時,要准確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數時;二要准確判斷符號,a、b同號x為正,a、b異號x為負。

14、一元一次方程的應用

1.一元一次方程解應用題的類型

(1)探索規律型問題;

(2)數字問題;

(3)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

(4)工程問題(①工作量=人均效率×人數×時間;②如果一件工作分幾個階段完成,那麼各階段的工作量的和=工作總量);

(5)行程問題(路程=速度×時間);

(6)等值變換問題;

(7)和,差,倍,分問題;

(8)分配問題;

(9)比賽積分問題;

(10)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度).

2.利用方程解決實際問題的基本思路:

首先審題找出題中的未知量和所有的已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然後用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

列一元一次方程解應用題的五個步驟

(1)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.

(2)設:設未知數(x),根據實際情況,可設直接未知數(問什麼設什麼),也可設間接未知數.

(3)列:根據等量關系列出方程.

(4)解:解方程,求得未知數的值.

(5)答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.

人教版初一數學下冊知識點復習總結章二

一、定義與定義式:

自變數x和因變數y有如下關系:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。即:y=kx (k為常數,k≠0)

二、一次函數的性質:

1.y的變化值與對應的x的變化值成正比例,比值為k 即:y=kx+b (k為任意不為零的實數 b取任何實數)

2.當x=0時,b為函數在y軸上的截距。

三、一次函數的圖像及性質:

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,並連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2.性質:(1)在一次函數上的任意一點p(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=o時,直線通過原點o(0,0)表示的是正比例函數的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。


人教版初一數學下冊知識點復習總結備戰中考相關 文章 :

★ 初一數學下冊基本知識點總結

★ 初一數學下冊知識點

★ 初一下冊數學知識點總結歸納

★ 初一下冊數學重要知識點

★ 初中七年級數學知識點歸納整理

★ 初一數學復習三篇

★ 初一數學課本知識點總結

★ 初中數學知識點總結歸納

★ 初中數學知識點總結梳理2020

★ 初一數學知識點歸納與學習方法

『拾』 七年級下冊數學第二單元知識點整理歸納

七年級下冊數學第二單元知識點整理歸納1

相交線與平行線

1.同一平面內,兩直線不平行就相交。

2.兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。

3.垂直定義:兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。

4.垂直三要素:垂直關系,垂直記號,垂足

5.垂直公理:過一點有且只有一條直線與已知直線垂直。

6.垂線段最短;

7.點到直線的距離:直線外一點到這條直線的垂線段的長度。

8.兩條直線被第三條直線所截:同位角F(在兩條直線的同一旁,第三條直線的同一側),內錯角Z(在兩條直線內部,位於第三條直線兩側),同旁內角U(在兩條直線內部,位於第三條直線同側)。

9.平行公理:過直線外一點有且只有一條直線與已知直線平行。

10.如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。如果b//a,c//a,那麼b//cP174題

11.平行線的判定。

結論:在同一平面內,如果兩條直線都垂直於同一條直線,那麼這兩條直線平行。平行線的性質:1.兩直線平行,同位角相等。2.兩直線平行,內錯角相等。3.兩直線平行,同旁內角互補。

七年級下冊數學第二單元知識點整理歸納2

平行線的判定第1課時

基礎知識

1、C

2、ADBCADBC180°—∠1—∠2∠3+∠4

3、ADBEADBCAECD同位角相等,兩直線平行

4、題目略

MNAB內錯角相等,兩直線平行

MNAB同位角相等,兩直線平行

兩直線平行於同一條直線,兩直線平行

5、B

6、∠BED∠DFC∠AFD∠DAF

7、證明:

∵AC⊥AEBD⊥BF

∴∠CAE=∠DBF=90°

∵∠1=35°∠2=35°

∴∠1=∠2

∵∠BAE=∠1+∠CAE=35°+90°=125°∠CBF=∠2+∠DBF=35°+90°=125°

∴∠CBF=∠BAE

∴AE∥BF(同位角相等,兩直線平行)

8、題目略

(1)DEBC

(2)∠F同位角相等,兩直線平行

(3)∠BCFDEBC同位角相等,兩直線平行

能力提升

9、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8

10、有,AB∥CD

∵OH⊥AB

∴∠BOH=90°

∵∠2=37°

∴∠BOE=90°—37°=53°

∵∠1=53°

∴∠BOE=∠1

∴AB∥CD(同位角相等,兩直線平行)

11、已知互補等量代換同位角相等,兩直線平行

12、平行,證明如下:

∵CD⊥DA,AB⊥DA

∴∠CDA=∠2+∠3=∠BAD=∠1+∠4=90°(互余)

∵∠1=∠2(已知)

∴∠3=∠4

∴DF∥AE(內錯角相等,兩直線平行)

探索研究

13、對,證明如下:

∵∠1+∠2+∠3=180°∠2=80°

∴∠1+∠3=100°

∵∠1=∠3

∴∠1=∠3=50°

∵∠D=50°

∴∠1=∠D=50°

∴AB∥CD(內錯角相等,兩直線平行)

14、證明:

∵∠1+∠2+∠GEF=180°(三角形內角和為180°)且∠1=50°,∠2=65°

∴∠GEF=180°—65°—50°=65°

∵∠GEF=∠BEG=1/2∠BEF=65°

∴∠BEG=∠2=65°

∴AB∥CD(內錯角相等,兩直線平行)

七年級下冊數學第二單元知識點整理歸納3

相交線與平行線

1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質是對頂角相等。

2、三線八角:對頂角(相等),鄰補角(互補),同位角,內錯角,同旁內角。

3、兩條直線被第三條直線所截:

同位角F(在兩條直線的同一旁,第三條直線的同一側)

內錯角Z(在兩條直線內部,位於第三條直線兩側)

同旁內角U(在兩條直線內部,位於第三條直線同側)

4、兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。

5、垂直三要素:垂直關系,垂直記號,垂足。

6、垂直公理:過一點有且只有一條直線與已知直線垂直。

7、垂線段最短。

8、點到直線的距離:直線外一點到這條直線的垂線段的長度。

9、平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

推論:如果兩條直線都與第三條直線平行,那麼這兩條直線也互相平行。如果b//a,c//a,那麼b//c

10、平行線的判定:

①同位角相等,兩直線平行。②內錯角相等,兩直線平行。 ③同旁內角互補,兩直線平行。

11、推論:在同一平面內,如果兩條直線都垂直於同一條直線,那麼這兩條直線平行。

12、平行線的性質:

①兩直線平行,同位角相等;②兩直線平行,內錯角相等;③兩直線平行,同旁內角互補。

13、平面上不相重合的兩條直線之間的位置關系為_______或________

14、平移:①平移前後的兩個圖形形狀大小不變,位置改變。②對應點的線段平行且相等。

平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。

對應點:平移後得到的新圖形中每一點,都是由原圖形中的某一點移動後得到的,這樣的兩個點叫做對應點。

15、命題:判斷一件事情的語句叫命題。

命題分為題設和結論兩部分;題設是如果後面的,結論是那麼後面的。

命題分為真命題和假命題兩種;定理是經過推理證實的真命題。

概率

一、事件:

1、事件分為必然事件、不可能事件、不確定事件。

2、必然事件:事先就能肯定一定會發生的事件。也就是指該事件每次一定發生,不可能不發生,即發生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不會發生的事件。也就是指該事件每次都完全沒有機會發生,即發生的可能性為零。

4、不確定事件:事先無法肯定會不會發生的事件,也就是說該事件可能發生,也可能不發生,即發生的可能性在0和1之間。

二、等可能性:是指幾種事件發生的可能性相等。

1、概率:是反映事件發生的可能性的大小的量,它是一個比例數,一般用P來表示,P(A)=事件A可能出現的結果數/所有可能出現的結果數。

2、必然事件發生的概率為1,記作P(必然事件)=1;

3、不可能事件發生的概率為0,記作P(不可能事件)=0;

4、不確定事件發生的概率在0—1之間,記作0

三、幾何概率

1、事件A發生的概率等於此事件A發生的可能結果所組成的面積(用SA表示)除以所有可能結果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發生在每個單位面積上的概率是相同的。

2、求幾何概率:

(1)首先分析事件所佔的面積與總面積的關系;

(2)然後計算出各部分的面積;

(3)最後代入公式求出幾何概率。

三角形

1、三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形。

2、判斷三條線段能否組成三角形。

①a+b>c(ab為最短的兩條線段)

②a—b

3、第三邊取值范圍:a—b

4、對應周長取值范圍

若兩邊分別為a,b則周長的取值范圍是2a

如兩邊分別為5和7則周長的取值范圍是14

5、三角形中三角的關系

(1)、三角形內角和定理:三角形的三個內角的和等於1800。

n邊行內角和公式(n—2)

(2)、三角形按內角的大小可分為三類:

(1)銳角三角形,即三角形的三個內角都是銳角的三角形;

(2)直角三角形,即有一個內角是直角的三角形,我們通常用「RtΔ」表示「直角三角形」,其中直角∠C所對的邊AB稱為直角三角表的斜邊,夾直角的兩邊稱為直角三角形的直角邊。

註:直角三角形的性質:直角三角形的兩個銳角互余。

(3)鈍角三角形,即有一個內角是鈍角的三角形。

(3)、判定一個三角形的形狀主要看三角形中角的度數。

(4)、直角三角形的面積等於兩直角邊乘積的一半。

6、三角形的三條重要線段

(1)、三角形的角平分線:

1、三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

2、任意三角形都有三條角平分線,並且它們相交於三角形內一點。(內心)

(2)、三角形的中線:

1、在三角形中,連接一個頂點與它對邊中點的線段,叫做這個三角形的中線。

2、三角形有三條中線,它們相交於三角形內一點。(重心)

3、三角形的中線把這個三角形分成面積相等的兩個三角形

(3)、三角形的高線:

1、從三角形的一個頂點向它的對邊所在的直線做垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱為三角形的高。

2、任意三角形都有三條高線,它們所在的直線相交於一點。(垂心)

3、注意等底等高知識的考試

7、相關命題:

1)三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。

2)銳角三角形中的銳角的取值范圍是60≤X<90。銳角不小於60度。

3)任意一個三角形兩角平分線的夾角=90+第三角的一半。

4)鈍角三角形有兩條高在外部。

5)全等圖形的大小(面積、周長)、形狀都相同。

6)面積相等的兩個三角形不一定是全等圖形。

7)能夠完全重合的兩個圖形是全等圖形。

8)三角形具有穩定性。

9)三條邊分別對應相等的兩個三角形全等。

10)三個角對應相等的兩個三角形不一定全等。

11)兩個等邊三角形不一定全等。

12)兩角及一邊對應相等的兩個三角形全等。

13)兩邊及一角對應相等的兩個三角形不一定全等。

14)兩邊及它們的夾角對應相等的兩個三角形全等。

15)兩條直角邊對應相等的兩個直角三角形全等。

16)一條斜邊和一直角邊對應相等的兩個三角形全等。

17)一個銳角和一邊(直角邊或斜邊)對應相等的兩個三角形全等。

18)一角和一邊對應相等的兩個直角三角形不一定全等。

19)有一個角是60的等腰三角形是等邊三角形。

8、全等圖形

1、兩個能夠重合的圖形稱為全等圖形。

2、全等圖形的性質:全等圖形的形狀和大小都相同。

9、全等三角形

1、能夠重合的兩個三角形是全等三角形,用符號「≌」連接,讀作「全等於」。

2、用「≌」連接的兩個全等三角形,表示對應頂點的字母寫在對應的位置上。

10、全等三角形的判定

1、三邊對應相等的兩個三角形全等,簡寫為「邊邊邊」或「SSS」。

2、兩角和它們的夾邊對應相等的兩個三角形全等,簡寫為「角邊角」或「ASA」。

3、兩角和其中一角的對邊對應相等的兩個三角形全等,簡寫為「角角邊」或「AAS」。

4、兩邊和它們的夾角對應相等的兩個三角形全等,簡寫為「邊角邊」或「SAS」。

11、做三角形(3種做法:已知兩邊及夾角、已知兩角及夾邊、已知三邊、已知兩角及一邊可以轉化為已知已知兩角及夾邊)。

12、利用三角形全等測距離;

13、、直角三角形全等的條件:在直角三角形中,斜邊和一條直角邊對應相等的兩個直角三角形全等,簡寫成「斜邊、直角邊」或「HL」。

變數之間的關系

一、理論理解

1、若Y隨X的變化而變化,則X是自變數Y是因變數。

自變數是主動發生變化的量,因變數是隨著自變數的變化而發生變化的量,數值保持不變的量叫做常量。

3、若等腰三角形頂角是y,底角是x,那麼y與x的關系式為y=180—2x。

2、能確定變數之間的關系式:相關公式①路程=速度×時間②長方形周長=2×(長+寬)③梯形面積=(上底+下底)×高÷2④本息和=本金+利率×本金×時間。⑤總價=單價×總量。⑥平均速度=總路程÷總時間

二、列表法:採用數表相結合的形式,運用表格可以表示兩個變數之間的關系。列表時要選取能代表自變數的一些數據,並按從小到大的順序列出,再分別求出因變數的.對應值。列表法的特點是直觀,可以直接從表中找出自變數與因變數的對應值,但缺點是具有局限性,只能表示因變數的一部分。

三、關系式法:關系式是利用數學式子來表示變數之間關系的等式,利用關系式,可以根據任何一個自變數的值求出相應的因變數的值,也可以已知因變數的值求出相應的自變數的值。

四、圖像注意:

a、認真理解圖象的含義,注意選擇一個能反映題意的圖象;

b、從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標),特別是圖像的起點、拐點、交點

八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:

1、隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而增加(大));

2、隨著自變數x的逐漸增加(大),因變數y逐漸減小(或者用函數語言描述也可:因變數y隨著自變數x的增加(大)而減小)。

注意:如果在整個過程中事物的變化趨勢不一樣,可以採用分段描述。例如在什麼范圍內隨著自變數x的逐漸增加(大),因變數y逐漸增加(大)等等。

九、估計(或者估算)對事物的估計(或者估算)有三種:

1、利用事物的變化規律進行估計(或者估算)。例如:自變數x每增加一定量,因變數y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數—首數)/次數或相差年數)等等;

2、利用圖象:首先根據若干個對應組值,作出相應的圖象,再在圖象上找到對應的點對應的因變數y的值;

3、利用關系式:首先求出關系式,然後直接代入求值即可。

學好數學的方法是什麼

1、學數學要善於思考,自己想出來的答案遠比別人講出來的答案印象深刻。

2、課前要做好預習,這樣上數學課時才能把不會的知識點更好的消化吸收掉。

3、數學公式一定要記熟,並且還要會推導,能舉一反三。

4、學好數學最基礎的就是把課本知識點及課後習題都掌握好。

5、數學80%的分數來源於基礎知識,20%的分數屬於難點,所以考120分並不難。

6、數學需要沉下心去做,浮躁的人很難學好數學,踏踏實實做題才是硬道理。

7、數學要想學好,不琢磨是行不通的,遇到難題不能躲,研究明白了才能罷休。

8、數學最主要的就是解題過程,懂得數學思維很關鍵,思路通了,數學自然就會了。

9、數學不是用來看的,而是用來算的,或許這一秒沒思路,當你拿起筆開始計算的那一秒,就豁然開朗了。

10、數學題目不會做,原因之一就是例題沒研究明白,所以數學書上的例題絕對不要放過。

數學經典學習思維

假設思想方法

假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。

比較思想方法

比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。

七年級下冊數學第二單元知識點整理歸納4

認識三角形

1、關於三角形的概念及其按角的分類

由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。這里要注意兩點:

①組成三角形的三條線段要「不在同一直線上」;如果在同一直線上,三角形就不存在;②三條線段「首尾是順次相接」,是指三條線段兩兩之間有一個公共端點,這個公共端點就是三角形的頂點。

三角形按內角的大小可以分為三類:銳角三角形、直角三角形、鈍角三角形。

2、關於三角形三條邊的關系

根據公理「連結兩點的線中,線段最短」可得三角形三邊關系的一個性質定理,即三角形任意兩邊之和大於第三邊。

三角形三邊關系的另一個性質:三角形任意兩邊之差小於第三邊。對於這兩個性質,要全面理解,掌握其實質,應用時才不會出錯。設三角形三邊的長分別為a、b、c則:

①一般地,對於三角形的某一條邊a來說,一定有|b—c|

②特殊地,如果已知線段a最大,只要滿足b+c>a,那麼a、b、c三條線段就能構成三角形;如果已知線段a最小,只要滿足|b—c|

②一個三角形中至多有一個直角或一個鈍角;③一個三角中至少有兩個內角是銳角。

3、關於三角形的中線、高和中線

①三角形的角平分線、中線和高都是線段,不是直線,也不是射線;②任意一個三角形都有三條角平分線,三條中線和三條高;

③任意一個三角形的三條角平分線、三條中線都在三角形的內部。但三角形的高卻有不同的位置:銳角三角形的三條高都在三角形的內部,如圖1;直角三角形有一條高在三角形的內部,另兩條高恰好是它兩條邊,如圖2;鈍角三角形一條高在三角形的內部,另兩條高在三角形的外部,如圖④一個三角形中,三條中線交於一點,三條角平分線交於一點,三條高所在的直線交於一點。

快速提高數學成績的方法

1、掌握正確做題方法

數學學習離不開做題,對於大多數學生來說很難做到舉一反三,既然做不到我們就需要用用大量的題來彌補,但是做題也不能盲目的去做。第一,做題要由易到難,第二,做題要先專題後限時模考,第三,做題要學會整理錯題,第四,做題要學會分析試題,第五,做題要會猜題。

2、鞏固基礎知識

掌握初中數學知識點是由淺入深的,只有在掌握了基礎知識的前提下,識記理解公式、定理,運用公式、定理分析解決問題,才能對數學問題進一步深化與提高。

3、發現規律

在做題的過程中要多發現規律,不要總是硬套公式,可以嘗試一下思維的轉換,這樣可能給自己帶了不一樣的轉機,其實數學和其他的科目是一樣,可以用其他的話代替,但是意思並沒有轉變,數學的公式也是一樣,最終的答案是一個。

4、保持好心態

心態問題是影響考試的最重要的原因。走進考場就要有舍我其誰的霸氣。要信心十足,要相信自己已經讀了一千天的初中,進行了三百多天的復習,做了三千至四千道題,養兵千日,用兵一時,現在是收獲的時候,自己會取得好成績的。反過來,如果進考場就底氣不足,必定會影響自己的發揮。

5、總結梳理,提煉方法。

數學復習的最後階段,對於知識點的總結梳理,應重視教材,立足基礎,在准確理解基本概念,掌握公式、法則、定理的實質及其基本運用的基礎上,弄清概念之間的聯系與區別。對於題型的總結梳理,應擺脫盲目的題海戰術,對重點習題進行歸類,找出解題規律,要關註解題的思路、方法、技巧。

三角函數公式

銳角三角函數公式

sinα=∠α的對邊/斜邊

cosα=∠α的鄰邊/斜邊

tanα=∠α的對邊/∠α的鄰邊

cotα=∠α的鄰邊/∠α的對邊

閱讀全文

與七年級下冊數學課怎麼講相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1301
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:979
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1653
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1060