❶ 小學數學思想中的化歸思想與轉化思想怎麼區分
1、
轉化與化歸的思想方法
轉化與化歸的思想方法是數學中最基本的思想方法,數學中一切問題的解決(當然包括解題)都離不開轉化與化歸,數形結合思想體現了數與形的相互轉化;函數與方程思想體現了函數、方程、不等式間的相互轉化;分類討論思想體現了局部與整體的相互轉化,以上三種思想方法都是轉化與化歸思想的具體體現。各種變換方法、分析法、反證法、待定系數法、構造法等都是轉化的手段。所以說,轉化與化歸是數學思想方法的靈魂。
2、
轉化包括等價轉化和非等價轉化,非等價轉化又分為強化轉化和弱化轉化
等價轉化要求在轉化過程中的前因後果既是充分的又是必要的,這樣的轉化能保證轉化的結果仍為原問題所需要的結果,非等價轉化其過程則是充分的或必要的,這樣的轉化能給人帶來思維的啟迪,找到解決問題的突破口,非等價變形要對所得結論進行必要的修改。
非等價轉化(強化轉化和弱化轉化)在思維上帶有跳躍性,是難點,在壓軸題的解答中常常用到,一定要特別重視!
3、
轉化與化歸的原則
將不熟悉和難解的問題轉化為熟知的易解的或已經解決的問題,將抽象的問題轉化為具體的直觀的問題,將復雜的問題轉化為簡單的問題,將一般性的問題轉化為直觀的特殊的問題;將實際問題轉化為數學問題,使問題便與解決。
4、
轉化與化歸的基本類型
(1)
正與反、一般與特殊的轉化;
(2)
常量與變數的轉化;
(3)
數與形的轉化;
(4)
數學各分支之間的轉化;
(5)
相等與不相等之間的轉化;
(6)
實際問題與數學模型的轉化。
❷ 小學數學思想中的化歸思想與轉化思想怎麼區分
化歸思想和轉化思想實質上是一樣的。都是將一個問題由難化易,由繁化簡,由復雜化簡單的過程
❸ 數學中的思想方法轉化與化歸有什麼區別
肯定不一樣啊,2.化歸與轉化思想的實質是揭示聯系,實現轉化.除極簡單的數學問題外,每個數學問題的解決都是通過轉化為已知的問題實現的.從這個意義上講,解決數學問題就是從未知向已知轉化的過程.化歸與轉化的思想是解...
❹ 數學問題,轉化思想與化歸思想有什麼區別
肯定不一樣啊,
1化歸與轉化思想的實質是揭示聯系,實現轉化.除極簡單的數學問題外,每個數學問題的解決都是通過轉化為已知的問題實現的.從這個意義上講,解決數學問題就是從未知向已知轉化的過程.化歸與轉化的思想是解決數學問題的根本思想,解題的過程實際上就是一步步轉化的過程.數學中的轉化比比皆是,如未知向已知轉化,復雜問題向簡單問題轉化,新知識向舊知識的轉化,命題之間的轉化,數與形的轉化,空間向平面的轉化,高維向低維轉化,多元向一元轉化,高次向低次轉化,超越式向代數式的轉化,函數與方程的轉化等,都是轉化思想的體現.
2轉化有等價轉化和非等價轉化.等價轉化前後是充要條件,所以盡可能使轉化具有等價性;在不得已的情況下,進行不等價轉化,應附加限制條件,以保持等價性,或對所得結論進行必要的驗證.
❺ 數學中的思想方法轉化與化歸有什麼區別
肯定不一樣啊,
2.化歸與轉化思想的實質是揭示聯系,實現轉化。除極簡單的數學問題外,每個數學問題的解決都是通過轉化為已知的問題實現的。從這個意義上講,解決數學問題就是從未知向已知轉化的過程。化歸與轉化的思想是解決數學問題的根本思想,解題的過程實際上就是一步步轉化的過程。數學中的轉化比比皆是,如未知向已知轉化,復雜問題向簡單問題轉化,新知識向舊知識的轉化,命題之間的轉化,數與形的轉化,空間向平面的轉化,高維向低維轉化,多元向一元轉化,高次向低次轉化,超越式向代數式的轉化,函數與方程的轉化等,都是轉化思想的體現。
3.轉化有等價轉化和非等價轉化。等價轉化前後是充要條件,所以盡可能使轉化具有等價性;在不得已的情況下,進行不等價轉化,應附加限制條件,以保持等價性,或對所得結論進行必要的驗證。
❻ 一句話,說出,數學中,轉化思想,和化歸思想,的區別
簡而言之,化歸是一種目的性轉化。
化歸思想,將一個問題由難化易,由繁化簡,由復雜化簡單的過程稱為化歸,它是轉化和歸結的簡稱。
在解決問題的過程中,數學家往往不是直接解決原問題,而是對問題進行變形、轉化,直至把它化歸為某個(些)已經解決的問題,或容易解決的問題。 把所要解決的問題,經過某種變化,使之歸結為另一個問題*,再通過問題*的求解,把解得結果作用於原有問題,從而使原有問題得解,這種解決問題的方法,我們稱之為化歸法。
化歸法是一種分析問題解決問題的基本思想方法.在數學中通常的作法是:將一個非基本的問題通過分解、變形、代換…,或平移、旋轉、伸縮…等多種方式,將它化歸為一個熟悉的基本的問題,從而求出解答.如學完一元一次方程、因式分解等知識後,學習一元二次方程我們就是通過因式分解等方法,將它化歸為一元一次方程來解的.後來我們學到特殊的一元高次方程時,又是化歸為一元一次和一元二次方程來解的.對一元不等式也有類似的作法.又如在平面幾何中我們在學習了三角形的內角和、面積計算等有關定理後,對n邊形的內角和、面積的計算,也是通過分解、拼合為若干個三角形來加以解決的.再如在解析幾何中,當我們學完了最基本、最簡單的圓錐曲線知識以後,對一般圓錐曲線的研究,我們也是通過坐標軸平移或旋轉,化歸為基本的圓錐曲線(在新坐標系中)來實現的.其它如幾何問題化歸為代數問題,立體幾何問題化歸為平面幾何問題,任意角的三角函數問題化歸為銳角三角函數問題來表示的例子就更多了.所以,掌握化歸的思想方法對於數學學習有著重要的意義.總之,化歸的原則是以已知的、簡單的、具體的、特殊的、基本的知識為基礎,將未知的化為已知的,復雜的化為簡單的,抽象的化為具體的,一般的化為特殊的,非基本的化為基本的,從而得出正確的解答.