1. 初中數學的全部定理,定義
03(2).初中數學網路網盤資源免費下載
鏈接: https://pan..com/s/14EClxShl5kwj8XSRybk4Mw
03(2).初中數學|初一|初三|初二|28. 數據的分析|27. 一次函數(II)|26. 一次函數(I)|25. 梯形|24. 平行四邊形|23. 勾股定理|22. 二次根式|21. 分式|20. 整式的乘法與因式分解(II)|19. 整式的乘法與因式分解(I)|18. 軸對稱(II)
2. 誰知道初中數學的九大公理
初中數學的九個公理:
1、過兩點有且只有一條直線。
2、兩點之間線段最短。
3、同角或等角的補角相等。
4、同角或等角的餘角相等。
5、過一點有且只有一條直線和已知直線垂直。
6、直線外一點與直線上各點連接的所有線段中,垂線段最短。
7、平行公理經過直線外一點,有且只有一條直線與這條直線平行。
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
9、同位角相等,兩直線平行。
(2)中學數學中的基本定理有哪些擴展閱讀:
1、平行四邊形的性質:
平行四邊形的對邊平行而相等。
平行四邊形的對角相等。
平行四邊形的對角線彼此平分。
2、平行四邊形的決心:
兩個對邊平行的四邊形是平行四邊形。
一組對邊平行且相等的四邊形叫做平行四邊形。
對邊相等的四邊形是平行四邊形。
兩組對角線相等的四邊形是平行四邊形。
被對角線平分的四邊形是平行四邊形。
3. 求初中數學所有定理!要詳盡有條理!
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b
)*c
初中數學知識點歸納.
有理數的加法運算
同號兩數來相加,絕對值加不變號。
異號相加大減小,大數決定和符號。
互為相反數求和,結果是零須記好。
【注】「大」減「小」是指絕對值的大小。
有理數的減法運算
減正等於加負,減負等於加正。
有理數的乘法運算符號法則
同號得正異號負,一項為零積是零。
合並同類項
說起合並同類項,法則千萬不能忘。
只求系數代數和,字母指數留原樣。
去、添括弧法則
去括弧或添括弧,關鍵要看連接號。
擴號前面是正號,去添括弧不變號。
括弧前面是負號,去添括弧都變號。
解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式
兩數和乘兩數差,等於兩數平方差。
積化和差變兩項,完全平方不是它。
完全平方公式
二數和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯結,先減後加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減後加差平方。
解一元一次方程
先去分母再括弧,移項變號要記牢。
同類各項去合並,系數化「1」還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程
先去分母再括弧,移項合並同類項。
系數化1還沒好,准確無誤不白忙。
因式分解與乘法
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負號。
同正則正負就負,異則需添冪符號。
因式分解
一提二套三分組,十字相乘也上數。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數。
多種方法靈活選,連乘結果是基礎。
同式相乘若出現,乘方表示要記住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分組,叉乘求根也上數。
五種方法都不行,拆項添項去重組。
對症下葯穩又准,連乘結果是基礎。
二次三項式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例
兩數相除也叫比,兩比相等叫比例。
外項積等內項積,等積可化八比例。
分別交換內外項,統統都要叫更比。
同時交換內外項,便要稱其為反比。
前後項和比後項,比值不變叫合比。
前後項差比後項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比後項和,比值不變叫等比。
解比例
外項積等內項積,列出方程並解之。
求比值
由已知去求比值,多種途徑可利用。
活用比例七性質,變數替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例
商定變數成正比,積定變數成反比。
正比例與反比例
變化過程商一定,兩個變數成正比。
變化過程積一定,兩個變數成反比。
判斷四數成比例
四數是否成比例,遞增遞減先排序。
兩端積等中間積,四數一定成比例。
判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項
成比例的四項中,外項相同會遇到。
有時內項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內項會相同,比例中項出現了。
同數平方等異積,比例中項無處逃。
根式與無理式
表示方根代數式,都可稱其為根式。
根式異於無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區分它們有標志。
被開方式有字母,又可稱為無理式。
求定義域
求定義域有講究,四項原則須留意。
負數不能開平方,分母為零無意義。
指是分數底正數,數零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關,四項原則須注意。
負數不能開平方,分母為零無意義。
分數指數底正數,數零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式
先去分母再括弧,移項合並同類項。
系數化「1」有講究,同乘除負要變向。
先去分母再括弧,移項別忘要變號。
同類各項去合並,系數化「1」注意了。
同乘除正無防礙,同乘除負也變號。
解一元一次不等式組
大於頭來小於尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現。
幼兒園小鬼當家,(同小相對取較小)
敬老院以老為榮,(同大就要取較大)
軍營里沒老沒少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,構造函數第二站。
判別式值若非負,曲線橫軸有交點。
a正開口它向上,大於零則取兩邊。
代數式若小於零,解集交點數之間。
方程若無實數根,口上大零解為全。
小於零將沒有解,開口向下正相反。
用平方差公式因式分解
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結果就是它。
用完全平方公式因式分解
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負和方相反數。
分成兩底差平方,方正倍積要為負。
兩邊為負中間正,底差平方相反數。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負和方相反數。
分成兩底差平方,兩端為正倍積負。
兩邊若負中間正,底差平方相反數。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調整系數隨其後,使其成為最簡比。
確定參數abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規配方法解一元二次方程
左未右已先分離,二系化「1」是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合並,直接開方去解題。
該種解法叫配方,解方程時多練習。
用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調整系數等互反,和差積套恆等式。
完全平方等常數,間接配方顯優勢
【注】 恆等式
解一元二次方程
方程沒有一次項,直接開方最理想。
如果缺少常數項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數的鑒別
判斷正比例函數,檢驗當分兩步走。
一量表示另一量, 有沒有。
若有再去看取值,全體實數都需要。
區分正比例函數,衡量可分兩步走。
一量表示另一量, 是與否。
若有還要看取值,全體實數都要有。
正比例函數的圖象與性質
正比函數圖直線,經過 和原點。
K正一三負二四,變化趨勢記心間。
K正左低右邊高,同大同小向爬山。
K負左高右邊低,一大另小下山巒。
一次函數
一次函數圖直線,經過 點。
K正左低右邊高,越走越高向爬山。
K負左高右邊低,越來越低很明顯。
K稱斜率b截距,截距為零變正函。
反比例函數
反比函數雙曲線,經過 點。
K正一三負二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負左低右邊高,二四象限如爬山。
二次函數
二次方程零換y,二次函數便出現。
全體實數定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調正相反。
A定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點後連線,平移規律記心間。
左加右減括弧內,號外上加下要減。
二次方程零換y,就得到二次函數。
圖像叫做拋物線,定義域全體實數。
A定開口及大小,開口向上是正數。
絕對值大開口小,開口向下A負數。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點後連線,三點大致定全圖。
若要平移也不難,先畫基礎拋物線,
頂點移到新位置,開口大小隨基礎。
【注】基礎拋物線
直線、射線與線段
直線射線與線段,形狀相似有關聯。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。
角
一點出發兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
直平之間是鈍角,平周之間叫優角。
互余兩角和直角,和是平角互補角。
一點出發兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小於直角叫銳角。
鈍角界於直平間,平周之間叫優角。
和為直角叫互余,互為補角和平角。
證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特徵。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換後結論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學習肯登攀,手腦並用無不勝。
解無理方程
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負擔。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程
先約後乘公分母,整式方程轉化出。
特殊情況可換元,去掉分母是出路。
求得解後要驗根,原留增舍別含糊。
列方程解應用題
列方程解應用題,審設列解雙檢答。
審題弄清已未知,設元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗准且合題意,問求同一才作答。
添加輔助線
學習幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉構造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯系看。
兩點間距離公式
同軸兩點求距離,大減小數就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定
任意一個四邊形,三個直角成矩形;
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;
兩對角線若相等,理所當然為矩形。
菱形的判定
任意一個四邊形,四邊相等成菱形;
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對角線若垂直,順理成章為菱形。
4. 初中所有的數學定理
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
2 幾何公式和定理
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一
點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第
三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它
的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應
線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三
角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平
分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等
於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半
徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直
平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距
3 幾何公式和定理
離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦
相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩
弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所
對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它
的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積
相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2
146內公切線長= d-(R-r) 外公切線長= d-(R+r)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
4 幾何公式和定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
主要是幾何的
5. 求初中數學定理公理大全
常見的初中數學公式 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的餘角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內錯角相等,兩直線平行 11 同旁內角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內錯角相等 14 兩直線平行,同旁內角互補 15 定理 三角形兩邊的和大於第三邊 16 推論 三角形兩邊的差小於第三邊 17 三角形內角和定理 三角形三個內角的和等於180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和 20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角 21 全等三角形的對應邊、對應角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,並且每一個角都等於60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等於60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半 38 直角三角形斜邊上的中線等於斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 42 定理1 關於某條直線對稱的兩個圖形是全等形 43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線 44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上 45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱 46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形 48定理 四邊形的內角和等於360° 49四邊形的外角和等於360° 50多邊形內角和定理 n邊形的內角的和等於(n-2)×180° 51推論 任意多邊的外角和等於360° 52平行四邊形性質定理1 平行四邊形的對角相等 53平行四邊形性質定理2 平行四邊形的對邊相等 54推論 夾在兩條平行線間的平行線段相等 55平行四邊形性質定理3 平行四邊形的對角線互相平分 56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 60矩形性質定理1 矩形的四個角都是直角 61矩形性質定理2 矩形的對角線相等 62矩形判定定理1 有三個角是直角的四邊形是矩形 63矩形判定定理2 對角線相等的平行四邊形是矩形 64菱形性質定理1 菱形的四條邊都相等 65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角 66菱形面積=對角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形 68菱形判定定理2 對角線互相垂直的平行四邊形是菱形 69正方形性質定理1 正方形的四個角都是直角,四條邊都相等 70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角 71定理1 關於中心對稱的兩個圖形是全等的 72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分 73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱 74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 75等腰梯形的兩條對角線相等 76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 77對角線相等的梯形是等腰梯形 78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也 相等 79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊 81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
6. 初中數學71個基本點有哪些
71個基本點如下:
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的餘角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理 三角形兩邊的和大於第三邊
16、推論 三角形兩邊的差小於第三邊
17、三角形內角和定理 三角形三個內角的和等於180°
18、推論1 直角三角形的兩個銳角互余
19、推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理 有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理 有兩角和它們的夾邊對應相等的兩個三角形全等
24、推論 有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理 有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1 在角的平分線上的點到這個角的兩邊的距離相等
28、定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質定理 等腰三角形的兩個底角相等
31、推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32、等腰三角形的頂角平分線、底邊上的中線和高互相重合
33、推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34、等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35、推論1 三個角都相等的三角形是等邊三角形
36、推論 2 有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1 關於某條直線對稱的兩個圖形是全等形
43、定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44、定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45、逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46、勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c
47、勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a+b=c,那麼這個三角形是直角三角形
48、定理 四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51、推論 任意多邊的外角和等於360°
52、平行四邊形性質定理1 平行四邊形的對角相等
53、平行四邊形性質定理2 平行四邊形的對邊相等
54、推論 夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3 平行四邊形的對角線互相平分
56、平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1 矩形的四個角都是直角
61、矩形性質定理2 矩形的對角線相等
62、矩形判定定理1 有三個角是直角的四邊形是矩形
63、矩形判定定理2 對角線相等的平行四邊形是矩形
64、菱形性質定理1 菱形的四條邊都相等
65、菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1 四邊都相等的四邊形是菱形
68、菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1 關於中心對稱的兩個圖形是全等的;定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
7. 初中數學定理有哪些
幾何是初中數學中重要的一部分內容,學習幾何,需要證明,這時定理就很重要了。下面我整理了初中數學重要定理,趕快收藏起來吧!
1、點、線、角
點的定理:過兩點有且只有一條直線。
點的定理:兩點之間線段最短。
角的定理:同角或等角的補角相等。
角的定理:同角或等角的餘角相等。
直線定理:過一點有且只有一條直線和已知直線垂直。
直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短。
2、三角形內角定理
定理:三角形兩邊的和大於第三邊。
推論:三角形兩邊的差小於第三邊。
三角形內角和定理:三角形三個內角的和等於180°。
3、幾何平行
平行定理:經過直線外一點,有且只有一條直線與這條直線平行。
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行。
證明兩直線平行定理:同位角相等,兩直線平行;內錯角相等,兩直線平行;同旁內角互補,兩直線平行。
兩直線平行推論:兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補。
4、全等三角形判定
定理:全等三角形的對應邊、對應角相等。
邊角邊定理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等。
角邊角定理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等。
推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等。
邊邊邊定理(SSS):有三邊對應相等的兩個三角形全等。
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等。
5、等腰三角形性質
等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)。
推論1:等腰三角形頂角的平分線平分底邊並且垂直於底邊。
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合。
等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)。
6、角的平分線
定理1:在角的平分線上的點到這個角的兩邊的距離相等。
定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上。
角的平分線是到角的兩邊距離相等的所有點的集合。
7、多邊形內角和定理
定理:四邊形的內角和等於360°;四邊形的外角和等於360°。
多邊形內角和定理:n邊形的內角和等於(n-2)×180°。
推論:任意多邊的外角和等於360°。
8、對稱定理
定理:線段垂直平分線上的點和這條線段兩個端點的距離相等。
逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合。
定理1:關於某條直線對稱的兩個圖形是全等形。
定理2:如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線。
定理3:兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上。
逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱。
9、直角三角形定理
定理:在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半。
判定定理:直角三角形斜邊上的中線等於斜邊上的一半。
勾股定理:直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2。
勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那麼這個三角形是直角三角形。
10、平行四邊形定理
平行四邊形性質定理:
1.平行四邊形的對角相等。
2.平行四邊形的對邊相等。
3.平行四邊形的對角線互相平分。
推論:夾在兩條平行線間的平行線段相等。
平行四邊形判定定理:
1.兩組對角分別相等的四邊形是平行四邊形。
2.兩組對邊分別相等的四邊形是平行四邊形。
3.對角線互相平分的四邊形是平行四邊形。
4.一組對邊平行相等的四邊形是平行四邊形。
11、正方形定理
正方形性質定理1:正方形的四個角都是直角,四條邊都相等。
正方形性質定理2:正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角。
12、矩形定理
矩形性質定理1:矩形的四個角都是直角。
矩形性質定理2:矩形的對角線相等。
矩形判定定理1:有三個角是直角的四邊形是矩形。
矩形判定定理2:對角線相等的平行四邊形是矩形。
13、菱形定理
菱形性質定理1:菱形的四條邊都相等。
菱形性質定理2:菱形的對角線互相垂直,並且每一條對角線平分一組對角。
菱形面積=對角線乘積的一半,即S=(a×b)÷2。
菱形判定定理1:四邊都相等的四邊形是菱形。
菱形判定定理2:對角線互相垂直的平行四邊形是菱形。
14、中心對稱定理
定理1:關於中心對稱的兩個圖形是全等的。
定理2:關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分。
逆定理:如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱 。
15、等腰梯形性質定理
等腰梯形性質定理:
1.等腰梯形在同一底上的兩個角相等。
2.等腰梯形的兩條對角線相等。
等腰梯形判定定理:
1.在同一底上的兩個角相等的梯形是等腰梯形。
2.對角線相等的梯形是等腰梯形。
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等。
推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。
推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊。
16、中位線定理
三角形中位線定理:三角形的中位線平行於第三邊,並且等於它的一半。
梯形中位線定理:梯形的中位線平行於兩底,並且等於兩底和的一半:L=(a+b)÷2S=L×h。
17、相似三角形定理
相似三角形定理:平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。
相似三角形判定定理:
1.兩角對應相等,兩三角形相似(ASA)。
2.兩邊對應成比例且夾角相等,兩三角形相似(SAS)。
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似。
判定定理3:三邊對應成比例,兩三角形相似(SSS)。
相似直角三角形定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似。
性質定理:
1.相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比。
2.相似三角形周長的比等於相似比。
3.相似三角形面積的比等於相似比的平方。
18、三角函數定理
任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值。
任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值。
19、圓的定理
定理:過不共線的三個點,可以作且只可以作一個圓。
定理:垂直於弦的直徑平分這條弦,並且評分弦所對的兩條弧。
推論1:平分弦(不是直徑)的直徑垂直於弦並且平分弦所對的兩條弧。
推論2:弦的垂直平分弦經過圓心,並且平分弦所對的兩條弧。
推論3:平分弦所對的一條弧的直徑,垂直評分弦,並且平分弦所對的另一條弧。
定理:
1.在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等。
2.經過圓的半徑外端點,並且垂直於這條半徑的直線是這個圓的切線。
3.圓的切線垂直經過切點的半徑。
4.三角形的三個內角平分線交於一點,這點是三角形的內心。
5.從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
6.圓的外切四邊形的兩組對邊的和相等。
7.如果四邊形兩組對邊的和相等,那麼它必有內切圓。
8.兩圓的兩條外公切線的長相等;兩圓的兩條內公切線的長也相等。
20、比例性質定理
比例的基本性質:如果a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d。
合比性質:如果a/b=c/d,那麼(a±b)/b=(c±d)/d。
等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b。
8. 初中數學所有的定理
第一章 實數
★重點★ 實數的有關概念及性質,實數的運算
☆內容提要☆
一、 重要概念
1.數的分類及概念
數系表:
說明:「分類」的原則:1)相稱(不重、不漏)
2)有標准
2.非負數:正實數與零的統稱。(表為:x≥0)
常見的非負數有:
性質:若干個非負數的和為0,則每個非負擔數均為0。
3.倒數: ①定義及表示法
②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1時1/a>1;a>1時,1/a<1;D.積為1。
4.相反數: ①定義及表示法
②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:①定義(「三要素」)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數—自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:①定義(兩種):
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│≥0,符號「││」是「非負數」的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有「││」出現,其關鍵一步是去掉「││」符號。
二、 實數的運算
1. 運演算法則(加、減、乘、除、乘方、開方)
2. 運算定律(五個—加法[乘法]交換律、結合律;[乘法對加法的]
分配律)
3. 運算順序:A.高級運算到低級運算;B.(同級運算)從「左」
到「右」(如5÷ ×5);C.(有括弧時)由「小」到「中」到「大」。 第二章 代數式
★重點★代數式的有關概念及性質,代數式的運算
☆內容提要☆
一、 重要概念
分類:
1.代數式與有理式
用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨
的一個數或字母也是代數式。
整式和分式統稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算並且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式。(數字與字母的積—包括單獨的一個數或字母)
幾個單項式的和,叫做多項式。
說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如,=x, =│x│等。4.系數與指數
區別與聯系:①從位置上看;②從表示的意義上看
5.同類項及其合並
條件:①字母相同;②相同字母的指數相同
合並依據:乘法分配律
6.根式
表示方根的代數式叫做根式。
含有關於字母開方運算的代數式叫做無理式。
注意:①從外形上判斷;②區別: 、 是根式,但不是無理式(是無理數)。
7.算術平方根
⑴正數a的正的平方根( [a≥0—與「平方根」的區別]);
⑵算術平方根與絕對值
① 聯系:都是非負數, =│a│
②區別:│a│中,a為一切實數; 中,a為非負數。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。
滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。
把分母中的根號劃去叫做分母有理化。
9.指數
⑴ ( —冪,乘方運算)
① a>0時, >0;②a<0時, >0(n是偶數), <0(n是奇數)
⑵零指數: =1(a≠0)
負整指數: =1/ (a≠0,p是正整數)
二、 運算定律、性質、法則
1.分式的加、減、乘、除、乘方、開方法則
2.分式的性質
⑴基本性質: = (m≠0)
⑵符號法則:
⑶繁分式:①定義;②化簡方法(兩種)
3.整式運演算法則(去括弧、添括弧法則)
4.冪的運算性質:① · = ;② ÷ = ;③ = ;④ = ;⑤
技巧:
5.乘法法則:⑴單×單;⑵單×多;⑶多×多。
6.乘法公式:(正、逆用)
(a+b)(a-b)= a^2-b^2
7.除法法則:⑴單÷單;⑵多÷單。
8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。
9.算術根的性質: = ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式運演算法則:⑴加法法則(合並同類二次根式);⑵乘、除法法則;⑶分母有理化:A. ;B. ;C. .
11.科學記數法: (1≤a<10,n是整數=
第三章 統計初步
★重點★
☆ 內容提要☆
一、 重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數目。
5.眾數:一組數據中,出現次數最多的數據。
6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數)
二、 計算方法
1.樣本平均數:⑴ ;⑵若 , ,…, ,則 (a—常數, , ,…, 接近較整的常數a);⑶加權平均數: ;⑷平均數是刻劃數據的集中趨勢(集中位置)的特徵數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越准確。 2.樣本方差:⑴ ;⑵若 , ,…, ,則 (a—接近 、 、…、 的平均數的較「整」的常數);若 、 、…、 較「小」較「整」,則 ;⑶樣本方差是刻劃數據的離散程度(波動大小)的特徵數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標准差:
第四章 直線形
★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。
☆ 內容提要☆
一、 直線、相交線、平行線
1.線段、射線、直線三者的區別與聯系
從「圖形」、「表示法」、「界限」、「端點個數」、「基本性質」等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(用「線段的基本性質」論證「三角形兩邊之和大於第三邊」)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為餘角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(利用它證明「直角三角形中斜邊大於直角邊」)
9.對頂角及性質
10.平行線及判定與性質(互逆)(二者的區別與聯系)
11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、 三角形
分類:⑴按邊分;
⑵按角分
1.定義(包括內、外角)
2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,
3.三角形的主要線段
討論:①定義②××線的交點—三角形的×心③性質
① 高線②中線③角平分線④中垂線⑤中位線
⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質
5.全等三角形
⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
⑴一般計算公式⑵性質:等底等高的三角形面積相等。
7.重要輔助線
⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
⑴直接證法:綜合法、分析法
⑵間接證法—反證法:①反設②歸謬③結論
⑶證線段相等、角相等常通過證三角形全等
⑷證線段倍分關系:加倍法、折半法
⑸證線段和差關系:延結法、截余法
⑹證面積關系:將面積表示出來
三、 四邊形
分類表:
1.一般性質(角)
⑴內角和:360°
⑵順次連結各邊中點得平行四邊形。
推論1:順次連結對角線相等的四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。⑶外角和:360°
2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定
⑶判定步驟:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
⑷對角線的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)
4.有關定理:①平行線等分線段定理及其推論1、2
②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中常「平移一腰」、「平移對角線」、「作高」、「連結頂點和對腰中點並延長與底邊相交」轉化為三角形。
6.作圖:任意等分線段。
第五章 方程(組)
★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題)
☆ 內容提要☆
一、 基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)
2. 分類:二、 解方程的依據—等式性質
1.a=b←→a+c=b+c
2.a=b←→ac=bc (c≠0)
三、 解法
1.一元一次方程的解法:去分母→去括弧→移項→合並同類項→
系數化成1→解。
2. 元一次方程組的解法:⑴基本思想:「消元」⑵方法:①代入法
②加減法
四、 一元二次方程
1.定義及一般形式:
2.解法:⑴直接開平方法(注意特徵)
⑵配方法(注意步驟—推倒求根公式)
⑶公式法:
⑷因式分解法(特徵:左邊=0)
3.根的判別式:
4.根與系數頂的關系:
逆定理:若 ,則以 為根的一元二次方程是: 。
5.常用等式:
五、 可化為一元二次方程的方程
1.分式方程
⑴定義
⑵基本思想:
⑶基本解法:①去分母法②換元法(如, )
⑷驗根及方法
2.無理方程
⑴定義
⑵基本思想:
⑶基本解法:①乘方法(注意技巧!!)②換元法(例, )⑷驗根及方法
3.簡單的二元二次方程組
由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。
六、 列方程(組)解應用題
一概述
列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關系是什麼。⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。
⑶用含未知數的代數式表示相關的量。
⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。
⑸解方程及檢驗。
⑹答案。
綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解應用題的關鍵。
二常用的相等關系
1. 行程問題(勻速運動)
基本關系:s=vt
⑴相遇問題(同時出發):
+ = ;
⑵追及問題(同時出發):
若甲出發t小時後,乙才出發,而後在B處追上甲,則
⑶水中航行: ;
2. 配料問題:溶質=溶液×濃度
溶液=溶質+溶劑
3.增長率問題:
4.工程問題:基本關系:工作量=工作效率×工作時間(常把工作量看著單位「1」)。
5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。
三注意語言與解析式的互化
如,「多」、「少」、「增加了」、「增加為(到)」、「同時」、「擴大為(到)」、「擴大了」、……
又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。
四注意從語言敘述中寫出相等關系。
如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算
如,「小時」「分鍾」的換算;s、v、t單位的一致等。
七、應用舉例(略)
第六章 一元一次不等式(組)
★重點★一元一次不等式的性質、解法
☆ 內容提要☆
1. 定義:a>b、a<b、a≥b、a≤b、a≠b。
2. 一元一次不等式:ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。
3. 一元一次不等式組:
4. 不等式的性質:⑴a>b←→a+c>b+c
⑵a>b←→ac>bc(c>0)
⑶a>b←→ac<bc(c<0)
⑷(傳遞性)a>b,b>c→a>c
⑸a>b,c>d→a+c>b+d.
5.一元一次不等式的解、解一元一次不等式
6.一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集)
5 回復:【中考】【數學】總復習知識點匯總
第七章 相似形
★重點★相似三角形的判定和性質
☆內容提要☆
一、本章的兩套定理
第一套(比例的有關性質):
涉及概念:①第四比例項②比例中項③比的前項、後項,比的內項、外項④黃金分割等。
第二套:
注意:①定理中「對應」二字的含義;
②平行→相似(比例線段)→平行。
二、相似三角形性質
1.對應線段…;2.對應周長…;3.對應面積…。
三、相關作圖
①作第四比例項;②作比例中項。
四、證(解)題規律、輔助線
1.「等積」變「比例」,「比例」找「相似」。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴
⑵
⑶
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對比例問題,常用處理方法是將「一份」看著k;對於等比問題,常用處理辦法是設「公比」為k。
5.對於復雜的幾何圖形,採用將部分需要的圖形(或基本圖形)「抽」出來的辦法處理。
五、 應用舉例(略)
第八章 函數及其圖象
★重點★正、反比例函數,一次、二次函數的圖象和性質。
☆ 內容提要☆
一、平面直角坐標系
1.各象限內點的坐標的特點
2.坐標軸上點的坐標的特點
3.關於坐標軸、原點對稱的點的坐標的特點
4.坐標平面內點與有序實數對的對應關系
二、函數
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變數取值范圍的原則:⑴使代數式有意義;⑵使實際問題有
意義。
3.畫函數圖象:⑴列表;⑵描點;⑶連線。
三、幾種特殊函數
(定義→圖象→性質)
1. 正比例函數
⑴定義:y=kx(k≠0) 或y/x=k。
⑵圖象:直線(過原點)
⑶性質:①k>0,…②k<0,…
2. 一次函數
⑴定義:y=kx+b(k≠0)
⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。
⑶性質:①k>0,…②k<0,…
⑷圖象的四種情況:
3. 二次函數
⑴定義:
特殊地, 都是二次函數。
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。 用配方法變為 ,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。
⑶性質:a>0時,在對稱軸左側…,右側…;a<0時,在對稱軸左側…,右側…。
4.反比例函數
⑴定義: 或xy=k(k≠0)。
⑵圖象:雙曲線(兩支)—用描點法畫出。
⑶性質:①k>0時,圖象位於…,y隨x…;②k<0時,圖象位於…,y隨x…;③兩支曲線無限接近於坐標軸但永遠不能到達坐標軸。
四、重要解題方法
1. 用待定系數法求解析式(列方程[組]求解)。對求二次函數的解析式,要合理選用一般式或頂點式,並應充分運用拋物線關於對稱軸對稱的特點,尋找新的點的坐標。如下圖:
2.利用圖象一次(正比例)函數、反比例函數、二次函數中的k、b;a、b、c的符號。
第九章 解直角三角形
★重點★解直角三角形
☆ 內容提要☆
一、三角函數
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA= ;cosA= ;tgA= ;ctgA= . 2. 特殊角的三角函數值:
0° 30° 45° 60° 90°
sinα
cosα
tgα /
ctgα /
3. 互余兩角的三角函數關系:sin(90°-α)=cosα;…
4. 三角函數值隨角度變化的關系
5.查三角函數表
二、解直角三角形
1. 定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
2. 依據:①邊的關系:
②角的關系:A+B=90°
③邊角關系:三角函數的定義。
注意:盡量避免使用中間數據和除法。
三、對實際問題的處理
1. 俯、仰角: 2.方位角、象限角: 3.坡度:
4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。
四、應用舉例(略)
第十章 圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆ 內容提要☆
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.「三點定圓」定理
4.垂徑定理及其推論
5.「等對等」定理及其推論
5. 與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.三種位置及判定與性質:
2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴…⑵…
4.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:
內角的一半: (右圖)
(解Rt△OAM可求出相關元素, 、 等)
六、 一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
七、 點的軌跡
六條基本軌跡
八、 有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:4、8;6、3等分
九、 基本圖形
十、 重要輔助線
1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角
4.切點圓心莫忘連
5.兩圓相切公切線(連心線)
6.兩圓相交公共弦 (可能不全)中考數學答題技巧: 一、考前准備
考前要摒棄雜念,排除一切干擾,提前進入數學思維狀態。閉眼想一想平時考試自己易出現的錯誤,然後動手清點一下考場用具,輕松進入考場。這樣做能增強信心,穩定情緒,使自己提前進入「角色」。
二、考前5分鍾
拿到試卷後,而要通覽一下全卷,摸透題情。看無印刷問題等。此時不能動手答題,但可以閱讀試題,因此可以根據自己的情況,有選擇地閱讀一些試題,如題目比較長的,或者有一定難度的題。
三、開始答題後
(1)把自己容易忽略和出錯的事項在草稿紙上作好記號,如三角形的面積公式,四個象限點的符號,等,也可以寫一兩名提醒自己的話。
(2)仔細審題
(4)分段得分 (5)跳躍解答
(6)先改後劃
(7)聯想猜押
(8)速書嚴查 祝你中考考好!
9. 初中數學幾何的定理有哪些
你好
數學(公理)定理及逆定理 (推論)
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,則 這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(sas) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(aas) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(sss) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,
那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°
那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,
那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,
那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,
那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c 有關系a^2+b^2=c^2 ,
那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的 內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積 = 對角線乘積的一半,即s=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,
那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,
那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性質 如果a:b=c:d, 那麼ad=bc 如果ad=bc, 那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d, 那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),
那麼 (a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,
那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(asa)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(sas)
94 判定定理3 三邊對應成比例,兩三角形相似(sss)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等
那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121 ①直線l和⊙o相交 d﹤r
②直線l和⊙o相切 d=r
③直線l和⊙o相離 d﹥r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,
圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135①兩圓外離 d﹥r+r ②兩圓外切 d=r+r ③兩圓相交 r-r﹤d﹤r+r(r﹥r)④兩圓內切 d=r-r(r﹥r)⑤兩圓內含d﹤r-r(r﹥r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=Pnrn/2 P表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,
因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144 (公式略)
145 (公式略)
146內公切線長= d-(r-r) 外公切線長= d-(r+r)
147等腰三角形的兩個底腳相等
148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合
149如果一個三角形的兩個角相等,那麼這兩個角所對的邊也相等
150三條邊都相等的三角形叫做等邊三角形。