⑴ 六年級的數學小論文。是體現出生活中數學的重要性。只要是好的肯定會採納。
可以自己刪減刪減。
數學論文
一、數學技能的含義及作用
技能是順利完成某種任務的一種動作或心智活動方式。它是一種接近自動化的、復雜而較為完善的動作系統,是通過有目的、有計劃的練習而形成的。數學技能是順利完成某種數學任務的動作或心智活動方式。它通常表現為完成某一數學任務時所必需的一系列動作的協調和活動方式的自動化。這種協調的動作和自動化的活動方式是在已有數學知識經驗基礎上經過反復練習而形成的。如學習有關乘數是兩位數的乘法計算技能,就是在掌握其運演算法則的基礎上通過多次的實際計算而形成的。數學技能與數學知識和數學能力既有密切的聯系,又有本質上的區別。它們的區別主要表現為:技能是對動作和動作方式的概括,它反映的是動作本身和活動方式的熟練程度;知識是對經驗的概括,它反映的是人們對事物和事物之間相互聯系的規律性的認識;能力是對保證活動順利完成的某些穩定的心理特徵的概括,它所體現的是學習者在數學學習活動中反映出來的個體特徵。三者之間的聯系,可以比較清楚地從數學技能的作用中反映出來。
數學技能在數學學習中的作用可概括為以下幾個方面:
第一,數學技能的形成有助於數學知識的理解和掌握;
第二,數學技能的形成可以進一步鞏固數學知識;
第三,數學技能的形成有助於數學問題的解決;
第四,數學技能的形成可以促進數學能力的發展;
第五,數學技能的形成有助於激發學生的學習興趣;
第六,調動他們的學習積極性。
二、數學技能的分類
小學生的數學技能,按照其本身的性質和特點,可以分為操作技能(又叫做動作技能)和心智技能(也叫做智力技能)兩種類型。
l.數學操作技能。操作技能是指實現數學任務活動方式的動作主要是通過外部機體運動或操作去完成的技能。它是一種由各個局部動作按照一定的程序連貫而成的外部操作活動方式。如學生在利用測量工具測量角的度數、測量物體的長度,用作圖工具畫幾何圖形等活動中所形成的技能就是這種外部操作技能。操作技能具有有別於心智技能的一些比較明顯的特點:一是外顯性,即操作技能是一種外顯的活動方式;二是客觀性,是指操作技能活動的對象是物質性的客體或肌肉;王是非簡約性,就動作的結構而言,操作技能的每個動作都必須實施,不能省略和合並,是一種展開性的活動程序。如用圓規畫圓,確定半徑、確定圓心、圓規一腳繞圓心旋轉一周等步驟,既不能省略也不能合並,必須詳盡地展開才能完成的任務。
2.數學心智技能。數學心智技能是指順利完成數學任務的心智活動方式。它是一種藉助於內部言語進行的認知活動,包括感知、記憶、思維和想像等心理成分,並且以思維為其主要活動成分。如小學生在口算、筆算、解方程和解答應用題等活動中形成的技能更多地是一些數學心智技能。數學心智技能同樣是經過後天的學習和訓練而形成的,它不同於人的本能。另外,數學心智技能是一種合乎法則的心智活動方式,「所謂合乎法則的活動方式是指活動的動作構成要素及其次序應體現活動本身的客觀法則的要求,而不是任意的」。這些特性,反映了數學心智技能和數學操作技能的共性。數學心智技能作為一種以思維為主要活動成分的認知活動方式,它也有著區別於數學操作技能的個性特徵,這些特徵主要反映在以下三個方面。
第一,動作對象的觀念性。數學心智技能的直接對象不是具有物質形式的客體本身,而是這種客體在人們頭腦里的主觀映象。如20以內退位減法的口算,其心智活動的直接對象是「想加法算減法」或其他計算方法的觀念,而非某種物質化的客體。
第二,動作實施過程的內隱性。數學心智技能的動作是藉助內部言語完成的,其動 作的執行是在頭腦內部進行的,主體的變化具有很強的內隱性,很難從外部直接觀測到。如口算,我們能夠直接了解到的是通過學生的外部語言所反映出來的計算結果,學生計算時的內部心智活動動作是無法看到的。
第三,動作結構的簡縮性。數學心智技能的動作不像操作活動那樣必須把每一個動作都完整地做出來,也不像外部言語那樣對每一個動作都完整地說出來,它的活動過程是一種高度壓縮和簡化的自動化過程。因此,數學心智技能中的動作成分是可以合並、省略和簡化的。如20以內進位加法的口算,學生熟練以後計算時根本沒有去意識「看大數」、「想湊數」、「分小數」、「湊十」等動作,整個計算過程被壓縮成一種脫口而出的簡略性過程。
三、數學技能的形成過程
1.數學操作技能的形成過程。
數學操作技能作為一種外顯的操作活動方式,它的形成大致要經過以下四個基本階段。
(1)動作的定向階段。這是操作技能形成的起始階段,主要是學習者在頭腦里建立起完成某項數學任務的操作活動的定向映象。包括明確學習目標,激起學習動機,了解與數學技能有關的知識,知道技能的操作程序和動作要領以及活動的最後結果等內容。概括起來講,這一階段主要是了解「做什麼」和「怎樣做」兩方面的內容。如畫角,這一階段主要是了解需畫一個多少度的角(即知道做什麼)和畫角的步驟(即怎麼做),以此給畫角的操作活動作出具體的定向。動作定向的作用是在頭腦里初步建立起操作的自我調節機制;通過對「做什麼」和「怎麼做」的了解而明確實施數學活動的程序與步驟,從而保證在操作中更好地掌握其動作的活動方式。
(2)動作的分解階段。這是操作技能進入實際學習的最初階段,其作法是把某項數學技能的全套動作分解成若干個單項動作,在老師的示範下學生依次模仿練習,從而掌握局部動作的活動方式。如用圓規按照給定的半徑畫圓,在這一階段就可把整個操作程序分解成三個局部動作:①把圓規的兩腳張開,按照給定的半徑定好兩腳間的距離;②把有針尖的一腳固定在一點上,確定出圓心;③將有鉛筆尖的一腳繞圓心旋轉一周,畫出圓。通過對這三個具有連續性的局部動作的依次練習,即可掌握畫圓的要領。學生在這一階段學習的方式主要是模仿,一方面根據老師的示範進行模仿;另一方面也可以根據有關操作規則的文字描述進行模仿,如根據幾何作圖規則對各個動作活動方式的表述進行模仿。模仿不一定都是被動的和機械的,「模仿可以是有意的和無意的;可以是再造性的,也可以是創造性的。」②模仿是數學操作技能形成的一
⑵ 數學的作用有哪些
數學的作用有以下幾種:
1、滿足人們日常生活、工作中計數、計算以及推理需要。在人們的日常生活和工作做缺不了對事物的計數、各種數量之間的計算以及比較相關的量,這里都需要用到數學的知識和思想方法。
2、鍛煉人的思維水平以及思維品質,如計算能力、邏輯思維能力、空間想像能力。數學科學是一種嚴謹、縝密的科學,所以在學習數學科學知識的同時也在鍛煉人的思維。
3、數學學習可以為進一步學習自然科學和社會科學提供必要的技術支持。數學作為認識世界的基礎性學科,它可以如同計算機的系統,可以在思想上可技術上支持不同應用科學的深入發展。
4、學習數學可以體會和學習數學工作者身上體現出來的科學、嚴謹的科學態度和作風,提高自身科學素養。尤其是歷史上無數為數學發展作出巨大貢獻的數學家,通過學習他們所創造的知識可以深刻體會他們所創造出來知識的巨大力量和人格力量,使自己的精神得到震撼和熏陶。
⑶ 如何培養小學生數學聯想和想像能力
一、初中數學探究
數學不同於其它自然科學,它具有逐級抽象性特點。從客觀實際、現實世界中的抽象只是數學的低級抽象,脫離具體事和物的數量關系和空間形式的數學研究的抽象是數學的高級抽象。高級抽象是在低級抽象基礎上的進一步抽象,它的研究對象不同於低級形態數學抽象的研究對象,而是一種形式化了的思維材料,是經過人加工了的思想,一種人對自然界的概括和認識。自然科學、社會科學的抽象往往是直接從科學實驗或大量實踐的材料中歸納、概括、抽象出理論來的。
數學的逐級抽象性特點,說明了學生數學學習過程中思維發展的不同階段和水平,因而數學的學習過程也是分層次的。
1.學習的最低層次是「做」數學的過程,即數學的組織。
通過學生自己的猜測、探索,從現實問題情境中提煉數學問題,發現問題及其規律性,對問題有整體理解,這是學生數學地組織經驗材料的活動層次;
2.學習的第二個層次是將數學問題組織成原理,並用數學語言模式去描繪原理。
即通過對脫離具體事物的數量關系和空間形式的數學研究,構建抽象理論意義上的數學原理。這是學生組織經驗領域的活動,是在「做」數學基礎上進一步抽象概括數學材料並提煉數學原理的過程。
3.第三個層次是數學原理的驗證、推廣階段。
如果說前兩個層次是「發現」原理的過程,那麼這個層次就是驗證、推廣的階段。驗證的過程實際是將「發現」的結果的演繹推理的形式系統化、邏輯化的過程;最後一個層次是反省上述學習過程,將抽象結果應用於實際,用以指導現實生活。此層次的反省活動,是對一前述認識過程的進一步認識,是對前述學習活動的反思,對整個學習過程起到調節和監控作用。可見數學的特點說明了數學的學習過程也是分層次的。
二、探究教學實施
1.培養學生思維能力。
數學是思維的科學,即使不作數學研究,只是看看書與論文,要理解數學證明,也只有一步一步循著走,因為這一過程不只是確認證明沒有錯誤,還是自己重新嘗試進行思考試驗的過程,只有在這一過程中才能產生深刻的體驗。否則只看看定理而跳過證明,一冊書可能很快就能看完,但結果是:幾乎一無所知。學習數學,理解數學似乎沒有其他別的辦法,只有啟動心靈進行思考試驗才能實現再認識、再理解、再創造。例如,平行符號「//」的使用,讓學生做一個思想實驗,若用「=」或「‖」等其它符號甚至不用符號表示平行,會是什麼情形,從而讓學生深刻體會到數學符號的妙處。
2.培養學生數學想像和聯想能力。
數學創造性需要想像,在數學發現活動中往往是以猜想的形式呈現。數學猜想不僅是科學性與假定性的辨證統一,也是數學抽象邏輯思維和數學形象思維的辯證統一。而創造想像正是數學猜想的一個重要來源。想像提供理想化的思想方法,理想化的思想方法是研究對象極大的簡化和純化。數學創造性思維的結果是思維的自由創造物與想像物。沒有一種心理機能比想像更能自我深化,更能深入對象內在的本質。想像能使人開拓嶄新的思路,開創新的探索方向和研究領域,提出新的假設和理論。想像與構造是基於深刻邏輯分析基礎上的高度綜合。想像推動創造,創造得益於想像。愛因斯坦有句名言:「想像力比知識更重要。」他還指出:「提出一個問題往往比解決一個問題更重要,因為解決一個問題也許僅是一個數學上的或實驗上的技能而已。而提出新的問題,新的可能性,從新的角度去看舊的問題,卻需要有創造性的想像力,而且標志著科學的真正進步。」眾所周知,微積分的發現是十七世紀最偉大的數學成果,它是牛頓在許多數學家長期研究求切線斜率、求瞬時速度和研究曲邊形面積求法的基礎上,通過想像形成了粗糙而可貴的最初思想的。這種發現是基於幾何的直觀和物理見解,並不是邏輯推理的結果。
3.營造和諧激進的問題化情景,激發學生問題慾望。
新課程理念下的數學教學,重視問題情景的創設。要使學生主動參與學習,必須使學生對學習有興趣。因為興趣是一個人前進的內驅力,是永不枯竭的動力源泉。那麼我們不妨創設一個能使學生感興趣的問題情景,讓學生對問題感興趣成為主動的學習者。真正的學習並不是由教師傳授給學生,而是應該讓學生自己找到並發現、糾正自己的答案。如果我們把每種事情都教給學生或者規定他們按固定的程序完成,就會妨礙他們的主動參與和自主發現。
比如:在《打折銷售》這一節,如果課堂上就單純地出示例題,然後分析題意,給出解答過程,接著再模仿練習。最後幫學生總結出解決這類問題的方法和技巧。可能學生未必有多大興趣。但假若我們設計一個課堂活動,讓學生模擬商店的從進貨、定價、促銷到賣出的全過程,學生一定會樂於去對打折銷售的過程進行分析、計算。而且在此過程中,學生也自然會聯想到各個環節中可能出現的問題,比如標價與銷量的關系,進價、標價、售價與打折和利潤之間的關系,這樣需要學生鞏固、提高的知識可能自然就解決了。
⑷ 怎樣培養學生的數學聯想和計算
正所謂聯想就是在頭腦中由一種 事物想到另一種事物的心理過程,由於小學數學是一門比較嚴謹、抽象的學科,在教學過程中通過聯想,能夠喚起學生對已學知識的加速,溝通知識間的內在聯系。 因此,培養學生的數學聯想很有必要。一、結合實際問題,培養學生聯想在應用題教學中,要善於啟發學生從多方面、多角度認識事物,展開聯想,以引起新的思 考。目的是幫助學生克服某種思想定式,豐富他們分析問題時思維的指向。從已知條件展開聯想,對於一道具體的應用題來說,它的已知條件總是確定的
⑸ 數學學習的感悟心得或數學在實踐中的應用
數學是必考科目之一,故從初一開始就要認真地學習數學。那麼,怎樣才能學好數學呢?現介紹幾種方法以供參考:
一、課內重視聽講,課後及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
*****************************************************************************************************
一、 高中數學課的設置
高中數學內容豐富,知識面廣泛,將有:《代數》上、下冊、《立體幾何》和《平面解析幾何》四本課本,高一年級學習完《代數》上冊和《立體幾何》兩本書。高二將學習完《代數》下冊和《平面解析幾何》兩本書。一般地,在高一、高二全部學習完高中的所有高中三年的知識內容,高三進行全面復習,高三將有數學「會考」和重要的「高考」。
二、初中數學與高中數學的差異。
1、知識差異。
初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是「0—1800」范圍內的,但實際當中也有7200和「—300」等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》,將在三維空間中求一些幾何實體的體積和表面積;還將學習「排列組合」知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,( =6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=-1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以後的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課後老師布置作業,然後通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握後再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其後半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由於學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那麼就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變數的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們採用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變數的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、 有良好的學習興趣
兩千多年前孔子說過:「知之者不如好之者,好之者不如樂之者。」意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。「好」和「樂」就是願意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的「認識」過程,這自然會變為立志學好數學,成為數學學習的成功者。那麼如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什麼要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸於現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會准確。
2、 建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、 有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想像能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想像能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,並在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計「智力課」和「智力問題」比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握後再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是採用蘊含披露的方式將數學思想溶於數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是 的數是_____.②從數軸角度理解:什麼樣的兩點表示數是互為相反數的。(關於原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做「小老師」,形成數學學習「互助組」。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學後忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類
參考資料:
*****************************************************************************************************
高中數學學習方法談
進入高中以後,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由於學生不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。在此結合高中數學教學內容的特點,談一下高中數學學習方法,供同學參考。
一、 高中數學與初中數學特點的變化
1、數學語言在抽象程度上突變
初、高中的數學語言有著顯著的區別。初中的數學主要是以形象、通俗的語言方式進行表達。而高一數學一下子就觸及非常抽象的集合語言、邏輯運算語言、函數語言、圖象語言等。
2、思維方法向理性層次躍遷
高一學生產生數學學習障礙的另一個原因是高中數學思維方法與初中階段大不相同。初中階段,很多老師為學生將各種題建立了統一的思維模式,如解分式方程分幾步,因式分解先看什麼,再看什麼等。因此,初中學習中習慣於這種機械的,便於操作的定勢方式,而高中數學在思維形式上產生了很大的變化,數學語言的抽象化對思維能力提出了高要求。這種能力要求的突變使很多高一新生感到不適應,故而導致成績下降。
3、知識內容的整體數量劇增
高中數學與初中數學又一個明顯的不同是知識內容的「量」上急劇增加了,單位時間內接受知識信息的量與初中相比增加了許多,輔助練習、消化的課時相應地減少了。
4、知識的獨立性大
初中知識的系統性是較嚴謹的,給我們學習帶來了很大的方便。因為它便於記憶,又適合於知識的提取和使用。但高中的數學卻不同了,它是由幾塊相對獨立的知識拼合而成(如高一有集合,命題、不等式、函數的性質、指數和對數函數、指數和對數方程、三角比、三角函數、數列等),經常是一個知識點剛學得有點入門,馬上又有新的知識出現。因此,注意它們內部的小系統和各系統之間的聯系成了學習時必須花力氣的著力點。
二、如何學好高中數學
1、養成良好的學習數學習慣。
建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,並永久記憶在自己的腦海中。良好的學習數學習慣包括課前自學、專心上課、及時復習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
2、及時了解、掌握常用的數學思想和方法
學好高中數學,需要我們從數學思想與方法高度來掌握它。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,分類討論思想,數形結合思想,運動思想,轉化思想,變換思想。有了數學思想以後,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
解數學題時,也要注意解題思維策略問題,經常要思考:選擇什麼角度來進入,應遵循什麼原則性的東西。高中數學中經常用到的數學思維策略有:以簡馭繁、數形結合、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔等。
3、逐步形成 「以我為主」的學習模式
數學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數學就要積極主動地參與學習過程,養成實事求是的科學態度,獨立思考、勇於探索的創新精神;正確對待學習中的困難和挫折,敗不餒,勝不驕,養成積極進取,不屈不撓,耐挫折的優良心理品質;在學習過程中,要遵循認識規律,善於開動腦筋,積極主動去發現問題,注重新舊知識間的內在聯系,不滿足於現成的思路和結論,經常進行一題多解,一題多變,從多側面、多角度思考問題,挖掘問題的實質。學習數學一定要講究「活」,只看書不做題不行,只埋頭做題不總結積累也不行。對課本知識既要能鑽進去,又要能跳出來,結合自身特點,尋找最佳學習方法。
4、針對自己的學習情況,採取一些具體的措施
² 記數學筆記,特別是對概念理解的不同側面和數學規律,教師在課堂中
拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今後將其補上。
² 建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再
犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對症下葯;解答問題完整、推理嚴密。
² 熟記一些數學規律和數學小結論,使自己平時的運算技能達到了自動化
或半自動化的熟練程度。
² 經常對知識結構進行梳理,形成板塊結構,實行「整體集裝」,如表格化,
使知識結構一目瞭然;經常對習題進行類化,由一例到一類,由一類到多類,由多類到統一;使幾類問題歸納於同一知識方法。
² 閱讀數學課外書籍與報刊,參加數學學科課外活動與講座,多做數學課
外題,加大自學力度,拓展自己的知識面。
² 及時復習,強化對基本概念知識體系的理解與記憶,進行適當的反復鞏
固,消滅前學後忘。
² 學會從多角度、多層次地進行總結歸類。如:①從數學思想分類②從解
題方法歸類③從知識應用上分類等,使所學的知識系統化、條理化、專題化、網路化。
² 經常在做題後進行一定的「反思」,思考一下本題所用的基礎知識,數學
思想方法是什麼,為什麼要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。
² 無論是作業還是測驗,都應把准確性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,這是學好數學的重要問題。
對新初三學生來說,學好數學,首先要抱著濃厚的興趣去學習數學,積極展開思維的翅膀,主動地參與教育全過程,充分發揮自己的主觀能動性,愉快有效地學數學。
其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會採用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會「提出問題—實驗探究—開展討論—形成新知—應用反思」的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。
在新學期要上好每一節課,數學課有知識的發生和形成的概念課,有解題思路探索和規律總結的習題課,有數學思想方法提煉和聯系實際的復習課。要上好這些課來學會數學知識,掌握學習數學的方法。
概念課
要重視教學過程,要積極體驗知識產生、發展的過程,要把知識的來龍去脈搞清楚,認識知識發生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習題課
要掌握「聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯」的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發現創造性的證法及解法,學會「小題大做」和「大題小做」的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把「大」拆「小」,以「退」為「進」,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規律,然後再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什麼題目難得倒我們。
復習課
在數學學習過程中,要有一個清醒的復習意識,逐漸養成良好的復習習慣,從而逐步學會學習。數學復習應是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數學思想方法,這些數學思想方法是如何運用的,運用過程中有什麼特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結為這些基本問題;要反思自己的錯誤,找出產生錯誤的原因,訂出改正的措施。在新學期大家准備一本數學學習「病例卡」,把平時犯的錯誤記下來,找出「病因」開出「處方」,並且經常拿出來看看、想想錯在哪裡,為什麼會錯,怎麼改正,通過你的努力,到中考時你的數學就沒有什麼「病例」了。並且數學復習應在數學知識的運用過程中進行,通過運用,達到深化理解、發展能力的目的,因此在新的一年要在教師的指導下做一定數量的數學習題,做到舉一反三、熟練應用,避免以「練」代「復」的題海戰術。
最後,要有意識地培養好自己個人的心理素質,全面系統地進行心理訓練,要有決心、信心、恆心,更要有一顆平常心。
中小學數學網
中國數學在線
小學數學專業網
延安數學教育網站
1+E數學樂園
數學網站聯盟
中學數學教學網
華師大數學網站
快樂數學
數學時空
數學教育教學資源中心
數學人
初中數學網
中國奧數網
廣州市中學數學之窗
高中數學網
我形我數
數學中國
中學數學題庫
數學456資源網
上海數學
麥斯數學網
滿分數學網
數學網路學術資源導航
⑹ 什麼是聯想式記憶,什麼是聯想是學習法 這樣有什麼好處
1.定位聯想記憶法 定位聯想記憶法,是在人的大腦中建立數個系統的記憶檔案,短時間內把各種紛繁蕪雜的知識按順序存儲在與之相應的記憶檔案中,從而實現快速記憶。 定位聯想記憶法的作用:用於課堂現場記憶,可有效的提高課堂學習效果。眾所周知,在上課過程中,對老師所講的內容,學生肯定有當時不理解的地方,作筆記不但記不全面,同時會浪費大量寶貴的課堂時間,還容易漏聽了其它知識點,得不償失。定位聯想記憶法完全突破了這一難關,它幫助學生對不理解的知識點實現現場快速記憶,既不會佔用過長的時間,又可以准確記憶了課堂中出現的疑點、難點,還可以方便的等下課後繼續消化或向老師請教。2.奇特聯想記憶法 奇特聯想法是通過誇張的情節,大膽的想像,離奇的場面來對所記知識進行加工,從而實現深刻、持久記憶。 奇特聯想記憶法作用:通過記憶過程強化記憶效果,學生主動應用奇特聯想記憶法,會增強對零散知識、學習重點和知識要點的記憶。它是強化記憶效果的有效手段,學習中絕大多數知識的特點是類別多又零散,需要單獨強化記憶效果,應用奇特聯想記憶法就能實現輕松高效記憶,它是「抗遺忘快速記憶法」的重要組成部分。
⑺ 80除40在數學學習中能聯想到什麼作用
⑻ 舉一反三和聯想對學習高中數學和物理的幫助大不大
恭喜你兄弟,讓我看到了你提的問題,我可以給你滿意的答案
你經常能舉一反三和聯想,說明你的思維很活躍,這對學習數學和物理簡直是太合適不過了,但是學習歸學習,得有合適的方法和想問題的入口。
告訴你學習學物理的入口。首先,你得知道物理就是建立在公式的基礎之上,你必須對公式里的每個字母要相當的熟悉其含義,先簡單舉個物理公式的例子給你看看:
例:牛頓第二定律(F=ma,m是質量,a是加速度)
這個公式是物理中最平常不過的非常重要的公式,大家最懂得這個公式是計算力的,即F=ma;如果某個題目告訴我們物體的質量m和加速度a,就可以直接用這個公式計算出該物體運動的力的大小,如果把問題設計難一點,不直接告訴物體的加速度,只告訴了幾個時刻的瞬時速度,我們得先計算出加速度,再用F=ma這個公式進行計算;再如此公式可以演變為m=F/a和a=F/m,不管出題人怎麼設計難度,非得繞著這個公式打轉,就是把已知的條件不明確的告訴我們,要通過幾次的計算才能得到該公式中的字母,然後再利用這個公式,這就是「舉一反三」,所以在解決物理問題的時候你得知道該題目是考察哪個物理知識點,你得對該物理知識點的物理公式要相當的熟悉,才能在解決物理問題中輕鬆快樂,游刃有餘。
如果你選擇我的回答,我會給你更多的學習方法的,呵呵!開個玩笑