⑴ 怎樣學好初中數學的幾何圖形
初中的幾何圖形主要有三角形,特殊四邊形(平行四邊形,矩形,菱形,正方形,梯形),圓
其中最基礎、最重要的是三角形,最復雜的是圓,四邊形算是過度階段。
所以你要把三角形的知識學精才行,這是基礎啊。別的圖形都是在三角形的基礎上進行講解分析的。
但你要想成為高手,對圓的訓練就不能忽視,圓是初中圖形部分的終極篇,前面的圖形都可以放在圓裡面考察,它是綜合訓練。
當然這只是對初中圖形部分的分析而已,要想學好需要做很多具體工作的,你需要沉下心來,踏踏實實 應對每一天的學習和每一次考試、每一道題,注意積累經驗,學會轉換,講別人好的東西變成自己的。還有一點,就是不要過分追求難題,這是一個誤區,要側重基礎訓練。等到中考復習時,你就會明白,剩下的都是基礎的。
先說這么多,有問題再問我。
⑵ 怎麼才能學好初中幾何
答:初中幾何是鍛煉人的想像力和邏輯思維能力的最好方法。幾何其實並不難,難的是數形結合的問題沒有弄清楚。幾何的的定義定理記不住。其實沒有必要死記硬背性質、定理、推論等內容,要通過多做練習題,不斷地運用定理定義,圖形的性質和判定定理;題做多了,自然就記住了。就如同和某人經常通電話,他的電話號碼不需要記住,電話打多了,自然就記住的道理是一樣的。初中幾何應該包括平面幾何和立體幾何。立體幾何沒有什麼難題,主要靠空間想像力。而平面幾何的難題很多,因為平面幾何可以做成綜合類型的題太多了。
平面幾何是由點引申到線,線包括直線和線段,從直線的平行,引出平行線分等比例線段,產生等比定理包括合、分比定理。有線段引出三角形和特殊線角形,三角形的合同(全等)、相似;因而產生了一系列的判定定理,和推論。由三角形引申到四邊形, 總結出梯形(特殊梯形)、平行四邊形和特殊的平行四邊形-正方形、矩形和菱形、性質、判定定理。平面曲線主要講圓......。我不想講太多,太多了記不住。幾何不是靠別人講的,是靠自己學習的。在「學」與「習」的問題上,更多的是靠自己「習」,要「習」好很難,這就是「師傅領進門,修行在個人」。任何一門知識,都無捷徑可走,都是要靠自己練習,要學好一門知識,僅憑完成老師留的作業,遠遠不夠,必須自己找一些有一定難度的題做練習,才能夠拔高。其實,每個老師講課的方式方法不一,但是,所傳授的知識都是教學大綱的內容,因此,學生在不同的地方所學的知識大體相同。當有不清楚的地方,要經常向老師請教,然後再琢磨老師所講的內容你能夠接受和不能接受的問題。可以再問老師。弄通了教學內容就靜下心來做練習題;通過做練習題,不斷地歸納總結,知識就會系統化,也可以掌握解題技巧,從而提高解題速度。
最好的老師給你講十次,不如自己做一次。學習知識的基本道理。自己的潛能要靠自己發揮,別人誰也幫不了,也代替不了。這也是學生可以超越老師,而老師無法超越學生的基本道理;因為老師已經多年不做練習題了。所以,練習是學生學好和掌握知識的最佳途徑。
⑶ 怎樣才能學好初中數學中的幾何
數學呢,是一個研究數量,結構變化和空間模型等等的含義的一種科學方式,它是物理化學等科目的基礎.而且和我們的日常生活有著很大的關聯,所以說,學好數學對於我們每個人來說都是非常重要的.下面就向大家來介紹一下怎麼學習初中數學吧!
學習數學還必要的,因為數學是從幼兒園開始就接觸的科目,如果說不會數學,那不是太丟人了嗎?以下就是關於怎麼學習初中數學的技巧:
積極做題
二:考試時的技巧
如果你是想得高分的話,你需要在選擇填空,還有計算題上是絕對不能丟分兒的,所以這需要你謹慎的做題.如果是一開始不知道一道題該怎麼做,但是後來突然明白的那一種,千萬要冷靜,不能瞎寫,要先在草稿紙上寫一遍,最後再放在答題紙上.
以上就是關於怎麼學習初中數學的一些技巧.希望大家是可以理解的.其實學習數學並不難,重要的是要多做題.並且了解題型的技巧.
⑷ 數學的幾何證明題如何學好
很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。
證明題有三種思考方式
● 正向思維
對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。
● 逆向思維
顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。
同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…
這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。
● 正逆結合
對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。
初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。
給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
證明題要用到哪些原理
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
七、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大於它的任何一部分。
八、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大於和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
4.同圓或等圓中,弧大則圓周角、圓心角大。
5.全量大於它的任何一部分。
九、證明比例式或等積式
1.利用相似三角形對應線段成比例。
2.利用內外角平分線定理。
3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。
6.利用比利式或等積式化得。
十、證明四點共圓
1.對角互補的四邊形的頂點共圓。
2.外角等於內對角的四邊形內接於圓。
3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。
4.同斜邊的直角三角形的頂點共圓。
5.到頂點距離相等的各點共圓。
⑸ 怎樣學好初中幾何
第一,學會把條件全部標在圖上
第二,腦子里要學會轉動、平移、拆分圖形,畫在圖上的東西是死的,但在你腦子里不能是死的
第三,學會逆向推導,比如要證明A我需要證明什麼,然後一步步向條件推導
第四,掌握規律,比如要證明邊相等就找全等三角形或對應角相等,見到中線就延長一倍等等
第五,會證明定理,定理光記住肯定是不行的,更何況剛剛三角形還沒多少定理,一個圖形的性質越少其實越容易,三角形弄來弄去就那麼幾條
第六,問問題的時候最好讓別人引導你,被一下子給出答案,那樣沒什麼用
第七,心理問題,幾何是古代歐洲一群無聊的人想出來打發時間的游戲,所以你可以不用太恐懼他
具體問題可以私下找我
⑹ 初中數學幾何怎麼學
上課認真聽講,要有很強的邏輯推理性,老師給你們分析幾何大題時,要記住老師說的要點,一道幾何體,基本的回答框架是不會有太大的改變的,折騰來折騰去就那麼幾種題型,只是數據變了而已。
再者,要多做些題目,家裡父母文化高的話,就讓家裡父母幫忙看下因為所以說得好不好對不對,沒條件的話讓老師幫忙檢查,實在不行,背題也可以,總之,要多下些些功夫。
畫圖題,要有空間想像能力,有些選擇題也需要的,如果不太好的話可以自己動手操作,還可以通過玩魔方後天彌補。
其實,幾何不難學,學懂後就會喜歡上他了。