導航:首頁 > 數字科學 > 數學分形是用什麼做的

數學分形是用什麼做的

發布時間:2022-10-08 10:33:20

『壹』 什麼 是分形和混沌,他們的基本特徵

分形的誕生:
分形的創立也是基於一個巧合,頗似當年哥倫布發現美洲新大陸的意外收獲。分形的創立者曼得勃羅特原先是為了解決電話電路的雜訊等實際問題,結果卻發現了幾何學的一個新領域。海岸線具有自相似性,曼得勃羅特』就是在研究海岸線時創立了分形幾何學。幾何對象的一個局部放大後與其整體相似,這種性質就叫做自相似性。部分以某種形式與整體相似的形狀就叫做分形。
分形幾何主要研究吸引子在空間上的結構,它和混沌有共同的數學祖先-動力系統。如果把非線性動力系統看成是一個不穩定的發散過程,那麼由迭代法生成分形吸引子正好是一個穩定的收斂過程。有的混沌學家說,混沌是時間上的分形,而分形是時間上的混沌。
分形具有五個基本特徵或性質:⑴形態的不規則性;⑵結構的精細性;⑶局部與整體的自相似性;⑷維數的非整數性;⑸生成的迭代性。

『貳』 分形的歷史

在傳統的幾何學中,人們研究一個幾何對象,總是習慣於在Euclid空間(Rn,Euclidean)對其研究和度量,其中字母n表示空間的維數,通常為整數,如n分別為1、2、3時,對應的空間為線性空間、平面空間、立體空間,在相應的空間中,我們可以測得幾何對象的長度、面積、體積等。但是大約在1個世紀前,在數學領域,相繼出現了一些被稱為數學怪物(mathematical monsters)的東西,在傳統的Euclid領域,人們無法用幾何語言去表述其整體或局部性質,其中,比較著名的數學怪物包括:
Von Koch曲線 此曲線在一維下測量任意段長度為無窮大(想像中,考慮到能測量原子的維度);在二維下測量面積為零
Sierpinski三角形 此圖形面積為零
Cantor集
這些數學怪物困擾數學家許多年,直至20世紀,被美國數學家Benoit B. Mandelbrot創立的分形幾何學(fractal geometry)徹底解決。Mandelbrot提出:我們之所以無法用幾何語言去描述這些數學怪物,是因為我們是在維數為整數的空間中,用維數同樣是整數的「尺子」對其丈量、描述;而維數不應該僅僅是整數,可以是任何一個正實數;只有在幾何對象對應的維數空間中,才能對該幾何體進行合理的整體或局部描述。以上圖的Koch曲線為例,其維數約為1.26,我們應用同樣為1.26維的尺子對其進行描述,比如取該曲線前1/4段作為單位為1的尺子去丈量這個幾何體,此幾何體長度為4。也正是因其維數介於1維與2維之間,所以此幾何體在1維下長度為無窮大,2維下面積為零。
Fractal這個詞是由Mandelbrot於1975創造的,來源於拉丁文「Fractus」,其英文意思是broken,即為「不規則、支離破碎」的物體。1967年,Mandelbrot在美國《Science》雜志上發表題目為《英國的海岸線有多長》的劃時代論文,標志著其分形思想萌芽的出現。1977年,Mandelbrot在巴黎出版的法文著作《Les objets fractals:forme,hasard et dimension》,1977年,在美國出版其英文版《Fractals:From,Chance,and Dimension》(《分形:形狀機遇和維數》),同年,他又出版了《The Fractal Geometry of Nature》(《大自然的分形幾何》),但是這三本書還未對社會和學術界造成太大的影響。直到1982年,《The Fractal Geometry of Nature》(《大自然的分形幾何》)第二版才得到歐美社會的廣泛關注,並迅速形成了「分形熱」,此書也被分形學界視為分形「聖經」。

『叄』 什麼是分形數學

普通幾何學研究的對象,一般都具有整數的維數。比如,零維的點、一維的線、二維的面、三維的立體、乃至四維的時空。在20世紀70年代末80年代初,產生了新興的分形幾何學(fractal geometry),空間具有不一定是整數的維,而存在一個分數維數。這是幾何學的新突破,引起了數學家和自然科學者的極大關注。根據物理學家李蔭遠院士的建議,大陸將fractal一開始就定譯為「分形」,而台灣學者一般將fractal譯作「碎形」。

目錄

分形幾何的產生
兩名數學家的貢獻
芒德勃羅和電子計算機對分形幾何的影響
分形幾何的內容
關於維數
維數和測量的關系
分形幾何學的應用
分形幾何的意義
編輯本段分形幾何的產生
客觀自然界中許多事物,具有自相似的「層次」結構,在理想情況下,甚至具有無窮層次。適當的放大或縮小幾何尺寸,整個結構並不改變。不少復雜的物理現象,背後就是反映著這類層次結構的分形幾何學。 客觀事物有它自己的特徵長度,要用恰當的尺度去測量。用尺來測量萬里長城,嫌太短;用尺來測量大腸桿菌,又嫌太長。從而產生了特徵長度。還有的事物沒有特徵尺 分形幾何
度,就必須同時考慮從小到大的許許多多尺度(或者叫標度),這叫做「無標度性」的問題。 如物理學中的湍流,湍流是自然界中普遍現象,小至靜室中繚繞的輕煙,巨至木星大氣中的渦流,都是十分紊亂的流體運動。流體宏觀運動的能量,經過大、中、小、微等許許多度尺度上的漩渦,最後轉化成分子尺度上的熱運動,同時涉及大量不同尺度上的運動狀態,就要藉助「無標度性」解決問題,湍流中高漩渦區域,就需要用分形幾何學。
編輯本段兩名數學家的貢獻
在二十世紀七十年代,法國數學家芒德勃羅(B.B.Mandelbrot)在他的著作中探討了「英國的海岸線有多長」這個問題。這依賴於測量時所使用的尺度。 如果用公里作測量單位,從幾米到幾十米的一些曲折會被忽略;改用米來做單位,測得的總長度會增加,但是一些厘米量級以下的就不能反映出來。由於漲潮落潮使海岸線的水陸分界線具有各種層次的不規則性。海岸線在大小兩個方向都有自然的限制,取不列顛島外緣上幾個突出的點,用直線把它們連起來,得到海岸線長度的一種下界。使用比這更長的尺度是沒有意義的。還有海沙石的最小尺度是原子和分子,使用更小的尺度也是沒有意義的。在這兩個自然限度之間,存在著可以變化許多個數量級的「無標度」區,長度不是海岸線的定量特徵,就要用分維。 數學家柯赫(Koch)從一個正方形的「島」出發,始終保持面積不變,把它的「海岸線」變成無限曲線,其長度也不斷增加,並趨向於無窮大。以後可以看到,分維才是「Koch島」海岸線的確切特徵量,即海岸線的分維均介於1到2之間。 這些自然現象,特別是物理現象和分形有著密切的關系,銀河系中的若斷若續的星體分布,就具有分維的吸引子。多孔介質中的流體運動和它產生的滲流模型,都是分形的研究對象。這些促使數學家進一步的研究,從而產生了分形幾何學。
編輯本段芒德勃羅和電子計算機對分形幾何的影響
電子計算機圖形顯示協助了人們推開分形幾何的大門。這座具有無窮層次結構的宏偉建築,每一個角落裡都存在無限嵌套的迷宮和迴廊,促使數學家和科學家深入研究。 法國數學家芒德勃羅這位計算機和數學兼通的人物,對分形幾何產生了重大的推動作用。他在1975、1977和1982年先後用法文和英文出版了三本書,特別是《分形:形、機遇和維數》以及《自然界中的分形幾何學(Fractal Geometry of Nature)》,開創了新的數學分支:分形幾何學。「分形」(fractal)這個詞正是芒德勃羅在1975年造出來的,詞根是拉丁文的fractus,是「破碎」的意思。
編輯本段分形幾何的內容
分形幾何學的基本思想是:客觀事物具有自相似的層次結構,局部與整體在形態、功能、信息、時間、空間等方面具有統計意義上的相似性,稱為自相似性。例如,一塊磁鐵中的每一部分都像整體一樣具有南北兩極,不斷分割下去,每一部分都具有和整體磁鐵相同的磁場。這種自相似的層次結構,適當的放大或縮小幾何尺寸,整個結構不變。
編輯本段關於維數
維數是幾何對象的一個重要特徵量,它是幾何對象中一個點的位置所需的獨立坐標數目。在歐氏空間中,人們習慣把空間看成三維的,平面或球面看成二維,而把直線或曲 分形幾何作品
線看成一維。也可以稍加推廣,認為點是零維的,還可以引入高維空間,對於更抽象或更復雜的對象,只要每個局部可以和歐氏空間對應,也容易確定維數。但通常人們習慣於整數的維數。 分形理論認為維數也可以是分數,這類維數是物理學家在研究混沌吸引子等理論時需要引入的重要概念。為了定量地描述客觀事物的「非規則」程度,1919年,數學家從測度的角度引入了維數概念,將維數從整數擴大到分數,從而突破了一般拓撲集維數為整數的界限。
編輯本段維數和測量的關系
維數和測量有著密切的關系,下面我們舉例說明一下分維的概念。 當我們畫一根直線,如果我們用 0維的點來量它,其結果為無窮大,因為直線中包含無窮多個點;如果我們用一塊平面來量它,其結果是 0,因為直線中不包含平面。那麼,用怎樣的尺度來量它才會得到有限值哪?看來只有用與其同維數的小線段來量它才會得到有限值,而這里直線的維數為 1(大於0、小於2)。 對於我們上面提到的Koch曲線,其整體是一條無限長的線折疊而成,顯然,用小直線段量,其結果是無窮大,而用平面量,其結果是 0(此曲線中不包含平面),那麼只有找一個與「寇赫島」曲線維數相同的尺子量它才會得到有限值,而這個維數顯然大於 1、小於 2,那麼只能是小數了,所以存在分維。經過計算「寇赫島」曲線的豪斯多夫維數(分維數)為d=log(4)/log(3)=1.26185950714... 定義 設分成的最小的閉集(區間,圓面,球體)佔全集的1/δ,充滿全集的最小閉集的個數為N,若極限D=(δ→0)ln(N)/ln(1/δ)存在,則稱D為此集合的分形維數。
編輯本段分形幾何學的應用
分形幾何學已在自然界與物理學中得到了應用。如在顯微鏡下觀察落入溶液中的一粒花粉,會看見它不間斷地作無規則運動(布朗運動),這是花粉在大量液體分子的無規則碰撞(每秒鍾多達十億億次)下表現的平均行為。布朗粒子的軌跡,由各種尺寸的折線連成。只要有足夠的解析度,就可以發現原以為是直線段的部分,其實由大量更小尺度的折線連成。這是一種處處連續,但又處處無導數的曲線。這種布朗粒子軌跡的分維是 2,大大高於它的拓撲維數 1. 在某些電化學反應中,電極附近沉積的固態物質,以不規則的樹枝形狀向外增長。受到污染的一些流水中,粘在藻類植物上的顆粒和膠狀物,不斷因新的沉積而生長,成為帶有許多須須毛毛的枝條狀,就可以用分維。 自然界中更大的尺度上也存在分形對象。一枝粗干可以分出不規則的枝杈,每個枝杈繼續分為細杈……,至少有十幾次分支的層次,可以用分形幾何學去測量。 有人研究了某些雲彩邊界的幾何性質,發現存在從 1公里到1000公里的無標度區。小於 1公里的雲朵,更受地形概貌影響,大於1000公里時,地球曲率開始起作用。大小兩端都受到一定特徵尺度的限制,中間有三個數量級的無標度區,這已經足夠了。分形存在於這中間區域。 近幾年在流體力學不穩定性、光學雙穩定器件、化學震盪反映等試驗中,都實際測得了混沌吸引子,並從實驗數據中計算出它們的分維。學會從實驗數據測算分維是最近的一大進展。分形幾何學在物理學、生物學上的應用也正在成為有充實內容的研究領域。
編輯本段分形幾何的意義
上世紀80年代初開始的「分形熱」經久不息。分形作為一種新的概念和方法,正在許多領域開展應用探索。美國物理學大師約翰·惠勒說過:今後誰不熟悉分形,誰就不能被稱為科學上的文化人。由此可見分形的重要性。 中國著名學者周海中教授認為:分形幾何不僅展示了數學之美,也揭示了世界的本質,還改變了人們理解自然奧秘的方式;可以說分形幾何是真正描述大自然的幾何學,對它的研究也極大地拓展了人類的認知疆域。 分形幾何學作為當今世界十分風靡和活躍的新理論、新學科,它的出現,使人們重新審視這個世界:世界是非線性的,分形無處不在。分形幾何學不僅讓人們感悟到科學與藝術的融合,數學與藝術審美的統一,而且還有其深刻的科學方法論意義。
http://ke..com/view/44498.htm

『肆』 數學-分行理論

主 【分形幾何-數學基礎及其應用(第2版)】 譯者:曾文曲 人民郵電出版社
【分形理論及其在分子科學中的應用】李後強,汪富泉 - 1993 - 科學出版社
【分形理論及其應用】辛厚文 - 1993 - 中國科學技術大學出版社
【分形理論及其應用】董連科 - 1991 - 遼寧科學技術出版社
【分形】李水根 高等教育出版社
【分形】張濟忠 清華大學出版社 註:張濟忠這本書可在線閱讀網址如下:
http://books.google.com/books?hl=zh-CN&lr=&id=6IUarHeMWpAC&oi=fnd&pg=PT11&dq=%E5%88%86%E5%BD%A2& ots=0lJ9vaEFUF&sig=_ZVD86u57FbhSu9h_Xp7MP6HwHo
次 分形理論是當今十分風靡和活躍的新理論、新學科。分形的概念是美籍數學家芒德勃羅首先提出的。分形理論的數學基礎是分形幾何學,即由分形幾何衍生出分形信息、分形設計、分形藝術等應用。
分形理論的最基本特點是用分數維度的視角和數學方法描述和研究客觀事物,也就是用分形分維的數學工具來描述研究客觀事物。它跳出了一維的線、二維的面、三維的立體乃至四維時空的傳統藩籬,更加趨近復雜系統的真實屬性與狀態的描述,更加符合客觀事物的多樣性與復雜性。

『伍』 數學分形和統計分形

自然界的許多事物和現象表現出極為復雜的形態,並非所顯示的那樣理想化.自相似性或標度不變性往往以統計方式表現出來,即當改變尺度時,在該尺度包含的部分統計學的特徵與整體是相似的.這種分形是數學分形的一種推廣,叫做統計分形.

數學分形是一種理想化的情況,它必須具備兩個條件:

(1)數學分形曲線必須具有無窮的「層次」結構,像Koch曲線那樣;數學分形必須是無限點的集合,像Cantor集合那樣.只有無窮的層次結構,才能使自相似性或標度不變性處處成立.

(2)數學分形的任何一個局部放大後,都和整體在形狀,數量以及統計分布上完全相似.

數學分形是分析自然界復雜事物的一個數學模型.要具體應用到真實的自然現象,應對數學分形做些推廣和修正:①由無窮「層次」結構到有限的「層次」結構,或由無窮集合到有限集合的推廣,這里就產生了在一定范圍內自相似性或標度不變性成立的問題,即無標度區間的問題;②由嚴格的數學相似到近似的統計相似性的推廣.

『陸』 德國數學康托爾構造的這個圖形叫分形,稱做康托爾集.從長度為1的線段開始,康托爾取走其中間三分之一而

第一次操作後餘下的線段之和為1-

1
3

第二次操作後餘下的線段之和為(1-
1
3
2

第六次操作後餘下的線段之和為(1-
1
3
6=
64
729

故答案為:
64
729

『柒』 什麼是分形數學


動力系統中的分形集是近年分形幾何中最活躍和引人入勝的一個研究領域。動力系統的奇異吸引子通常都是分形集,它們產生於非線性函數的迭代和非線性微分方程中。1963年,氣象學家洛倫茲(E.N.Lorenz)在研究流體的對流運動時,發現了以他的名字命名的第一個奇異吸引子,它是一個典型的分形集。

1976年,法國天文學家伊儂(M.Henon)考慮標准二次映射迭代系統時獲得伊儂吸引子。它具有某種自相似性和分形性質。1986年勞威爾(H.A.Lauwerier)將斯梅爾的馬蹄映射變形成勞威爾映射,其迭代下不穩定流形的極限集成為典型的奇異吸引子,它與水平線的截面為康托集。1985年,格雷波基(C.Grebogi)等構造了一個二維迭代函數系統,其吸附界是維爾斯特拉斯函數,並得到盒維數。1985年,邁克多納(S.M.MacDonald)和格雷波基等得到分形吸附界的三種類型:

(1) 局部不連通的分形集;

(2) 局部連通的分形擬圓周;

(3) 既不局部連能又不是擬圓周。前兩者具有擬自相似性。

動力系統中另一類分形集來源於復平面上解析映射的迭代。朱利亞(G.Julia)和法圖(P.Fatou)於1918-1919年間開創這一研究。他們發現,解析映射的迭代把復平面劃分成兩部分,一部分為法圖集,另一部分為朱利亞集(J集)。他們在處理這一問題時還沒有計算機,完全依賴於他們自身固有的想像力,因此他們的智力成就受到局限。隨後50年間,這方面的研究沒有得到什麼進展。

隨著可用機算機來做實驗,這一研究課題才又獲得生機。1980年,曼德爾布羅特用計算機繪出用他名字命名的曼德爾布羅特集(M集)的第一張圖來。1982道迪(A.Douady)構造了含參二次復映射fc ,其朱利亞集J(fc)隨參數C的變化呈現各種各樣的分形圖象,著名的有道迪免子,聖馬科吸引子等。同年,茹厄勒(D.Ruelle)得到J集與映射系數的關系,解新局面了解析映射擊集豪斯道夫維數的計算問題。茄勒特(L.Garnett)得到J(fc)集豪斯道夫維數的數值解法。1983年,韋當(M.Widom)進一步推廣了部分結果 。法圖1926年就就開始整函數迭代的研究。1981年密休威茨(M.Misiuterwicz)證明指數映射的J集為復平面,解決了法圖提出的問題,引起研究者極大興趣。發現超越整函數的J集與有理映射J的性質差異,1984年德萬尼(R.L.Devanney)證明指數映射Eλ的J(Eλ)集是康托束或復平面而J(fc)是康托塵或連通集。

復平面上使J(fc)成為連通集的點C組成M集即曼德爾布羅特集,尤更斯(H.Jurgens)和培特根(H-O.Peitgen)認為,M集的性質過去一直是並且將來繼續是數學研究的一個巨大難題。通過將數學理論與計算機圖形學實驗加以融合,及道迪、扈巴德(H.Hubbard)等人在這方面進行的基礎性研究工作,在解決這一難題方面已取得重大進展,使人們加深了對M集的了解。道迪和扈巴德1982年證明M集是連通的和單連通的,人們猜測M集是局部連通的,目前每一張計算機圖形都證實了這一猜測,但至今還沒有人能給予證明。M是否為弧連通,目前尚不清楚。M集邊界的維數也是值得研究的問題之一。

M集除了將J集分成連通與非連通的兩類之外,還起著無窮個J集的圖解目錄表作用,即把M集C點周圍的圖形放大就是與C點有關的J集的組成部分。但這一發現的數學密性至今仍未確定,譚磊(Tan Lei)1985年證明了在每一個密休威茨點鄰近M集與相關的J集之間存在著相似性。尤金斯等在M集的靜電位研究中獲得與自然形貌相似的分形圖象。目前包括尤金斯等在內的很多研究人員都致力於藉助計算機活動錄象探索M集。其它一些分形集的研究工作正在取得進展。1990年德萬尼通過數值實驗觀察到M集的復雜圖形由許多不同周期的周期軌道的穩定區域共同構成。1991年黃永念運用他提出的代數分析法證明了這一事實,研究了M集及其廣義情況周期軌道整體解析特性。

巴斯萊(B.M.Barnsley)和德門科(S.Demko)1985年引入迭代函數系統,J集及其其它很多分形集都是某些迭代函數的吸引集,用其它方法產生的分形集也可用迭代函數系逼近。1988年,勞威爾通過數值研究發現畢達哥拉斯樹花是一迭代函數系的J集。1985年巴斯萊等研究含參數的函數系迭代動力系統,得到M集D並D與M在連通性上的差異。在一線性映射系迭代下,可以產生著名的分形曲線——雙生龍曲線。1986年水谷(M.Mitzutani)等對其動力系統進行了研究。

一般動力系統中的分形集,其豪斯道夫維數dH難以通過理論方法或計算方法求得。對於有迭式構造的分形集,貝德浮德(T.Bedford)等在1986年已給出卓有成效的演算法,但對一般非線性映射迭代動力系統產生的分形集,這些結果都難以應用,其豪斯道夫維數dH的結論與演算法實際上沒有。卡普蘭(j.L.Kaplan)和約克(J.A.York) 1979年引入李雅普洛夫維數dL並猜測dL=dH。1981年勒拉皮爾證明dH≤dL。楊(L.S.Young)1982年證明二維情況下dH=dL。艾茄瓦(A.K.Agarwal)等1986年給出例子說明高維情形卡普蘭-約克猜測不成立。這一猜測力圖從動力學特徵推斷幾何結構,其反問題是由吸引子維數推斷混沌力學,這是值得研究的問題。但目前工作甚少且主要限於計算機研究。此外,含參動力系統在混沌臨界態或突變處的分形集維數也有待進一步研究。

多重分形(multifractals)是與動力系統奇異吸引子有關的另一類重要分形集,其概念首先由曼德布羅特和倫依(A.Renyi)引入。法默(J.D.Farmer)等在1983年定義了多重分形廣義維數。1988年博爾(T.Bohr)等人將拓撲熵引入多重分形的動力學描述與熱力學類比。1988年,阿內多(A.Arneodo)等人將子波變換用於多重分形研究。費德(J.Feder)、特爾(T.Tel)等人進行了多重分形子集及標度指數的研究。阿姆特里卡等研究了多重分形的逆問題,提出廣義配分函數,給出廣義超越維數,對過去的維數進行了修正。李(J.Lee)等發現了多重分形熱力學形式上的相變。1990年,伯克(C.Beck)得到廣義維數的上下界和極限並研究了多重分形的均勻性量度。曼德布羅特研究了隨機多重分形及負分維。1991年科維克(Z.Kov.acs)等引入雙變數迭代系統,最大特徵值和吉布斯勢導出維數、熵、李雅普洛夫指數,提供了對多重分形相變分類的一般方案。對於多重分形相變分類的一般方案。對於多重分形目前雖已提出不少處理方法,但從數學的觀點上看,還不夠嚴格,部分問題的數學處理難度也較大。

分形理論真正發展起來才十餘年,並且方興未艾,很多方面的理論還有待進一步研究。值得注意的是,近年分形理論的應用發展遠遠超過了理論的發展,並且給分形的數學理論提出了更新更高的要求。各種分形維數計算方法和實驗方法的建立、改進和完善,使之理論簡便,可操作性強,是應用分形的科學家們普遍關注的問題。而在理論研究上,維數的理論計算、估計、分形重構(即求一動力系統,使其吸引集為給定分形集)、J集和M集及其推廣形式的性質、動力學特徵及維數研究將會成為數學工作者們十分活躍的研究領域。多重分形理論的完善、嚴格以及如何用這些理論來解決實際問題可能會引起科學家們廣泛的興趣,而動力學特徵、相變和子波變換可能會成為其中的幾個熱點。

在哲學方面,人們的興趣在於自相似性的普適性,M集和J集表現出的簡單性與復雜性,復數與實數的統一性,多重分形相變與突變論的關系,自組織臨界(SOC)現象的刻畫以及分形體系內部的各種矛盾的轉化等。可以預言,一場關於分形科學哲學問題的討論即將在國內展開

『捌』 分形理論簡述

分形幾何(Fractal Geometry)的概念是由曼德布羅特(B.B.Mandelbrot.1975)在1975年首先提出的.幾十年來,它已經發展成為一門新型的數學分支.這是一個研究和處理自然與工程中不規則圖形的強有力的理論工具,它的應用幾乎涉及自然科學的各個領域,甚至於社會科學,並且實際上正起著把現代科學各個領域連接起來的作用,分形是從新的角度解釋了事物發展的本質.

分形(fractal)一詞最早由B.B.Mandelbrot於1975年從拉丁文fractus創造出來,《自然界中的分形幾何》(Mandelbrot,1982)為其經典之作.最先它所描述的是具有嚴格自相似結構的幾何形體,物體的形狀與標度無關,子體的數目N(r)與線性尺度(標度r)之間存在冪函數關系,即N(r)∝1/rD.分形的核心是標度不變性(或自相似性),即在任何標度下物體的性質(如形狀,結構等)不變.數學上的分形實際是一種具有無窮嵌套結構的極限圖形,分形的突出特點就是不存在特徵尺度,描述分形的特徵量是分形維數D.不過,現實的分形只是在一定的標度范圍內呈現出自相似或自仿射的特性,這一標度范圍也就稱為(現實)分形的無標度區,在無標度區內,冪函數關系始終成立.

分形理論認為,分形內部任何一個相對獨立的部分,在一定程度上都是整體的再現和相對縮影(分形元),人們可以通過認識部分來認識整體.但是分形元只是構成整體的單位,與整體相似,並不簡單地等同於整體,整體的復雜性遠遠大於分形元.更為重要的是,分形理論指出了分形元構成整體所遵循的原理和規律,是對系統論的一個重要的貢獻.

從分析事物的角度來看,分形論和系統論體現了從兩個極端出發達到對事物全面認識的思路.系統論從整體出發來確立各部分的系統性質,從宏觀到微觀考察整體與部分的相關性;而分形論則是從部分出發確立整體性質,沿著從微觀到宏觀的方向展開.系統論強調部分對整體的依賴性,而分形論則強調整體對部分的依賴性,兩者的互補,揭示了系統多層次面、多視角、多方位的聯系方式,豐富和深化了局部與整體之間的辯證關系.

分形論的提出,對科學認識論與方法論具有廣泛而深遠的意義.第一,它揭示了整體與部分之間的內在聯系,找到了從部分過渡到整體的媒介與橋梁,說明了部分與整體之間的信息「同構」.第二,分形與混沌和現代非線性科學的普遍聯系與交叉滲透,打破了學科間的條塊分割局面,使各個領域的科學家團結在一起.第三,為描述非線性復雜系統提供了簡潔有力的幾何語言,使人們的系統思維方法由線性進展到非線性,並得以從局部中認識整體,從有限中認識無限,從非規則中認識規則,從混沌中認識有序.

分形理論與耗散結構理論、混沌理論是相互補充和緊密聯系的,都是在非線性科學的研究中所取得的重要成果.耗散結構理論著眼於從熱力學角度研究在開放系統和遠離平衡條件下形成的自組織,為熱力學第二定律的「退化論」和達爾文的「進化論」開辟了一條聯系通道,把自然科學和社會科學置於統一的世界觀和認識論中.混沌理論側重於從動力學觀點研究不可積系統軌道的不穩定性,有助於消除對於自然界的確定論和隨機論兩套對立描述體系之間的鴻溝,深化對於偶然性和必然性這些范疇的認識.分形理論則從幾何角度,研究不可積系統幾何圖形的自相似性質,可能成為定量描述耗散結構和混沌吸引子這些復雜而無規則現象的有力工具,進一步推動非線性科學的發展.

分形理論是一門新興的橫斷學科,它給自然科學、社會科學、工程技術、文學藝術等極廣泛的學科領域提供了一般的科學方法和思考方式.就目前所知,它有很高程度的應用普遍性.這是因為,具有標度不變性的分形結構是現實世界普遍存在的一大類結構,該結構的含義十分豐富,它不僅指研究對象的空間幾何形態,而是一般地指其拓撲維(幾何維數)小於其測量維數的點集,如事件點的分布,能量點的分布,時間點的分布,過程點的分布,甚至是意識點、思維點的分布.

分形思想的基本點可以簡單表述如下:分形研究的對象是具有自相似性的無序系統,其維數的變化是連續的.從分形研究的進展看,近年來,又提出若干新的概念,其中包括自仿射分形、自反演分形、遞歸分形、多重分形、胖分形等等.有些分形常不具有嚴格的自相似性,正如定義所表達的,局部以某種方式與整體相似.

分形理論的自相似性概念,最初是指形態或結構的相似性,即在形態或結構上具有相似性的幾何對象稱為分形,研究這種分形特性的幾何稱為分形幾何學.隨著研究工作的深入發展和領域的拓展,又由於一些新學科,如系統論、資訊理論、控制論、耗散結構理論和協同論等相繼涌現的影響,自相似性概念得到充實與擴展,把信息、功能和時間上的自相似性也包含在自相似性概念之中.於是,把形態(結構)、或信息、或功能、或時間上具有自相似性的客體稱為廣義分形.廣義分形及其生成元可以是幾何實體,也可以是由信息或功能支撐的數理模型,分形體系可以在形態(結構)、信息和功能各個方面同時具有自相似性,也允許只在某一方面具有自相似性;分形體系中的自相似性可以是完全相似,這種情況是不多見的,也可以是統計意義上的相似,這種情況佔大多數,相似性具有層次或級別上的差別.級別最低的為生成元,級別最高的為分形體系的整體.級別愈接近,相似程度越好,級別相差愈大,相似程度越差,當超過一定范圍時,則相似性就不存在了.

分形具有以下幾個基本性質:

(1)自相似性是指事物的局部(或部分)與整體在形態、結構、信息、功能和時間等方面具有統計意義上的相似性.

(2)適當放大或縮小分形對象的幾何尺寸,整個結構並不改變,這種性質稱為標度不變性.

(3)自然現象僅在一定的尺度范圍內,一定的層次中才表現出統計自相似性,在這樣的尺度之外,不再具有分形特徵.換言之,在不同尺度范圍或不同層次上具有不同的分形特徵.

(4)在歐氏幾何學中,維數只能是整數,但是在分形幾何學中維數可以是整數或分數.

(5)自然界中分形是具有冪函數分布的隨機現象,因而必須用統計的方法進行分析和處理.

目前分形的分類有以下幾種:①確定性分形與隨機分形;②比例分形與非比例分形;③均勻分形與非均勻分形;④理論分形與自然分形;⑤空間分形與分形事件(時間分形).

分形研究應注意以下幾個問題:

(1)統計性(隨機性).研究統計意義上的分形特徵,由統計數據分析中找出穩態規律,才能最客觀地描述自然紋理與粗糙度.從形成過程來看,分形是一個無窮隨機過程的體現.如大不列顛海岸線的復雜度是由長期海浪沖擊、侵蝕及風化形成的,其他許多動力過程、凝聚過程也都是無窮隨機的,不可能由某個特徵量來形成.因此,探討分形與隨機序列、信息熵之間的內在聯系是非常必要的.

(2)全局性.分形是整體與局部比較而存在的,它包括多層嵌套及無窮的精細結構.研究一個平面(二維)或立體(三維)的粗糙度,要考慮全局范圍各個方向的平穩性,即區別各向同性或各向異性分布規律.

(3)多標度性.一個物體的分形特性通常是在某些尺度下體現出來,在另一些尺度下則不是分形特性.理想的無標度區幾乎不存在,只有從多標度中研究分形特性才較實際.

模型的建立,其實是分形(相似性)模型的建立.利用相似性原理,建立模型單元,對預測單元進行分形處理和預測.

分形的正問題是給出規律,通過迭代和遞推過程產生分形,產生的幾何對象顯然具有某種相似性.反問題叫做分形重構.廣義而言,它指任何一個幾何上認為是分形的圖形,能否找到產生它的規律,以某種方式來生成它.當我們研究非線性動力學時,混沌動力學會產生分形,而分形重構則是動力學系統研究的逆問題.由於存在「一因多果」、「多因一果」,由分維重構分形還需加入另外參數.

臨界現象與分形有關.重整化群是研究臨界現象的一種方法.該方法首先對小尺寸模型進行計算,然後被重整化至大的或更大的尺度.如果我們有網格狀的一組元素,每個元素具有一定的滲透概率,重整化群方法的一個應用就是計算滲透的開始問題.當元素滲透率達到某一臨界值時,這一組元素的滲透流動就會突然地發生.一旦流動開始後,相聯結元素之間便具有分形結構.

自組織臨界現象的概念可以用來分析地震活動性.按照這個概念,一個自然界的系統處在穩定態的邊緣,一旦偏離這個狀態,系統會自然地演化回到邊緣穩定的狀態.臨界狀態不存在天然的長度標度,因而是分形的.簡單的細胞自動機模型可以說明這種自組織臨界現象.

分形理論作為非線性科學的一個分支,是研究自然界空間結構復雜性的一門學科,可從復雜的看似無序的圖案中,提取出確定性、規律性的參量.既可以反演分形結構的形成機制,又可以從看似隨機的演化過程(時間序列)中推測體系演化的結果,近年來倍受地球科學家的注意.在地質統計學,孔隙介質、儲層非均勻性及石油勘探開發,固相表面或兩相界面,岩石破裂、斷層及地震和地形、地貌學等地球科學各個領域得到了廣泛的應用.

自20世紀80年代初以來,一些專家學者注意到了地質學中的自相似現象,並試圖將分形理論運用於地學之中.以地質學中普遍存在的自相似性現象、地質體高度不規則性和分割性與層次性、地質學中重演現象的普遍性、分形幾何學在其他學科中應用實例與地質學中的研究對象的相似性、地質學中存在一些冪函數關系等為內在基礎,以地質學定量化的需要、非線性地質學的發展及線性地質學難以解決諸多難點、分形理論及現代測試和電算技術的發展為外在基礎,使分形理論與地質學相結合成為可能,它的進一步發展將充實數學地質的研究內容並推動數學地質邁上一個新台階.目前,分形理論應用於地球科學主要包括以下兩個方面的研究:

(1)對「地質存在」——地質體或某些地質現象的分形結構分析,求取相應分形維數,尋找分維值與有關物理參量之間的聯系,探討分形結構形成的機理.這方面的研究相對較多,如人們已對斷裂、斷層和褶皺等地質構造(現象)進行了分形分析,探討分維值與岩石力學性質等之間的關系;從大到海底(或大陸)地貌,小到納米級的微晶表面證實了各類粗糙表面具有分形特徵;計算了河流網路,斷裂網路,地質多孔介質和粘性指進的分維值以及脈厚與品位或品位與儲量等之間的分形關系.

(2)對「地質演化」——地質作用過程進行分形分析,求取分形維數並考察其變化趨勢,從而預測演化的結果.例如,科學家們通過對強震前小震分布的分形研究表明,強震前普遍出現降維現象,從而為地震預報提供有力理論工具.當今的研究,不僅僅局限於分維數的計算,分形模型的建立;而更著重於解釋地質學中引起自相似性特徵的原因或成因,自相似體系的生成過程及模擬,以及用分形理論解決地質學中的疑難問題與實踐問題,如地震和災害地質的預報、石油預測、岩體力學類型劃分、成礦規律與成礦預測等.地球化學數據在很大程度上反映了地質現象的結構特徵.分維是描述分形結構的定量參數,它有可能揭示出地球化學元素空間分布的內在規律.

分維與地質異常有一定的關系.我們可以對不同地段以一定的地質內容為參量對比它們分維大小的差異,以此求得結構地段的位置及范圍,從而確定地質異常;也可以對不同時期可恢復的歷史地質結構格局分別求分維,還可以確定分維背景值.分形是自然界中普遍存在的一種規律性.

總之,分形理論已經滲透到地學領域的各個角落,應用范圍涉及地球物理學、地球化學、石油地質學、構造地質學及災害地質學等.

『玖』 什麼是分形數學

分形一般是指「一個粗糙或零碎的幾何形狀,可以分成數個部分,且每一部分都(至少會大略)是整體縮小尺寸的形狀」[1],此一性質稱為自相似。分形一詞是由本華·曼德博於1975年提出的,有「零碎」、「破裂」之意。分形一般有以下特質:[2] 在任意小的尺度上都能有精細的結構;太不規則,以至難以傳統歐氏幾何的語言來描述;(至少是大略或任意地)自相似豪斯多夫維數會大於拓撲維數(但在空間填充曲線如希爾伯特曲線中為例外);有著簡單的遞歸定義。因為分形在所有的大小尺度下都顯得相似,所以通常被認為是無限復雜的(以不嚴謹的用詞來說)。自然界里一定程度類似分形的事物有雲、山脈、閃電、海岸線和雪片等等。但是,並不是所有自相似的東西都是分形,如實線雖然在形式上是自相似的,但卻不符合分形的其他特質。 17世紀時,數學家兼哲學家萊布尼茨思考過遞回的自相似,分形的數學從那時開始漸漸地成形(雖然他誤認只有直線會自相似)。直到1872年,卡爾·魏爾施特拉斯給出一個處處連續但處處不可微的函數,在今日被認為是分形的圖形才出現。1904年,科赫·范·卡區不滿意魏爾施特拉斯那抽象且解析的定義,給出一個相似函數但更幾何的定義,今日稱之為科赫雪花。1915年瓦茨瓦夫·謝爾賓斯基造出了謝爾賓斯基三角形;隔年,又造出了謝爾賓斯基地毯。原本,這些幾何分形都被認為是分形,而不如現今所認為的二維形狀。1938年,保羅·皮埃爾·萊維在他的論文《Plane or Space Curves and Surfaces Consisting of Parts Similar to the Whole》中將自相似曲線的概念更進一步地推進,他在文中描述了一個新的分形曲線-萊維C形曲線。格奧爾格·康托爾也給出一個具有不尋常性質的實數子集-康托爾集,今日也被認為是分形。復平面的迭代函數在19世紀末20世紀初被儒勒·昂利·龐加萊、菲利克斯·克萊因、皮埃爾·法圖和加斯東·茹利亞等人所研究,但直到現在有電腦繪圖的幫忙,許多他們所發現的函數才顯現出其美麗來。 1960年代,本華·曼德博開始研究自相似,且寫下一篇論文《英國的海岸線有多長?統計自相似和分數維度》。最後,1975年,曼德博提出了「分形」一詞,來標記一個物件,其豪斯多夫維數會大於拓撲維數。曼德博以顯著的電腦架構圖像來描繪此一數學定義,這些圖像有著普遍的映象;許多都基於遞歸,以至「分形」的一般意思。造法 四個製造分形的一般技術如下:逃逸時間分形:由空間(如復平面)中每一點的遞推關系式所定義,例如曼德博集合、茹利亞集合、火燒船分形、新分形和李奧普諾夫分形等。由一次或兩次逃逸時間公式的迭代生成的二維矢量場也會產生分形,若點在此一矢量場中重復地被通過。迭代函數系統:這些分形都有著固定的幾何替代規則。康托爾集、謝爾賓斯基三角形、謝爾賓斯基地毯、空間填充曲線、科赫雪花、龍形曲線、丁字方形、孟傑海綿等都是此類分形的一些例子。隨機分形:由隨機而無確定過程產生,如布朗運動的軌跡、萊維飛行、分形風景和布朗樹等。後者會產生一種稱之為樹狀分形的分形,如擴散限制聚集或反應限制聚集叢。奇異吸引子:以一個映射的迭代或一套會顯出混沌的初值微分方程所產生。 [編輯]分類 分形也可以依據其自相似來分類,有如下三種:精確自相似:這是最強的一種自相似,分形在任一尺度下都顯得一樣。由迭代函數系統定義出的分形通常會展現出精確自相似來。半自相似:這是一種較松的自相似,分形在不同尺度下會顯得大略(但非精確)相同。半自相似分形包含有整個分形扭曲及退化形式的縮小尺寸。由遞推關系式定義出的分形通常會是半自相似,但不會是精確自相似。統計自相似:這是最弱的一種自相似,這種分形在不同尺度下都能保有固定的數值或統計測度。大多數對「分形」合理的定義自然會導致某一類型的統計自相似(分形維數本身即是個在不同尺度下都保持固定的數值測度)。隨機分形是統計自相似,但非精確及半自相似的分形的一個例子.

『拾』 什麼是分形幾何

我們在學校里學習的可以說都是經典幾何學,以規則且光滑的幾何圖形,如球面、雙曲面、馬鞍面、花瓶表面等幾何圖形為研究對象。但自然界中大量存在的事物或數學模型卻是極不規則、極不光滑的。如山巒、河流里的旋渦、海岸、雲朵及土地龜裂的裂紋、玻璃窗上的冰花等。這些圖形使傳統的幾何學和古典數學顯得有些束手無策。

當你漫步在海灘時,你可曾想過海岸線有多長嗎?冬天,當雪花落下來時,你可曾留心過每個雪花的輪廓曲線是什麼樣的嗎?這些不規則,但又很常見的圖形,雖不會引起常人的重視,但這些問題在當代數學家芒德勃羅的眼中卻有著不同的意義。他根據長期觀察分析、收集與總結,創立了分形幾何,很快,就引起了許多學科的關注,這是由於分形幾何不僅在理論上,而且在實際生活中都具有重要價值。

分形幾何是一門邊緣學科,有著極其廣泛的應用。比如,近年在研究治療癌症的過程中,人們認為癌具有自相似性。癌細胞發育停滯,而分裂速度異常快,不規則、不協調,一片混亂,在「癌區」存在著「癌變分形元」。研究人員設法促進癌的分化發育,以突破滯點。目前許多葯物與療法正是根據這一原理進行的。

在上世紀70年代中期以前,芒德勃羅一直使用英文fractional一詞來表示他的分形思想。因此,取拉丁詞之頭,采英文之尾的fractal,本意是不規則的、破碎的、分離的。芒德勃羅是想用此詞來描述傳統幾何學所不能描述的一大類復雜無章的幾何對象。例如,彎彎曲曲的海岸線、起伏不平的山脈、粗糙不堪的斷面、變幻無常的浮雲、九曲回腸的河流、縱橫交錯的血管、令人眼花繚亂的滿天繁星等。它們的特點是,極不規則或極不光滑。直觀而粗略地說,這些對象都是分形幾何體。

中國著名學者周海中教授認為:分形幾何不僅展示了數學之美,也揭示了世界的本質,還改變了人們理解自然奧秘的方式;可以說分形幾何是真正描述大自然的幾何學,對它的研究也極大地拓展了人類的認知疆域。

分形幾何學作為當今世界十分風靡和活躍的新理論、新學科,它的出現,使人們重新審視這個世界:世界並非線性的一成不變,分形無處不在。分形幾何學不僅讓人們感悟到科學與藝術的融合,數學與藝術審美的統一,而且還有其深刻的科學方法與意義。

無盡相似的藝術

閱讀全文

與數學分形是用什麼做的相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:976
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1653
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059