① 初,高中數學常用證明方法有哪些
1.比較法比較法是證明不等式的最基本、最重要的方法之一,它是兩個實數大小順序和運算性質的直接應用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。
2.綜合法利用已知事實(已知條件、重要不等式或已證明的不等式)作為基礎,藉助不等式的性質和有關定理,經過逐步的邏輯推理,最後推出所要證明的不等式,其特點和思路是「由因導果」,從「已知」看「需知」,逐步推出「結論」。3.分析法分析法是指從需證的不等式出發,分析這個不等式成立的充分條件,進而轉化為判定那個條件是否具備,其特點和思路是「執果索因」,即從「未知」看「需知」,逐步靠攏「已知」。4.反證法有些不等式的證明,從正面證不好說清楚,可以從正難則反的角度考慮,即要證明不等式A>B,先假設A≤B,由題設及其它性質,推出矛盾,從而肯定A>B。凡涉及到的證明不等式為否定命題、惟一性命題或含有「至多」、「至少」、「不存在」、「不可能」等詞語時,可以考慮用反證法。
5.換元法換元法是對一些結構比較復雜,變數較多,變數之間的關系不甚明了的不等式可引入一個或多個變數進行代換,以便簡化原有的結構或實現某種轉化與變通,給證明帶來新的啟迪和方法。主要有兩種換元形式。(1)三角代換法:多用於條件不等式的證明,當所給條件較復雜,一個變數不易用另一個變數表示,這時可考慮三角代換,將兩個變數都有同一個參數表示。此法如果運用恰當,可溝通三角與代數的聯系,將復雜的代數問題轉化為三角問題根據具體問題,實施的三角代換方法有:①若x2+y2=1,可設x=cosθ,y=sinθ;②若x2+y2≤1,可設x=rcosθ,y=rsinθ(0≤r≤1);③對於含有的不等式,由於|x|≤1,可設x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可設x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量換元法:在對稱式(任意交換兩個字母,代數式不變)和給定字母順序(如a>b>c等)的不等式,考慮用增量法進行換元,其目的是通過換元達到減元,使問題化難為易,化繁為簡。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t進行換元。
6.放縮法放縮法是要證明不等式A<B成立不容易,而藉助一個或多個中間變數通過適當的放大或縮小達到證明不等式的方法。放縮法證明不等式的理論依據主要有:(1)不等式的傳遞性;(2)等量加不等量為不等量;(3)同分子(分母)異分母(分子)的兩個分式大小的比較。常用的放縮技巧有:①舍掉(或加進)一些項;②在分式中放大或縮小分子或分母;③應用均值不等式進行放縮。
② 高等數學證明題的證明方法有哪些
用定理證明 或者 用定義證明
首先看看哪種方法比較適用,如果定理套不進去的話再想辦法套定義證明,因為用定理證明比較容易一些
如果還是沒有思路,看看題目是不是可以變形
③ 做數學證明題有什麼好方法嗎
我個人數學算是比較好的。淺談一下,數學證明題在考試中是最最最容易拿分的題目。很多人覺得不好做或者沒有好的方法去解答,是因為有這么一個誤區在裡面。
證明題切記一句話,很重要,不能用未知證已知。乍看下像是一句廢話,但實際很實用。一個證明題目中,可以分成兩部分,已知條件(這點就要自己細心分析了,包括基礎知識的變形啊、基本功啊、數學模型建模啊等)和求證結論。思路上可以倒著來推到結論,但證明過程一定要正著寫,就是用已知的真理、已知結論來推導出來,不管是不是廢話,是不是眾所周知的公理,只要不是題目給出的條件,就必須寫出來推導過程,這是拿分要點。
其次說一說思路怎麼來。一般要證明的東東比較不容易看出來,這個時候要到倒著來推導,先用題目給出的結論去推導題目的條件,切記,這個是思路!!比較容易得到中間它需要考察到你的關鍵知識點,一些定理變形雲雲。。如果是幾何題目就更容易找到思路,基本就是默認求證是正確的,然後需要一條或幾條關鍵的輔助線,這個就需要積累了,都是有規律的。 總之,思路要逆向來推導,先假設求證正確,反向推到已給條件,畫出輔助線,求出輔助定理。。證明過程一定要用題目給出的條件一步步來正明。
④ 證明的方法有哪些方法
證明方法
編輯
用於邏輯證明的方法,出現《邏輯學》和《數學》里。綜合法是一種從題設到結論的邏輯推理方法,也就是由因導果的證明方法。
綜合法
編輯
綜合法是一種從題設到結論的邏輯推理方法,也就是由因導果的證明方法。
分析法
編輯
分析法是一種從結論到題設的邏輯推理方法,也就是執果索因法的證明方法。分析法的證明路徑與綜合法恰恰相反。
反證法
編輯
由於原命題與逆否命題等效,所以當證明原命題有困難或者無法證明時,可以考慮證明它的逆否命題,通過正確推理如果逆否命題正確或者推出與原命題題設、公理、定理等不相容的結論,從而判定結論的反面不成立,也就證明了原命題的結論是正確的。
反證法視逆否命題的題設也就是原命題的結論的反面的情況又分為兩種:
1)歸謬法:若結論的反面只有一種情況,那麼把這種情況推翻就達到證明的目的了。
2)窮舉法:若結論的反面不只一種情況,則必須將所有情況都駁倒,這樣才能達到證明的目的。
前三種方法也叫演繹法。都是按照「從一般到特殊」的思維過程進行推理的。
歸納法
編輯
歸納法或歸納推理,有時叫做歸納邏輯,是從個別性知識,引出一般性知識的推理,是由已知真的前提,引出可能真的結論。它把特性或關系歸結到基於對特殊的代表的有限觀察的類型;或公式表達基於對反復再現的現象的模式的有限觀察的規律。
⑤ 高中數學常用證明方法有哪些
反證法、數學歸納法(不局限於證明)、分析法(從結論出發導出一系列等價或充分命題)
⑥ 尋求所有常用的數學證明方法
證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」
P=>Q
「P,當且僅當Q」
P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P
非P
P與(非P)
T
F
F
F
T
F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P
Q
非Q
P與(非Q)
非[P與(非Q)]
P蘊涵Q
T
T
F
F
T
T
T
F
T
T
F
F
F
T
F
F
T
T
F
F
T
F
T
T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與
「P蘊涵Q
」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。
⑦ 解數學證明題的技巧有哪些
證明題有三種思考方式
● 正向思維
對於一般簡單的題目,我們正向思考,輕而易舉可以做出。這里就不詳細講述了。
● 逆向思維
顧名思義,就是從相反的方向思考問題。在初中數學中,逆向思維是非常重要的思維方式,在證明題中體現的更加明顯。
同學們認真讀完一道題的題干後,不知道從何入手,建議你從結論出發。
例如:
可以有這樣的思考過程:要證明某兩條邊相等,那麼結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什麼條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去…
這樣我們就找到了解題的思路,然後把過程正著寫出來就可以了。
● 正逆結合
對於從結論很難分析出思路的題目,可以結合結論和已知條件認真的分析。
初中數學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。
給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰無不勝。
證明題要用到哪些原理
要掌握初中數學幾何證明題技巧,熟練運用和記憶如下原理是關鍵。
下面歸類一下,多做練習,熟能生巧,遇到幾何證明題能想到採用哪一類型原理來解決問題。
一、證明兩線段相等
1.兩全等三角形中對應邊相等。
2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。
4.平行四邊形的對邊或對角線被交點分成的兩段相等。
5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。
7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行於第三邊的直線分第二邊所成的線段相等。
9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。
10.圓外一點引圓的兩條切線的切線長相等或圓內垂直於直徑的弦被直徑分成的兩段相等。
11.兩前項(或兩後項)相等的比例式中的兩後項(或兩前項)相等。
12.兩圓的內(外)公切線的長相等。
13.等於同一線段的兩條線段相等。
二、證明兩個角相等
1.兩全等三角形的對應角相等。
2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。
5.同角(或等角)的餘角(或補角)相等。
6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等於它所夾的弧對的圓周角。
7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。
8.相似三角形的對應角相等。
9.圓的內接四邊形的外角等於內對角。
10.等於同一角的兩個角相等。
三、證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直於底邊。
2.三角形中一邊的中線若等於這邊一半,則這一邊所對的角是直角。
3.在一個三角形中,若有兩個角互余,則第三個角是直角。
4.鄰補角的平分線互相垂直。
5.一條直線垂直於平行線中的一條,則必垂直於另一條。
6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。
8.利用勾股定理的逆定理。
9.利用菱形的對角線互相垂直。
10.在圓中平分弦(或弧)的直徑垂直於弦。
11.利用半圓上的圓周角是直角。
四、證明兩直線平行
1.垂直於同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。
3.平行四邊形的對邊平行。
4.三角形的中位線平行於第三邊。
5.梯形的中位線平行於兩底。
6.平行於同一直線的兩直線平行。
7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行於第三邊。
五、證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等於第一條線段,證明餘下部分等於第二條線段。
3.延長短線段為其二倍,再證明它與較長的線段相等。
4.取長線段的中點,再證其一半等於短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
六、證明角的和差倍分
1.與證明線段的和、差、倍、分思路相同。
2.利用角平分線的定義。
3.三角形的一個外角等於和它不相鄰的兩個內角的和。
七、證明線段不等
1.同一三角形中,大角對大邊。
2.垂線段最短。
3.三角形兩邊之和大於第三邊,兩邊之差小於第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。
5.同圓或等圓中,弧大弦大,弦心距小。
6.全量大於它的任何一部分。
八、證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大於和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。
4.同圓或等圓中,弧大則圓周角、圓心角大。
5.全量大於它的任何一部分。
九、證明比例式或等積式
1.利用相似三角形對應線段成比例。
2.利用內外角平分線定理。
3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。
6.利用比利式或等積式化得。
十、證明四點共圓
1.對角互補的四邊形的頂點共圓。
2.外角等於內對角的四邊形內接於圓。
3.同底邊等頂角的三角形的頂點共圓(頂角在底邊的同側)。
4.同斜邊的直角三角形的頂點共圓。
5.到頂點距離相等的各點共圓。
⑧ 數學證明方法有哪些
比較法,綜合法,分析法,反證法,換元法,放縮法。
⑨ 數學證明方法的分類
證明命題的方法:
大多數命題都取下面兩種形式中的一種:
「若P,則Q」 P=>Q
「P,當且僅當Q」 P<=>Q
要證後一種。我們先證「P蘊涵Q」再證「Q蘊涵P」即可。
而證明「P蘊涵Q」通常有三種方法:
1。最直接的方法是,假設P使真的在設法去推導Q是真的。這里不必擔心P是假的的情況。因為「P蘊涵Q」自然是真的。(這涉及蘊涵的概念,相信你是清楚的)
2。第二種方法是寫出它的逆否「(非Q)蘊涵(非P)」然後證明它。
這時我們假定(非Q)是真的,然後設法推證非P是真的。
3。歸謬法。(反證法就是歸謬法!!!)
想真正弄清反證法,我們還得做些准備。
先看看什麼是矛盾吧,它的定義是精確的。
觀察P與(非P)這個命題。用真值表。
P 非P P與(非P)
T F F
F T F
我們發現,無論P是T還是F,命題P與(非P)永遠是F.這時我們說P與(非P)是一個矛盾。
再看一個真值表,討論P與(非Q).
P Q 非Q P與(非Q) 非[P與(非Q)] P蘊涵Q
T T F F T T
T F T T F F
F T F F T T
F F T F T T
我們發現非[P與(非Q)]和P蘊涵Q同T同F,他們是邏輯等價的。
現在我們可以討論反證法了。
運用反證法。假設P和非Q都是真的。然後尋找一個矛盾。由此斷定我們的假設是假的。即「非[P與(非Q)]」是真的。而這與 「P蘊涵Q 」等價。從而證明了P蘊涵Q真。
具體的證明需要運用具體數學知識,以上只是最一般的方法以及邏輯原理。
⑩ 在數學中有哪些比較經典而且奇妙的證明方法
1931年,奧地利數學家哥德爾,提出一條震驚學術界的定理——哥德爾不完備定理。該定理指出,我們目前的數學系統中,必定存在不能被證明也不能被證偽的定理。該定理一出,就粉碎了數學家幾千年的夢想——即建立完善的數學系統,從一些基本的公理出發,推導出一切數學的定理和公式。可哥德爾不完備定理指出:該系統不存在,因為其中一定存在,我們不能證明也不能證偽的「東西」,也就是數學系統不可能是完備的,至少它的完備性和相容性不能同時得到滿足。