導航:首頁 > 數字科學 > 數學從基礎到難的公式什麼的

數學從基礎到難的公式什麼的

發布時間:2022-10-09 22:30:28

㈠ 一些關於數學的難的公式

基本公式
(1)拋物線

y = ax^2 + bx + c (a≠0)

就是y等於a乘以x 的平方加上 b乘以x再加上 c

置於平面直角坐標系中

a > 0時開口向上

a < 0時開口向下

(a=0時為一元一次函數)

c>0時函數圖像與y軸正方向相交

c< 0時函數圖像與y軸負方向相交

c = 0時拋物線經過原點

b = 0時拋物線對稱軸為y軸

(當然a=0且b≠0時該函數為一次函數)

還有頂點公式y = a(x+h)* 2+ k ,(h,k)=(-b/(2a),(4ac-b^2)/(4a))

就是y等於a乘以(x+h)的平方+k

-h是頂點坐標的x

k是頂點坐標的y

一般用於求最大值與最小值和對稱軸

拋物線標准方程:y^2=2px (p>0)

它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 准線方程為x=-p/2

由於拋物線的焦點可在任意半軸,故共有標准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

(2)圓

球體積=(4/3)π(r^3)

面積=π(r^2)

周長=2πr =πd

圓的標准方程 (x-a)^2+(y-b)^2=r^2 註:(a,b)是圓心坐標

圓的一般方程 x2+y2+Dx+Ey+F=0 註:D^2+E^2-4F>0

(一)橢圓周長計算公式

按標准橢圓方程:長半軸a,短半軸b 設 λ=(a-b)/(a+b)

橢圓周長 L=π(a+b)(1 + λ^2/4 + λ^4/64 + λ^6/256 + 25λ^8/16384 +
......)

簡化:L≈π[1.5(a+b)- sqrt(ab)]

或 L≈π(a+b)(64 - 3λ^4)/(64 - 16λ^2)

(二)橢圓面積計算公式

橢圓面積公式: S=πab

橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數為體,公式為用。

橢球物體 體積計算公式橢圓 的 長半徑*短半徑*π*高

(3)三角函數

和差角公式

sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA

cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)
;cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/(1-tan^2A) ;cot2A=(cot^2A-1)/2cota

cos2a=cos^2a-sin^2a=2cos^2a-1=1-2sin^2a

sin2A=2sinAcosA=2/(tanA+cotA)

另:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0
以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

四倍角公式:

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

五倍角公式:

sin5A=16sinA^5-20sinA^3+5sinA

cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

六倍角公式:

sin6A=2*(cosA*sinA)*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))

tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

七倍角公式:

sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

八倍角公式:

sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

九倍角公式:

sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

十倍角公式:

sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

萬能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

半形公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B); 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)+cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2
;cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB

cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB

降冪公式

sin²(A)=(1-cos(2A))/2=versin(2A)/2

cos²(α)=(1+cos(2A))/2=covers(2A)/2

tan²(α)=(1-cos(2A))/(1+cos(2A))

正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑

餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角

誘導公式

公式一:

弧度制下的角的表示:

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

cot(2kπ+α)=cotα (k∈Z)

sec(2kπ+α)=secα (k∈Z)

csc(2kπ+α)=cscα (k∈Z)

角度制下的角的表示:

sin (α+k·360°)=sinα(k∈Z)

cos(α+k·360°)=cosα(k∈Z)

tan (α+k·360°)=tanα(k∈Z)

cot(α+k·360°)=cotα (k∈Z)

sec(α+k·360°)=secα (k∈Z)

csc(α+k·360°)=cscα (k∈Z)

公式二:

弧度制下的角的表示:

sin(π+α)=-sinα (k∈Z)

cos(π+α)=-cosα(k∈Z)

tan(π+α)=tanα(k∈Z)

cot(π+α)=cotα(k∈Z)

sec(π+α)=-secα(k∈Z)

csc(π+α)=-cscα(k∈Z)

角度制下的角的表示:

sin(180°+α)=-sinα(k∈Z)

cos(180°+α)=-cosα(k∈Z)

tan(180°+α)=tanα(k∈Z)

cot(180°+α)=cotα(k∈Z)

sec(180°+α)=-secα(k∈Z)

csc(180°+α)=-cscα(k∈Z)

公式三:

sin(-α)=-sinα(k∈Z)

cos(-α)=cosα(k∈Z)

tan(-α)=-tanα(k∈Z)

cot(-α)=-cotα(k∈Z)

sec(-α)=secα(k∈Z)

csc-α)=-cscα(k∈Z)

公式四:

弧度制下的角的表示:

sin(π-α)=sinα(k∈Z)

cos(π-α)=-cosα(k∈Z)

tan(π-α)=-tanα(k∈Z)

cot(π-α)=-cotα(k∈Z)

sec(π-α)=-secα(k∈Z)

cot(π-α)=cscα(k∈Z)

角度制下的角的表示:

sin(180°-α)=sinα(k∈Z)

cos(180°-α)=-cosα(k∈Z)

tan(180°-α)=-tanα(k∈Z)

cot(180°-α)=-cotα(k∈Z)

sec(180°-α)=-secα(k∈Z)

csc(180°-α)=cscα(k∈Z)

公式五:

弧度制下的角的表示:

sin(2π-α)=-sinα(k∈Z)

cos(2π-α)=cosα(k∈Z)

tan(2π-α)=-tanα(k∈Z)

cot(2π-α)=-cotα(k∈Z)

sec(2π-α)=secα(k∈Z)

csc(2π-α)=-cscα(k∈Z)

角度制下的角的表示:

sin(360°-α)=-sinα(k∈Z)

cos(360°-α)=cosα(k∈Z)

tan(360°-α)=-tanα(k∈Z)

cot(360°-α)=-cotα(k∈Z)

sec(360°-α)=secα(k∈Z)

csc(360°-α)=-cscα(k∈Z)

公式六:

弧度制下的角的表示:

sin(π/2+α)=cosα(k∈Z)

cos(π/2+α)=—sinα(k∈Z)

tan(π/2+α)=-cotα(k∈Z)

cot(π/2+α)=-tanα(k∈Z)

sec(π/2+α)=-cscα(k∈Z)

csc(π/2+α)=secα(k∈Z)

角度制下的角的表示:

sin(90°+α)=cosα(k∈Z)

cos(90°+α)=-sinα(k∈Z)

tan(90°+α)=-cotα(k∈Z)

cot(90°+α)=-tanα(k∈Z)

sec(90°+α)=-cscα(k∈Z)

csc(90°+α)=secα(k∈Z)



弧度制下的角的表示:

sin(π/2-α)=cosα(k∈Z)

cos(π/2-α)=sinα(k∈Z)

tan(π/2-α)=cotα(k∈Z)

cot(π/2-α)=tanα(k∈Z)

sec(π/2-α)=cscα(k∈Z)

csc(π/2-α)=secα(k∈Z)

角度制下的角的表示:

sin (90°-α)=cosα(k∈Z)

cos (90°-α)=sinα(k∈Z)

tan (90°-α)=cotα(k∈Z)

cot (90°-α)=tanα(k∈Z)

sec (90°-α)=cscα(k∈Z)

csc (90°-α)=secα(k∈Z)

3

弧度制下的角的表示:

sin(3π/2+α)=-cosα(k∈Z)

cos(3π/2+α)=sinα(k∈Z)

tan(3π/2+α)=-cotα(k∈Z)

cot(3π/2+α)=-tanα(k∈Z)

sec(3π/2+α)=cscα(k∈Z)

csc(3π/2+α)=-secα(k∈Z)

角度制下的角的表示:

sin(270°+α)=-cosα(k∈Z)

cos(270°+α)=sinα(k∈Z)

tan(270°+α)=-cotα(k∈Z)

cot(270°+α)=-tanα(k∈Z)

sec(270°+α)=cscα(k∈Z)

csc(270°+α)=-secα(k∈Z)

4

弧度制下的角的表示:

sin(3π/2-α)=-cosα(k∈Z)

cos(3π/2-α)=-sinα(k∈Z)

tan(3π/2-α)=cotα(k∈Z)

cot(3π/2-α)=tanα(k∈Z)

sec(3π/2-α)=-secα(k∈Z)

csc(3π/2-α)=-secα(k∈Z)

角度制下的角的表示:

sin(270°-α)=-cosα(k∈Z)

cos(270°-α)=-sinα(k∈Z)

tan(270°-α)=cotα(k∈Z)

cot(270°-α)=tanα(k∈Z)

sec(270°-α)=-cscα(k∈Z)

csc(270°-α)=-secα(k∈Z)

(4)反三角函數

arcsin(-x)=-arcsinx

arccos(-x)=π-arccosx

arctan(-x)=-arctanx

arccot(-x)=π-arccotx

arc sin x+arc cos x=π/2

arc tan x+arc cot x=π/2

(5)數列

等差數列通項公式:an﹦a1﹢(n-1)d

等差數列前n項和:Sn=[n(A1+An)]/2 =nA1+[n(n-1)d]/2

等比數列通項公式:an=a1*q^(n-1);

等比數列前n項和:Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n (n≠1)

某些數列前n項和:

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n^2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2

1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

(6)乘法與因式分解

因式分解

a^2-b^2=(a+b)(a-b)

a^2±2ab+b^2=(a±b)^2

a^3+b^3=(a+b)(a^2-ab+b^2)

a^3-b^3=(a-b)(a^2+ab+b^2)

a^3±3a^2b+3ab^2±b^3=(a±b)^3

乘法公式

把上面的因式分解公式左邊和右邊顛倒過來就是乘法公式

(7)三角不等式

-|a|≤a≤|a|

|a|≤b<=>-b≤a≤b

|a|≤b<=>-b≤a≤b

|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a|-|b|≤|a-b|≤|a|+|b|

|z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn|

|z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn|

|z1|-|z2|-...-|zn|≤|z1±z2±。..±zn|≤|z1|+|z2|+...+|zn|

(8)一元二次方程

一元二次方程的解wx1= -b+√(b^2-4ac)/2a x2= -b-√(b^2-4ac)/2a

根與系數的關系(韋達定理) x1+x2=-b/a ; x1*x2=c/a

判別式△= b^2-4ac=0 則方程有兩個相等的實根

△>0 則方程有兩個不相等的兩實根

△<0 則方程有兩共軛復數根d(沒有實根)

基本性質

如果a>0,且a≠1,M>0,N>0,那麼:

1.a^log(a)(b)=b

2.log(a)(a)=1

3.log(a)(MN)=log(a)(M)+log(a)(N);

4.log(a)(M÷N)=log(a)(M)-log(a)(N);

5.log(a)(M^n)=nlog(a)(M)

6.log(a)[M^(1/n)]=log(a)(M)/n海倫公式:已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)]
(海倫秦九韶公式) (p= (a+b+c)/2)排列組合·階乘:n!=1×2×3×……×n,(n為不小於0的整數)規定0!=1。·排列從n個不同元素中取m個元素的所有排列個數,A(n,m)= n!/(n - m)! (m是上標,n是下標,都是不小於0的整數,且m≤n)··組合從n個不同的元素里,每次取出m個元素,不管以怎樣的順序並成一組,均稱為組合。所有不同組合的種數C(n,m)= A(n,m)/m!=n!/[m!·(n-m)!]
(m是上標,n是下標,都是不小於0的整數,且m≤n)◆組合數的性質:C(n,k) = C(n-1,k) + C(n-1,k-1);對組合數C(n,k),將n,k分別化為二進制,若某二進制位對應的n為0,而k為1 ,則C(n,k)為偶數;否則為奇數◆整次數二項式定理(binomial
theorem)(a+b)^n=C(n,0)×a^n×b^0+C(n,1)×a^(n-1)×b+C(n,2)×a^(n-2)×b^2+...+C(n,n)×a^0×b^n所以,有 C(n,0)+C(n,1)+C(n,2)+...+C(n,n)=C(n,0)×1^n+C(n,1)×1^(n-1)×1+C(n,2)×1^(n-2)×1^2+...+C(n,n)×1^n
=(1+1)^n = 2^n微積分學極限的定義:設函數f(x)在點x。的某一去心鄰域內有定義,如果存在常數A,對於任意給定的正數ε(無論它多麼小),總存在正數δ ,使得當x滿足不等式0<|x-x。|<δ
時,對應的函數值f(x)都滿足不等式: |f(x)-A|<ε 那麼常數A就叫做函數f(x)當x→x。時的極限幾個常用數列的極限:an=c 常數列 極限為can=1/n 極限為0an=x^n 絕對值x小於1 極限為0導數定義:f'(x)=y'=lim⊿x→0[f(x+⊿x)-f(x)]/⊿x=dy/dx幾種常見函數的導數公式: ① C'=0(C為常數函數)② (x^n)'= nx^(n-1) (n∈Q); ③ (sinx)' = cosx④ (cosx)' = - sinx⑤ (e^x)' = e^x⑥ (a^x)' = (a^x) * Ina (ln為自然對數)⑦ (Inx)' = 1/x(ln為自然對數 X>0)⑧ (log a x)'=1/(xlna) ,(a>0且a不等於1)⑨(sinh(x))'=cosh(x)⑩(cosh(x))'=sinh(x)(tanh(x))'=sech^2(x)(coth(x))'=-csch^2(x)(sech(x))'=-sech(x)tanh(x)(csch(x))'=-csch(x)coth(x)(arcsinh(x))'=1/sqrt(x^2+1)(arccosh(x))'=1/sqrt(x^2-1) (x>1)(arctanh(x))'=1/(1+x^2) (|x|<1)(arccoth(x))'=1/(1-x^2) (|x|>1)(chx)『=shx, (ch為雙曲餘弦函數)(shx)'=chx: (sh為雙曲正弦函數)(3)導數的四則運演算法則: ①(u±v)'=u'±v' ②(uv)'=u'v+uv' ③(u/v)'=(u'v-uv')/ v^2(4)復合函數的導數 復合函數對自變數的導數,等於已知函數對中間變數的導數,乘以中間變數對自變數的導數(鏈式法則):d f[u(x)]/dx=(d f/)*(/dx)。[∫(上限h(x),下限g(x)) f(x)dx]』=f[h(x)]·h'(x)- f[g(x)]·g'(x)洛必達法則(L'Hospital):是在一定條件下通過分子分母分別求導再求極限來確定未定式值的方法。設(1)當x→a時,函數f(x)及F(x)都趨於零(2)在點a的去心鄰域內,f'(x)及F'(x)都存在且F'(x)≠0(3)當x→a時lim f'(x)/F'(x)存在(或為無窮大),那麼x→a時 lim f(x)/F(x)=lim f'(x)/F'(x)。再設(1)當x→∞時,函數f(x)及F(x)都趨於零(2)當|x|>N時f'(x)及F'(x)都存在,且F'(x)≠0(3)當x→∞時lim f'(x)/F'(x)存在(或為無窮大),那麼x→∞時 lim f(x)/F(x)=lim f'(x)/F'(x)。 利用洛必達法則求未定式的極限是微分學中的重點之一,在解題中應注意:①在著手求極限以前,首先要檢查是否滿足0/0或∞/∞型,否則濫用洛必達法則會出錯。當不存在時(不包括∞情形),就不能用洛必達法則,這時稱洛必達法則失效,應從另外途徑求極限。比如利用泰勒公式求解。②洛必達法則可連續多次使用,直到求出極限為止。③洛必達法則是求未定式極限的有效工具,但是如果僅用洛必達法則,往往計算會十分繁瑣,因此一定要與其他方法相結合,比如及時將非零極限的乘積因子分離出來以簡化計算、乘積因子用等價量替換等。曲率K = lim(Δs→0) |Δα/Δs|當曲線y=f(x)存在二階導數時,K=|y''|/(1+ y' ^2)^(3/2);曲率半徑R=1/K;不定積分設F(x)是函數f(x)的一個原函數,我們把函數f(x)的所有原函數F(x)+C(C為任意常數)叫做函數f(x)的不定積分。記作∫f(x)dx。其中∫叫做積分號,f(x)叫做被積函數,x叫做積分變數,f(x)dx叫做被積式,C叫做積分常數,求已知函數的不定積分的過程叫做對這個函數進行積分。由定義可知:求函數f(x)的不定積分,就是要求出f(x)的所有的原函數,由原函數的性質可知,只要求出函數f(x)的一個原函數,再加上任意的常數C,就得到函數f(x)的不定積分。也可以表述成,積分是微分的逆運算,即知道了導函數,求原函數。·基本公式:1)∫0dx=c; ∫a dx=ax+c;2)∫x^udx=(x^u+1)/(u+1)+c;3)∫1/xdx=ln|x|+c4))∫a^xdx=(a^x)/lna+c5)∫e^xdx=e^x+c6)∫sinxdx=-cosx+c7)∫cosxdx=sinx+c8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2)dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c;13)∫secxdx=ln|secx+tanx|+c14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c15)∫1/√(a^2-x^2)dx=arcsin(x/a)+c;16) ∫sec^2 x dx=tanx+c;17) ∫shx dx=chx+c;18) ∫chx dx=shx+c;19) ∫thx dx=ln(chx)+c;·分部積分法:∫u(x)·v'(x) dx=∫u(x) d v(x)=u(x)·v(x) -∫v(x) d u(x)=u(x)·v(x)
-∫u'(x)·v(x) dx.一元函數泰勒公式(Taylor's formula)泰勒中值定理:若f(x)在開區間(a,b)有直到n+1階的導數,則當函數在此區間內時,可以展開為一個關於(x-x0)多項式和一個余項的和:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2!?(x-x0)^2,+f'''(x0)/3!?(x-x0)^3+……+f的n階導數?(x0)/n!?(x-x0)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!?(x-x0)^(n+1)為拉格朗日型的余項,這里ξ在x和x0之間。定積分形式為∫f(x) dx
(上限a寫在∫上面,下限b寫在∫下面)。之所以稱其為定積分,是因為它積分後得出的值是確定的,是一個數,而不是一個函數。牛頓-萊布尼茲公式:若F'(x)=f(x),那麼∫f(x) dx (上限a下限b)=F(a)-F(b)牛頓-萊布尼茲公式用文字表述,就是說一個定積分式的值,就是上限在原函數的值與下限在原函數的值的差。微分方程凡是表示未知函數的導數以及自變數之間的關系的方程,就叫做微分方程。如果在一個微分方程中出現的未知函數只含一個自變數,這個方程就叫做常微分方程特徵根法是解常系數齊次線性微分方程的一種通用方法。如 二階常系數齊次線性微分方程y''+py'+qy=0的通解:設特徵方程r*r+p*r+q=0兩根為r1,r2。1 若實根r1不等於r2y=C1*e^(r1x)+C2*e^(r2x).2 若實根r=r1=r2y=(C1+C2x)*e^(rx)3 若有一對共軛復根 r1, 2=λ±ib :y=e^(λx)·[C1·cos(bx)+ C2·sin(bx)]

㈡ 有人知道數學的從小學到高中的主要公式列表最好是按順序來寫

1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數= 1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形:C周長 S面積 a邊長 周長=邊長×4C=4a 面積=邊長×邊長S=a×a
2、正方體:V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6
體 積=棱長×棱長×棱長 V=a×a×a
3、長方形:
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6、平行四邊形:s面積 a底 h高 面積=底×高 s=ah
7、梯形:s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圓形:S面 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏
9、圓柱體:v體積 h:高 s:底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10、圓錐體:v體積 h高 s底面積 r底面半徑 體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1、非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2、封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 閏年 2月29天
平年全年365天, 閏年全年366天
1日=24小時 1小時=60分
1分=60秒 1小時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
常見的初中數學公式
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理(ASA) 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形
全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角
所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的
一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直
平分線
44 定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,
那麼交點在對稱軸上
45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩
個圖形關於這條直線對稱
46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,
那麼這個三角形是直角三角形
48 定理 四邊形的內角和等於360°
49 四邊形的外角和等於360°
50 多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51 推論 任意多邊的外角和等於360°
52 平行四邊形性質定理 1 平行四邊形的對角相等
53 平行四邊形性質定理 2 平行四邊形的對邊相等
54 推論 夾在兩條平行線間的平行線段相等
55 平行四邊形性質定理 3 平行四邊形的對角線互相平分
56 平行四邊形判定定理 1 兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理 2 兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理 3 對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理 4 一組對邊平行相等的四邊形是平行四邊形
60 矩形性質定理 1 矩形的四個角都是直角
61 矩形性質定理 2 矩形的對角線相等
62 矩形判定定理 1 有三個角是直角的四邊形是矩形
63 矩形判定定理 2 對角線相等的平行四邊形是矩形
64 菱形性質定理 1 菱形的四條邊都相等
65 菱形性質定理 2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即 S=(a×b)÷2
67 菱形判定定理 1 四邊都相等的四邊形是菱形
68 菱形判定定理 2 對角線互相垂直的平行四邊形是菱形
69 正方形性質定理 1 正方形的四個角都是直角,四條邊都相等
70 正方形性質定理 2 正方形的兩條對角線相等,並且互相垂直平分,每
條對角線平分一組對角
71 定理1 關於中心對稱的兩個圖形是全等的
72 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被
對稱中心平分
73 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,
那麼這兩個圖形關於這一點對稱
74 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75 等腰梯形的兩條對角線相等
76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77 對角線相等的梯形是等腰梯形
78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,
那麼在其他直線上截得的線段也相等
79 推論 1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論 2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半
L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果 a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果 a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)
/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成
比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得
的應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線
段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的
三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,
所構成的三角形與原三角形相似
91 相似三角形判定定理 1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理 2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理 3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的
斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理 1 相似三角形對應高的比,對應中線的比與對應角平分線的
比都等於相似比
97 性質定理 2 相似三角形周長的比等於相似比
98 性質定理 3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的
餘角的正弦值
100 任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的
餘角的正切值
101 圓是定點的距離等於定長的點的集合
102 圓的內部可以看作是圓心的距離小於半徑的點的集合
103 圓的外部可以看作是圓心的距離大於半徑的點的集合
104 同圓或等圓的半徑相等
105 到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等
的一條直線
109 定理 不在同一直線上的三點確定一個圓.
110 垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111 推論 1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112 推論2 圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對稱中心的中心對稱圖形
114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,
所對的弦的弦心距相等
115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦
心距中有一組量相等那麼它們所對應的其餘各組量都相等
116 定理 一條弧所對的圓周角等於它所對的圓心角的一半
117 推論 1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角
所對的弧也相等
118 推論 2 半圓(或直徑)所對的圓周角是直角;90° 的圓周角所對的弦
是直徑
119 推論 3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是
直角三角形
120 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對

121 ①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切

123 切線的性質定理 圓的切線垂直於經過切點的半徑
124 推論 1 經過圓心且垂直於切線的直線必經過切點
125 推論 2 經過切點且垂直於切線的直線必經過圓心
126 切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和
這一點的連線平分兩條切線的夾角
127 圓的外切四邊形的兩組對邊的和相等
128 弦切角定理 弦切角等於它所夾的弧對的圓周角
129 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130 相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131 推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線
段的比例中項
132 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓
交點的兩條線段長的比例中項
133 推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩
條線段長的積相等
134 如果兩個圓相切,那麼切點一定在連心線上
135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136 定理 相交兩圓的連心線垂直平分兩圓的公共弦
137 定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓
的外切正n邊形
138 定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139 正n邊形的每個內角都等於(n-2)×180°/n
140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142 正三角形面積 √3a/4 a表示邊長
143 如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因
此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144 弧長計算公式:L=n兀R/180
145 扇形面積公式:S扇形=n兀R^2/360=LR/2
146 內公切線長=d-(R-r) 外公切線長= d-(R+r)
實用工具:常用數學公式
公式分類 公式表達式
乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h'
正稜台側面積 S=1/2(c+c')h' 圓台側面積 S=1/2(c+c')l=pi(R+r)l
球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h
圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r>0 扇形公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h

㈢ 高中數學公式大全(從易到難)

乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2) 
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式
b^2-4ac=0 註:方程有兩個相等的實根
b^2-4ac>0 註:方程有兩個不等的實根 �
b^2-4ac<0 註:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA �
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) �
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) �
和差化積
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B) )
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b^2=a^2+c^2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)^2+(y-b)^2=^r2 註:(a,b)是圓心坐標 
圓的一般方程 x^2+y^2+Dx+Ey+F=0 註:D^2+E^2-4F>0
拋物線標准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h �
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h

定理:
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

作者:塵世的Angel 2008-11-22 22:48 回復此發言

--------------------------------------------------------------------------------

2 高中數學公式
23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 �
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一 點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

作者:塵世的Angel 2008-11-22 22:48 回復此發言

--------------------------------------------------------------------------------

3 高中數學公式
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它 的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的 一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc
如果ad=bc,那麼a:b=c:d wc呁/S∕ ?
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那麼
(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等 於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等 於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半 徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
121①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r

㈣ 有人知道數學的從小學到高中的主要公式列表 最好是按順序來寫

1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數= 1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數

小學數學圖形計算公式

1、正方形:C周長 S面積 a邊長 周長=邊長×4C=4a 面積=邊長×邊長S=a×a
2、正方體:V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6
體 積=棱長×棱長×棱長 V=a×a×a
3、長方形:
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6、平行四邊形:s面積 a底 h高 面積=底×高 s=ah
7、梯形:s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)×h÷2
8 圓形:S面 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏
9、圓柱體:v體積 h:高 s:底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10、圓錐體:v體積 h高 s底面積 r底面半徑 體積=底面積×高÷3

總數÷總份數=平均數

和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數

和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)

差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)

植樹問題
1、非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)

2、封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數

盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間

追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間

流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2

濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量

利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)

長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米

面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米

體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升

重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤

人民幣單位換算
1元=10角
1角=10分
1元=100分

時間單位換算
1世紀=100年 1年=12月
大月(31天)有: 1\3\5\7\8\10\12月
小月(30天)的有: 4\6\9\11月
平年 2月28天, 閏年 2月29天
平年全年365天, 閏年全年366天
1日=24小時 1小時=60分
1分=60秒 1小時=3600秒

小學數學幾何形體周長 面積 體積計算公式

1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑

常見的初中數學公式

1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12 兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22 邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理(ASA) 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形
全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那麼這兩個角
所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的
一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直
平分線
44 定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,
那麼交點在對稱軸上
45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩
個圖形關於這條直線對稱
46 勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,
即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,
那麼這個三角形是直角三角形
48 定理 四邊形的內角和等於360°
49 四邊形的外角和等於360°
50 多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51 推論 任意多邊的外角和等於360°
52 平行四邊形性質定理 1 平行四邊形的對角相等
53 平行四邊形性質定理 2 平行四邊形的對邊相等
54 推論 夾在兩條平行線間的平行線段相等
55 平行四邊形性質定理 3 平行四邊形的對角線互相平分
56 平行四邊形判定定理 1 兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理 2 兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理 3 對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理 4 一組對邊平行相等的四邊形是平行四邊形
60 矩形性質定理 1 矩形的四個角都是直角
61 矩形性質定理 2 矩形的對角線相等
62 矩形判定定理 1 有三個角是直角的四邊形是矩形
63 矩形判定定理 2 對角線相等的平行四邊形是矩形
64 菱形性質定理 1 菱形的四條邊都相等
65 菱形性質定理 2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即 S=(a×b)÷2
67 菱形判定定理 1 四邊都相等的四邊形是菱形
68 菱形判定定理 2 對角線互相垂直的平行四邊形是菱形
69 正方形性質定理 1 正方形的四個角都是直角,四條邊都相等
70 正方形性質定理 2 正方形的兩條對角線相等,並且互相垂直平分,每
條對角線平分一組對角
71 定理1 關於中心對稱的兩個圖形是全等的
72 定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被
對稱中心平分
73 逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,
那麼這兩個圖形關於這一點對稱
74 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75 等腰梯形的兩條對角線相等
76 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77 對角線相等的梯形是等腰梯形
78 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,
那麼在其他直線上截得的線段也相等
79 推論 1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論 2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半
L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果 a:b=c:d,那麼ad=bc如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果 a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果 a/b=c/d=…=m/n(b+d+…+n≠0),那麼(a+c+…+m)
/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成
比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得
的應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線
段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的
三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,
所構成的三角形與原三角形相似
91 相似三角形判定定理 1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理 2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理 3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的
斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理 1 相似三角形對應高的比,對應中線的比與對應角平分線的
比都等於相似比
97 性質定理 2 相似三角形周長的比等於相似比
98 性質定理 3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的
餘角的正弦值
100 任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的
餘角的正切值
101 圓是定點的距離等於定長的點的集合
102 圓的內部可以看作是圓心的距離小於半徑的點的集合
103 圓的外部可以看作是圓心的距離大於半徑的點的集合
104 同圓或等圓的半徑相等
105 到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106 和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107 到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108 到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等
的一條直線
109 定理 不在同一直線上的三點確定一個圓。
110 垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111 推論 1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112 推論2 圓的兩條平行弦所夾的弧相等
113 圓是以圓心為對稱中心的中心對稱圖形
114 定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,
所對的弦的弦心距相等
115 推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦
心距中有一組量相等那麼它們所對應的其餘各組量都相等
116 定理 一條弧所對的圓周角等於它所對的圓心角的一半
117 推論 1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角
所對的弧也相等
118 推論 2 半圓(或直徑)所對的圓周角是直角;90° 的圓周角所對的弦
是直徑
119 推論 3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是
直角三角形
120 定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對

121 ①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122 切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切

123 切線的性質定理 圓的切線垂直於經過切點的半徑
124 推論 1 經過圓心且垂直於切線的直線必經過切點
125 推論 2 經過切點且垂直於切線的直線必經過圓心
126 切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和
這一點的連線平分兩條切線的夾角
127 圓的外切四邊形的兩組對邊的和相等
128 弦切角定理 弦切角等於它所夾的弧對的圓周角
129 推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130 相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131 推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線
段的比例中項
132 切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓
交點的兩條線段長的比例中項
133 推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩
條線段長的積相等
134 如果兩個圓相切,那麼切點一定在連心線上
135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)
136 定理 相交兩圓的連心線垂直平分兩圓的公共弦
137 定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓
的外切正n邊形
138 定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139 正n邊形的每個內角都等於(n-2)×180°/n
140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142 正三角形面積 √3a/4 a表示邊長
143 如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因
此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144 弧長計算公式:L=n兀R/180
145 扇形面積公式:S扇形=n兀R^2/360=LR/2
146 內公切線長=d-(R-r) 外公切線長= d-(R+r)

實用工具:常用數學公式

公式分類 公式表達式

乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理

判別式
b2-4ac=0 註:方程有兩個相等的實根
b2-4ac>0 註:方程有兩個不等的實根
b2-4ac<0 註:方程沒有實根,有共軛復數根

三角函數公式

兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半形公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 13+23+33+43+53+63+…n3=n2(n+1)2/4
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R註:其中R表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角

圓的標准方程 (x-a)2+(y-b)2=r2 註: (a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註: D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py

直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h 正棱錐側面積 S=1/2c*h'
正稜台側面積 S=1/2(c+c')h' 圓台側面積 S=1/2(c+c')l=pi(R+r)l
球的表面積 S=4pi*r2 圓柱側面積 S=c*h=2pi*h
圓錐側面積 S=1/2*c*l=pi*r*l

弧長公式 l=a*r a是圓心角的弧度數r>0 扇形公式 s=1/2*l*r

錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h

㈤ 最難的數學公式

  1. 德布羅意方程組。

㈥ 求從初級數學到高級數學的所有公式和定理

http://wenku..com/view/92f72d956bec0975f465e2b3.html看看這算不算

㈦ 從小學開始到初中的所有數學公式

小學數學公式大全
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數

3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度

4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價

5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間

工作總量÷工作時間=工作效率

6、加數+加數=和 和-一個加數=另一個加數

7、被減數-減數=差 被減數-差=減數 差+減數=被減數

8、因數×因數=積 積÷一個因數=另一個因數

9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數

小學數學圖形計算公式

1、正方形C 周長S 面積a 邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a

2、正方體V: 體積=棱長×棱長×棱長 V=a×a×a

3、長方形

C周長S面積a邊長

周長=(長+寬)×2

C=2(a+b)

面積=長×寬

S=ab

4、長方體

V:體積s:面積a:長b:寬h:高

(1)表面積(長×寬+長×高+寬×高)×2

S=2(ab+ah+bh)

(2)體積=長×寬×高

V=abh

5三角形

s面積a底h高

面積=底×高÷2

s=ah÷2

三角形高=面積×2÷底

三角形底=面積×2÷高

6平行四邊形

s面積a底h高

面積=底×高

s=ah

7\梯形

s面積a上底b下底h高

面積=(上底+下底)×高÷2

s=(a+b)×h÷2

8圓形

S面積C周長∏d=直徑r=半徑

(1)周長=直徑×∏=2×∏×半徑

C=∏d=2∏r

(2)面積=半徑×半徑×∏

9圓柱體

v:體積h:高s;底面積r:底面半徑c:底面周長

(1)側面積=底面周長×高

(2)表面積=側面積+底面積×2

(3)體積=底面積×高

(4)體積=側面積÷2×半徑

10圓錐體

v:體積h:高s;底面積r:底面半徑

體積=底面積×高÷3

總數÷總份數=平均數

和差問題的公式

(和+差)÷2=大數 (和-差)÷2=小數

和倍問題

和÷(倍數-1)=小數 小數×倍數=大數 或者和-小數=大數)

差倍問題

差÷(倍數-1)=小數 小數×倍數=大數 (或小數+差=大數)

植樹問題

1非封閉線路上的植樹問題主要可分為以下三種情形:

⑴如果在非封閉線路的兩端都要植樹,那麼:

株數=段數+1=全長÷株距-1

全長=株距×(株數-1)

株距=全長÷(株數-1)

⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:

株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數

⑶如果在非封閉線路的兩端都不要植樹,那麼:

株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1)

2封閉線路上的植樹問題的數量關系如下

株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數

盈虧問題

(盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數

(大虧-小虧)÷兩次分配量之差=參加分配的份數

相遇問題

相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間

追及問題

追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間

流水問題

順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度

靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2

濃度問題

溶質的重量+溶劑的重量=溶液的重量

溶質的重量÷溶液的重量×100%=濃度

溶液的重量×濃度=溶質的重量

溶質的重量÷濃度=溶液的重量

利潤與折扣問題

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣<1)

利息=本金×利率×時間

稅後利息=本金×利率×時間×(1-20%)

長度單位換算

1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米

面積單位換算

1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

體(容)積單位換算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升

重量單位換算

1噸=1000千克 1千克=1000克 1千克=1公斤

人民幣單位換算

1元=10角 1角=10分 1元=100分

時間單位換算

1世紀=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月

平年2月28天,閏年2月29天 平年全年365天,閏年全年366天 1日=24小時1時=60分 1分=60秒1時=3600秒

小學數學幾何形體周長面積體積計算公式

1、長方形的周長=(長+寬)×2C=(a+b)×2

2、正方形的周長=邊長×4C=4a

3、長方形的面積=長×寬S=ab

4、正方形的面積=邊長×邊長S=a.a=a

5、三角形的面積=底×高÷2S=ah÷2

6、平行四邊形的面積=底×高S=ah

7、梯形的面積=(上底+下底)×高÷2S=(a+b)h÷2

8、直徑=半徑×2d=2r半徑=直徑÷2r=d÷2

9、圓的周長=圓周率×直徑=圓周率×半徑×2c=πd=2πr

10、圓的面積=圓周率×半徑×半徑

定義定理公式

三角形的面積=底×高÷2。公式S=a×h÷2

正方形的面積=邊長×邊長公式S=a×a

長方形的面積=長×寬公式S=a×b

平行四邊形的面積=底×高公式S=a×h

梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2

內角和:三角形的內角和=180度。

長方體的體積=長×寬×高公式:V=abh

長方體(或正方體)的體積=底面積×高公式:V=abh

正方體的體積=棱長×棱長×棱長公式:V=aaa

圓的周長=直徑×π公式:L=πd=2πr

圓的面積=半徑×半徑×π公式:S=πr2

圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh

圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2

圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh

圓錐的體積=1/3底面×積高。公式:V=1/3Sh

分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。

分數的乘法則:用分子的積做分子,用分母的積做分母。

分數的除法則:除以一個數等於乘以這個數的倒數。

㈧ 一到六年級數學公式是什麼

1、三角形的面積=底×高÷2。公式S= a×h÷2。

2、正方形的面積=邊長×邊長公式S= a×a。

3、長方形的面積=長×寬公式S= a×b。

4、平行四邊形的面積=底×高公式S= a×h。

5、梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2。

6、內角和:三角形的內角和=180度。

7、長方體的體積=長×寬×高公式:V=abh。

8、長方體(或正方體)的體積=底面積×高公式:V=abh。

9、正方體的體積=棱長×棱長×棱長公式:V=aaa。

10、圓的周長=直徑×π公式:L=πd=2πr。

11、圓的面積=半徑×半徑×π公式:S=πr²。

閱讀全文

與數學從基礎到難的公式什麼的相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:976
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1653
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059