❶ 數學三大未解之謎
即費馬猜想、四色猜想和哥德巴赫猜想。
費馬猜想的證明於1994年由英國數學家安德魯·懷爾斯(Andrew Wiles)完成,遂稱費馬大定理;
四色猜想的證明於1976年由美國數學家阿佩爾(Kenneth Appel)與哈肯(Wolfgang Haken)藉助計算機完成,遂稱四色定理;
哥德巴赫猜想尚未解決,目前最好的成果(陳氏定理)乃於1966年由中國數學家陳景潤取得。這三個問題的共同點就是題面簡單易懂,內涵深邃無比,影響了一代代的數學家。
❷ 數學未解之謎有哪些啊
幾個未解的題。
1、求 (1/1)^3+(1/2)^3+(1/3)^3+(1/4)^3+(1/5)^3+ … +(1/n)^3=?
更一般地:
當k為奇數時 求
(1/1)^k+(1/2)^k+(1/3)^k+(1/4)^k+(1/5)^k+ … +(1/n)^k=?
背景:
歐拉求出:
(1/1)^2+(1/2)^2+(1/3)^2+(1/4)^2+(1/5)^2+ … +(1/n)^2=(π^2)/6
並且當k為偶數時的表達式。
2、e+π的超越性
背景
此題為希爾伯特第7問題中的一個特例。
已經證明了e^π的超越性,卻至今未有人證明e+π的超越性。
3、素數問題。
證明:
ζ(s)=1+(1/2)^s+(1/3)^s+(1/4)^s+(1/5)^s + …
(s屬於復數域)
所定義的函數ζ(s)的零點,除負整實數外,全都具有實部1/2。
背景:
此即黎曼猜想。也就是希爾伯特第8問題。
美國數學家用計算機算了ζ(s)函數前300萬個零點確實符合猜想。
希爾伯特認為黎曼猜想的解決能夠使我們嚴格地去解決歌德巴赫猜想(任一偶數可以分解為兩素數之和)和孿生素數猜想(存在無窮多相差為2的素數)。
引申的問題是:素數的表達公式?素數的本質是什麼?
4、 存在奇完全數嗎?
背景:
所謂完全數,就是等於其因子的和的數。
前三個完全數是:
6=1+2+3
28=1+2+4+7+14
496=1+2+4+8+16+31+62+124+248
目前已知的32個完全數全部是偶數。
1973年得到的結論是如果n為奇完全數,則:
n>10^50
5、 除了8=2^3,9=3^2外,再沒有兩個連續的整數可表為其他正整數的方冪了嗎?
背景:
這是卡塔蘭猜想(1842)。
1962年我國數學家柯召獨立證明了不存在連續三個整數可表為其它正整數的方冪。
1976年,荷蘭數學家證明了大於某個數的任何兩個正整數冪都不連續。因此只要檢查小於這個數的任意正整數冪是否有連續的就行了。
但是,由於這個數太大,有500多位,已超出計算機的計算范圍。
所以,這個猜想幾乎是正確的,但是至今無人能夠證實。
6、 任給一個正整數n,如果n為偶數,就將它變為n/2,如果除後變為奇數,則將它乘3加1(即3n+1)。不斷重復這樣的運算,經過有限步後,一定可以得到1嗎?
背景:
這角古猜想(1930)。
人們通過大量的驗算,從來沒有發現反例,但沒有人能證明。
三 希爾伯特23問題里尚未解決的問題。
1、問題1連續統假設。
全體正整數(被稱為可數集)的基數 和實數集合(被稱為連續統)的基數c之間沒有其它基數。
背景:1938年奧地利數學家哥德爾證明此假設在集合論公理系統,即策莫羅-佛朗克爾公理系統里,不可證偽。
1963年美國數學家柯恩證明在該公理系統,不能證明此假設是對的。
所以,至今未有人知道,此假設到底是對還是錯。
2、問題2 算術公理相容性。
背景:哥德爾證明了算術系統的不完備,使希爾伯特的用元數學證明算術公理系統的無矛盾性的想法破滅。
3、 問題7 某些數的無理性和超越性。
見上面 二 的 2
5、 問題 8 素數問題。
見上面 二 的 3
6、 問題 11 系數為任意代數數的二次型。
背景:德國和法國數學家在60年代曾取得重大進展。
7、 問題 12 阿貝爾域上的克羅內克定理在任意代數有理域上的推廣。
背景:此問題只有些零散的結果,離徹底解決還十分遙遠。
8、 問題13 僅用二元函數解一般7次代數方程的不可能性。
背景:1957蘇聯數學家解決了連續函數情形。如要求是解析函數則此問題尚未完全解決。
9、 問題15 舒伯特計數演算的嚴格基礎。
背景: 代數簌交點的個數問題。和代數幾何學有關。
10、 問題 16 代數曲線和曲面的拓撲。
要求代數曲線含有閉的分枝曲線的最大數目。和微分方程的極限環的最多個數和相對位置。
11、 問題 18 用全等多面體來構造空間。
無限個相等的給定形式的多面體最緊密的排列問題,現在仍未解決。
12、 問題 20 一般邊值問題。
偏微分方程的邊值問題,正在蓬勃發展。
13、 問題 23 變分法的進一步發展。
四 千禧七大難題
2000年美國克雷數學促進研究所提出。為了紀念百年前希爾伯特提出的23問題。每一道題的賞金均為百萬美金。
1、 黎曼猜想。
見 二 的 3
透過此猜想,數學家認為可以解決素數分布之謎。
這個問題是希爾伯特23個問題中還沒有解決的問題。透過研究黎曼猜想數
學家們認為除了能解開質數分布之謎外,對於解析數論、函數理論、
橢圓函數論、群論、質數檢驗等都將會有實質的影響。
2、楊-密爾斯理論與質量漏洞猜想(Yang-Mills Theory and Mass Gap
Hypothesis)
西元1954 年楊振寧與密爾斯提出楊-密爾斯規范理論,楊振寧由
數學開始,提出一個具有規范性的理論架構,後來逐漸發展成為量子
物理之重要理論,也使得他成為近代物理奠基的重要人物。
楊振寧與密爾斯提出的理論中會產生傳送作用力的粒子,而他們
碰到的困難是這個粒子的質量的問題。他們從數學上所推導的結果
是,這個粒子具有電荷但沒有質量。然而,困難的是如果這一有電荷
的粒子是沒有質量的,那麼為什麼沒有任何實驗證據呢?而如果假定
該粒子有質量,規范對稱性就會被破壞。一般物理學家是相信有質
量,因此如何填補這個漏洞就是相當具挑戰性的數學問題。
3、P 問題對NP 問題(The P Versus NP Problems)
隨著計算尺寸的增大,計算時間會以多項式方式增加的型式的問題叫做「P 問題」。
P 問題的P 是Polynomial Time(多項式時間)的頭一個字母。已
知尺寸為n,如果能決定計算時間在cnd (c 、d 為正實數) 時間以下
就可以或不行時,我們就稱之為「多項式時間決定法」。而能用這個
演算法解的問題就是P 問題。反之若有其他因素,例如第六感參與進來
的演算法就叫做「非決定性演算法」,這類的問題就是「NP 問題」,NP 是
Non deterministic Polynomial time (非決定性多項式時間)的縮寫。
由定義來說,P 問題是NP 問題的一部份。但是否NP 問題裡面有
些不屬於P 問題等級的東西呢?或者NP 問題終究也成為P 問題?這
就是相當著名的PNP 問題。
4、.納維爾–史托克方程(Navier–Stokes Equations)
因為尤拉方程太過簡化所以尋求作修正,在修正的過程中產生了
新的結果。法國工程師納維爾及英國數學家史托克經過了嚴格的數學
推導,將黏性項也考慮進去得到的就是納維爾–史托克方程。
自從西元1943 年法國數學家勒雷(Leray)證明了納維爾–史托
克方程的全時間弱解(global weak solution)之後,人們一直想知道
的是此解是否唯一?得到的結果是:如果事先假設納維爾–史托克方
程的解是強解(strong solution),則解是唯一。所以此問題變成:弱解與強解之間的差距有多大,有沒有可能弱解會等於強解?換句話說,是不是能得到納維爾–史托克方程的全時間平滑解?再者就是證
明其解在有限時間內會爆掉(blow up in finite time)。
解決此問題不僅對數學還有對物理與航太工程有貢獻,特別是亂
流(turbulence)都會有決定性的影響,另外納維爾–史托克方程與奧
地利偉大物理學家波茲曼的波茲曼方程也有密切的關系,研究納維
爾–史托克(尤拉)方程與波茲曼方程(Boltzmann Equations)兩
者之關系的學問叫做流體極限(hydrodynamics limit),由此可見納
維爾–史托克方程本身有非常豐富之內涵。
5.龐加萊臆測(Poincare Conjecture)
龐加萊臆測是拓樸學的大問題。用數學界的行話來說:單連通的
三維閉流形與三維球面同胚。
從數學的意義上說這是一個看似簡單卻又非
常困難的問題,自龐加萊在西元1904 年提出之
後,吸引許多優秀的數學家投入這個研究主題。
龐加萊(圖4)臆測提出不久,數學們自然的將
之推廣到高維空間(n4),我們稱之為廣義龐加萊臆測:單連通的
≥
n(n4)維閉流形,如果與n
≥ 維球面有相同的基本群(fundamental group)則必與n維球面同胚。
經過近60 年後,西元1961 年,美國數學家斯麥爾(Smale)以
巧妙的方法,他忽略三維、四維的困難,直接證明五維(n5)以上的
≥
廣義龐加萊臆測,他因此獲得西元1966 年的費爾茲獎。經過20年之
後,另一個美國數學家佛瑞曼(Freedman)則證明了四維的龐加萊臆
測,並於西元1986年因為這個成就獲得費爾茲獎。但是對於我們真
正居住的三維空間(n3),在當時仍然是一個未解之謎。
=
一直到西元2003 年4 月,俄羅斯數學家斐雷曼(Perelman)於
麻省理工學院做了三場演講,在會中他回答了許多數學家的疑問,許
多跡象顯示斐雷曼可能已經破解龐加萊臆測。數天後「紐約時報」首
次以「俄國人解決了著名的數學問題」為題向公眾披露此一消息。同
日深具影響力的數學網站MathWorld 刊出的頭條文章為「龐加萊臆測
被證明了,這次是真的!」[14]。
數學家們的審查將到2005年才能完成,到目前為止,尚未發現
斐雷曼無法領取克雷數學研究所之百萬美金的漏洞。
6.白之與斯溫納頓-戴爾臆測(Birch and Swinnerton-Dyer
Conjecture)
一般的橢圓曲線方程式 y^2=x^3+ax+b ,在計算橢圓之弧長時
就會遇見這種曲線。自50 年代以來,數學家便發現橢圓曲線與數論、
幾何、密碼學等有著密切的關系。例如:懷爾斯(Wiles)證明費馬
最後定理,其中一個關鍵步驟就是用到橢圓曲線與模形式(molarform)之關系-即谷山-志村猜想,白之與斯溫納頓-戴爾臆測就是與
橢圓曲線有關。
60年代英國劍橋大學的白之與斯溫納頓-戴爾利用電腦計算一些
多項式方程式的有理數解。通常會有無窮多解,然而要如何計算無限
呢?其解法是先分類,典型的數學方法是同餘(congruence)這個觀念
並藉此得同餘類(congruence class)即被一個數除之後的余數,無窮
多個數不可能每個都要。數學家自然的選擇了質數,所以這個問題與
黎曼猜想之Zeta 函數有關。經由長時間大量的計算與資料收集,他
們觀察出一些規律與模式,因而提出這個猜測。他們從電腦計算之結
果斷言:橢圓曲線會有無窮多個有理點,若且唯若附於曲線上面的
Zeta 函數ζ (s) = 時取值為0,即ζ (1)
;當s1= 0
7.霍奇臆測(Hodge Conjecture)
「任意在非奇異投影代數曲體上的調和微分形式,都是代數圓之
上同調類的有理組合。」
最後的這個難題,雖不是千禧七大難題中最困難的問題,但卻可
能是最不容易被一般人所了解的。因為其中有太多高深專業而且抽象
參考資料:《數學的100個基本問題》《數學與文化》《希爾伯特23個數學問題回顧》
❸ 世界頂級未解數學難題都有哪些
1、霍奇猜想(Hodge conjecture):
二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。
這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導致一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。
不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。
霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。
2、龐加萊猜想(Poincaré conjecture):
如果我們伸縮圍繞一個蘋果表面的橡皮帶,那麼我們可以既不扯斷它,也不讓它離開表面,使它慢慢移動收縮為一個點。
另一方面,如果我們想像同樣的橡皮帶以適當的方向被伸縮在一個輪胎面上,那麼不扯斷橡皮帶或者輪胎面,是沒有辦法把它收縮到一點的。
我們說,蘋果表面是「單連通的」,而輪胎面不是。大約在一百年以前,法國數學家龐加萊已經知道,二維球面本質上可由單連通性來刻畫,他提出三維球面的對應問題。這個問題立即變得無比困難,從那時起,數學家們就在為此奮斗。
3、黎曼假設:
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2、3、5、7……等等。這樣的數稱為素數;它們在純粹數學及應用數學中都起著重要作用。
在所有自然數中,素數分布似乎並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於所謂的黎曼ζ函數。
黎曼假設斷言,方程ζ(s)=0的非平凡零點的實部都是1/2,即位於直線1/2 + ti(「臨界線」,critical line)上。這點已經對於開首的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立,將為圍繞素數分布的許多奧秘帶來光明。
4、楊-米爾斯(Yang-Mills)存在性和質量缺口:
量子物理的定律是以經典力學的牛頓定律對宏觀世界的方式對基本粒子世界成立的。大約半個世紀以前,楊振寧和羅伯特·米爾斯發現,量子物理揭示了在基本粒子物理與幾何對象的數學之間的令人注目的關系。
基於楊-米爾斯方程的預言已經在如下的全世界范圍內的實驗室中所履行的高能實驗中得到證實:布羅克哈文、斯坦福、歐洲粒子物理研究所和築波。
盡管如此,他們的既描述重粒子、又在數學上嚴格的方程,並沒有已知的解。特別是,被大多數物理學家所確認、並且在他們的對於「誇克」的不可見性的解釋中應用的「質量缺口」假設,從來沒有得到一個數學上令人滿意的證實。
周氏猜測:
當2^(2^n)<p<2^(2^(n+1))時,Mp有2^(n+1)-1個是素數。
周海中還據此作出推論:當p<2^(2^(n+1))時,Mp有2^(n+2)-n-2個是素數。
關於梅森素數的分布研究,英國數學家香克斯、德國數學家伯利哈特、印度數學家拉曼紐楊和美國數學家吉里斯等曾分別提出過猜測,但他們的猜測有一個共同點,就是都以近似表達式提出;而它們與實際情況的接近程度均難如人意。
唯有周氏猜測是以精確表達式提出,而且頗具數學美。這一猜測至今未被證明或反證,已成了著名的數學難題。
美籍挪威數論大師、菲爾茨獎和沃爾夫獎得主阿特勒·塞爾伯格認為:周氏猜測具有創新性,開創了富於啟發性的新方法;其創新性還表現在揭示新的規律上。
網路--數學難題
❹ 數學界有哪些讓你驚嘆「怎麼這都不知道」的未解之謎
有理距離
在平面上是否存在一個點,它到單位正方形的四個頂點的距離都是有理數?
第一次知道這個問題竟然沒被解決時,我很是吃驚——我原本還以為這個問題會有一些很平凡的解呢。然而,仔細想想也不奇怪,這和很多其他的數學難題一樣,本質上都是 Diophantus 方程,其解的存在性都是很難判斷的。只不過,某些問題的敘述方式會給人帶來一種格外基本、格外初等的感覺。與這個問題類似的是 Euler 完美長方體問題:是否存在一個長方體,它的長、寬、高、所有面對角線以及體對角線的長度都是有理數?事實上,還有很多「構造點集讓距離滿足一定關系」形式的數學問題,它們都是長期以來懸而未解的難題。
數學很有趣值得思考研究 。
❺ 世界三大未解數學難題是什麼
1、霍奇猜想(Hodge conjecture):
二十世紀的數學家們發現了研究復雜對象的形狀的強有力的辦法。基本想法是問在怎樣的程度上,我們可以把給定對象的形狀通過把維數不斷增加的簡單幾何營造塊粘合在一起來形成。
這種技巧是變得如此有用,使得它可以用許多不同的方式來推廣;最終導致一些強有力的工具,使數學家在對他們研究中所遇到的形形色色的對象進行分類時取得巨大的進展。
不幸的是,在這一推廣中,程序的幾何出發點變得模糊起來。在某種意義下,必須加上某些沒有任何幾何解釋的部件。
霍奇猜想斷言,對於所謂射影代數簇這種特別完美的空間類型來說,稱作霍奇閉鏈的部件實際上是稱作代數閉鏈的幾何部件的(有理線性)組合。
2、黎曼假設:
有些數具有不能表示為兩個更小的數的乘積的特殊性質,例如,2、3、5、7……等等。這樣的數稱為素數;它們在純粹數學及應用數學中都起著重要作用。
在所有自然數中,素數分布似乎並不遵循任何有規則的模式;然而,德國數學家黎曼(1826~1866)觀察到,素數的頻率緊密相關於所謂的黎曼ζ函數。
黎曼假設斷言,方程ζ(s)=0的非平凡零點的實部都是1/2,即位於直線1/2 + ti(「臨界線」,critical line)上。這點已經對於開首的1,500,000,000個解驗證過。證明它對於每一個有意義的解都成立,將為圍繞素數分布的許多奧秘帶來光明。
難題的提出
20世紀是數學大發展的一個世紀。數學的許多重大難題得到完滿解決, 如費馬大定理的證明,有限單群分類工作的完成等, 從而使數學的基本理論得到空前發展。
效法希爾伯特, 許多當代世界著名的數學家在過去幾年中整理和提出新的數學難題,希冀為新世紀數學的發展指明方向。 這些數學家知名度是高的, 但他們的這項行動並沒有引起世界數學界的共同關注。
2000年初美國克雷數學研究所的科學顧問委員會選定了七個"千年大獎問題",克雷數學研究所的董事會決定建立七百萬美元的大獎基金,每個"千年大獎問題"的解決都可獲得百萬美元的獎勵。克雷數學研究所"千年大獎問題"的選定,其目的不是為了形成新世紀數學發展的新方向, 而是集中在對數學發展具有中心意義、數學家們夢寐以求而期待解決的重大難題。
❻ 世界上有哪些至今沒有解決的數學難題
1.哥德巴赫猜想:1個偶數可分為2個質數相加《本題未解》(本題被譽為數學王冠上的明珠,陳景潤證明了1個偶數可分為1個質數加上2個質數相乘,俗稱1+2)
2.費馬猜想:任意自然數abc,當n大於2時,a的n次方加b的n次方必不等於c的n次方《本題已解,獎金已送出》(法律專業的費馬寫完這個猜想後說道:我已想到這個題目的美妙解法,無奈這頁空白太少,寫不下,就不寫了…後來的數學家看到這句話後大為光火,奮而求解,終於在350多年後懷爾斯用模橢圓曲線和群論搞定了本題)
3.四色猜想:任何地圖只要4種顏色就可以區分所有國家《本題已解》(1976年美國數學家阿佩爾、哈肯用2台計算機經過50多天100多億次邏輯判斷證明了出來,據說剛開始它作為答案僅僅是因為沒人能證明該證明過程是錯的)
4.植樹問題:種20棵樹,4棵為1行,問最多能種幾行(16世紀排出16行,19世紀排出18行,20世紀末排出20行,那麼你呢…)
5.歐氏第五公設問題:…等價表達…過直線外1點只有1條平行線《本題無解》(歐幾里德通過這個假設推出了歐氏幾何,也叫平面幾何;頑強而又不幸的羅巴切夫斯基通過這個假設的反面推出了非歐幾何,也叫黎曼幾何,廣義相對論的基礎…)
6.黎曼猜想:黎曼zeta函數等0時的所有解在同一直線上《本題未解》(本題非常的神秘,據說它涉及數論函數甚至經濟社會等等方面,博奕論鼻祖納什曾經用n年時間求解此題,不幸瘋掉…)
7.角谷猜想:1個自然數,是偶數就除2,是奇數就乘3加1,最後結果總會是1《本題未解》
8.單色3角形問題:有6個點,每2點用黑色或紅色相連,是否必定存在1個單色3角形?《本題未解》(另一表達:6個人在一起,必有3個人認識或不認識)
❼ 世界三大未解數學難題是什麼
世界三大未解數學難題如下。
1.第一題:三等分任意角。用一把沒刻度的尺子和圓規來三等分任意角。
2.第二題:化圓為方。把一個圓「兌換」成相同大小的正方形。
3.第三題:尺規作圖。用一把沒有刻度的尺子和一把圓規作出漂亮的對稱圖形。
世界近代三大數學難題之一四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。這個結論能不能從數學上加以嚴格證明呢。
他和在大學讀書的弟弟格里斯決心試一試。兄弟二人為證明這一問題而使用的稿紙已經堆了一大疊,可是研究工作沒有進展。1852年10月23日,他的弟弟就這個問題的證明請教他的老師、著名數學家德摩爾根,摩爾根也沒有能找到解決這個問題的途徑。
於是寫信向自己的好友、著名數學家哈密爾頓爵士請教。哈密爾頓接到摩爾根的信後,對四色問題進行論證。但直到1865年哈密爾頓逝世為止,問題也沒有能夠解決。
❽ 世界頂級未解數學難題都有哪些
哥德巴赫猜想
❾ 世界上有哪些著名的猜想
世界三大數學猜想即費馬猜想、四色猜想和哥德巴赫猜想。
費馬猜想的證明於1994年由英國數學家安德魯·懷爾斯(Andrew Wiles)完成,遂稱費馬大定理。
四色猜想的證明於1976年由美國數學家阿佩爾(Kenneth Appel)與哈肯(Wolfgang Haken)藉助計算機完成,遂稱四色定理。
哥德巴赫猜想尚未解決,最好的成果(陳氏定理)乃於1966年由中國數學家陳景潤取得。這三個問題的共同點就是題面簡單易懂,內涵深邃無比,影響了一代代的數學家。
四色定理的內容及提出
四色問題的內容是:「任何一張平面地圖只用四種顏色就能使具有共同邊界的國家著上不同的顏色。」用數學語言表示,即「將平面任意地細分為不相重疊的區域,每一個區域總可以用1,2,3,4這四個數字之一來標記,而不會使相鄰的兩個區域得到相同的數字。」
這里所指的相鄰區域,是指有一整段邊界是公共的。如果兩個區域只相遇於一點或有限多點,就不叫相鄰的。因為用相同的顏色給它們著色不會引起混淆。