導航:首頁 > 數字科學 > 數學基本量方法有哪些

數學基本量方法有哪些

發布時間:2022-10-11 22:49:45

① 數學常用的數學思想方法有哪些

數學常用的數學思想方法主要有:用字母表示數的思想,數形結合的思想,轉化思想 (化歸思想),分類思想,類比思想,函數的思想,方程的思想,無逼近思想等等。

1.用字母表示數的思想:這是基本的數學思想之一 .在代數第一冊第二章「代數初步知識」中,主要體現了這種思想。

2.數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。

3.轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。

4.分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。

5.類比:類比推理在人們認識和改造客觀世界的活動中具有重要意義.它能觸類旁通,啟發思考,不僅是解決日常生活中大量問題的基礎,而且是進行科學研究和發明創造的有力工具.

6.函數的思想 :辯證唯物主義認為,世界上一切事物都是處在運動、變化和發展的過程中,這就要求我們教學中重視函數的思想方法的教學。

7.方程:是初中代數的主要內容.初中階段主要學習了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關系,通過設未知數、列方程或方程組,解方程或方程組等步驟,達到求值目的的解題思路和策略,

(1)數學基本量方法有哪些擴展閱讀:

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用。

② 小學數學的統計方法有哪些



1、統計表:統計調查所得來的原始資料,經過整理,得到說明社會現象及其發展過程的數據,把這些數據按一定的順序排列在表格中,就形成統計表統計圖:統計圖是根據統計數字,用幾何圖形、事物形象和地圖等繪制的各種圖形。它具有直觀、形象、生動、具體等特點;
2、扇形統計圖:扇形統計圖是用整個圓表示總數,用圓內各個扇形的大小表示各部分量占總量的百分之幾,扇形統計圖中各部分的百分比之和是單位1;
3、折線統計圖:以折線的上升或下降來表示統計數量的增減變化的統計圖,叫作折線統計圖。折線變化幅度越大,數量關系變化越大與條形統計圖比較,折線統計圖不僅可以表示數量的多少,而且可以反映數據的增減變化情況,。

③ 數學方法是什麼

數學方法包括:配方法、換元法、反證法、割補法、待定系數法;分析法、比較法、綜合法、歸納法、觀察法、定義法、等積法、向量法、解析法、構造法、類比法、放縮法、導數法、參數法、消元法、不等式法、判別式法、數形結合法、分類討論法、數學歸納法、分離參數法、整體代換等

④ 數學方法有哪些

數學方法即用數學語言表述事物的狀態、關系和過程,並加以推導、演算和分析,以形成對問題的解釋、判斷和預言的方法。所謂方法,是指人們為了達到某種目的而採取的手段、途徑和行為方式中所包含的可操作的規則或模式.人們通過長期的實踐,發現了許多運用數學思想的手段、門路或程序。同一手段、門路或程序被重復運用了多次,並且都達到了預期的目的,就成為數學方法。數學方法是以數學為工具進行科學研究的方法,即用數學語言表達事物的狀態、關系和過程,經過推導、運算與分析,以形成解釋、判斷和預言的方法。
在中學數學中經常用到的基本數學方法,大致可以分為以下三類:

(1)邏輯學中的方法
例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等。這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色。

(2)數學中的一般方法
例如建模法、消元法、降次法、代入法、圖像法(也稱坐標法,在代數中常稱圖像法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛。

(3)數學中的特殊方法
例如配方法、待定系數法、消元法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等。這些方法在解決某些數學問題時也起著重要作用。

⑤ 高中數學的基本思想方法有哪些

1、函數方程思想

函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組)。

然後通過解方程(組)或不等式(組)來使問題獲解。有時,還需要函數與方程的互相轉化、接軌,達到解決問題的目的。

笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程。

求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。

函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題。

經常利用的性質是:f(x)、f (x)的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解決問題中。

善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系。

構造出函數原型。另外,方程問題、不等式問題、集合問題、數列問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。

2、數形結合思想

「數無形,少直觀,形無數,難入微」,利用「數形結合」可使所要研究的問題化難為易,化繁為簡。把代數和幾何相結合,例如對幾何問題用代數方法解答,對代數問題用幾何方法解答,這種方法在解析幾何里最常用。

例如求根號((a-1)^2+(b-1)^2)+根號(a^2+(b-1)^2)+根號((a-1)^2+b^2)+根號(a^2+b^2)的最小值,就可以把它放在坐標系中,把它轉化成一個點到(0,1)、(1,0)、(0,0)、(1,1)四點的距離,就可以求出它的最小值。

3、分類討論思想

當一個問題因為某種量或圖形的情況不同而有可能引起問題的結果不同時,需要對這個量或圖形的各種情況進行分類討論。比如解不等式|a-1|>4的時候,就要分類討論a的取值情況。

4、方程思想

當一個問題可能與某個方程建立關聯時,可以構造方程並對方程的性質進行研究以解決這個問題。例如證明柯西不等式的時候,就可以把柯西不等式轉化成一個二次方程的判別式。

5、整體思想

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。

整體思想方法在代數式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應用,整體代入、疊加疊乘處理、整體運算、整體設元、整體處理、幾何中的補形等都是整體思想方法在解數學問題中的具體運用。

6、化歸思想

在於將未知的,陌生的,復雜的問題通過演繹歸納轉化為已知的,熟悉的,簡單的問題。三角函數,幾何變換,因式分解,解析幾何,微積分,乃至古代數學的尺規作圖等數學理論無不滲透著轉化的思想。

常見的轉化方式有:一般 特殊轉化,等價轉化,復雜 簡單轉化,數形轉化,構造轉化,聯想轉化,類比轉化等。

轉化思想亦可在狹義上稱為化歸思想。化歸思想就是將待解決的或者難以解決的問題A經過某種轉化手段,轉化為有固定解決模式的或者容易解決的問題B,通過解決問題B來解決問題A的方法。

7、隱含條件思想

沒有明文表述出來,但是根據已有的明文表述可以推斷出來的條件,或者是沒有明文表述,但是該條件是一個常規或者真理。例如一個等腰三角形,一條線段垂直於底邊,那麼這條線段所在的直線也平分底邊和頂角。

8、類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。

9、建模思想

為了更具科學性,邏輯性,客觀性和可重復性地描述一個實際現象,人們採用一種普遍認為比較嚴格的語言來描述各種現象,這種語言就是數學。

使用數學語言描述的事物就稱為數學模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數學模型作為實際物體的代替而進行相應的實驗,實驗本身也是實際操作的一種理論替代。

10、歸納推理思想

由某類事物的部分對象具有某些特徵,推出該類事物的全部對象都具有這些特徵的推理,或者由個別事實概括出一般結論的推理稱為歸納推理(簡稱歸納),簡言之,歸納推理是由部分到整體,由個別到一般的推理。

另外,還有概率統計思想等數學思想,例如概率統計思想是指通過概率統計解決一些實際問題,如摸獎的中獎率、某次考試的綜合分析等等。另外,還可以用概率方法解決一些面積問題。

⑥ 數學基本思想方法有哪些

1、數形結合:是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。「數缺形時少直觀,形無數時難入微」是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。

2、轉化思想:在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易於解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。

3、分類思想:有理數的分類、整式的分類、實數的分類、角的分類,三角形的分類、四邊形的分類、點與圓的位置關系、直線與圓的位置關系,圓與圓的位置關系等都是通過分類討論的。

4、整體思想

從問題的整體性質出發,突出對問題的整體結構的分析和改造,發現問題的整體結構特徵,善於用「集成」的眼光,把某些式子或圖形看成一個整體,把握它們之間的關聯,進行有目的的、有意識的整體處理。

5、類比思想

把兩個(或兩類)不同的數學對象進行比較,如果發現它們在某些方面有相同或類似之處,那麼就推斷它們在其他方面也可能有相同或類似之處。

⑦ 學數學的基本方法和技巧有哪些

學數學的基本方法和技巧如下。

一、學數學的基本方法。

1、數學的學習時間應該佔全部總學科的50%左右。

數學是一個費時費力的學科,無論文理。對於文科和理科來說,數學的高考成績都是重中之重。比如文科,鮮有聽到一個班文綜成績能差60分以上的,但數學別說60,80都能差出來。

對於理科,物理,化學都需要大量的運算,數學的學習又是提供一種工具與思維。因此,對於之前的文理科,抑或是現在取消文理以後的偏文,偏理科來說,數學都是非常重要的。

2、要看課本。

在經過一段時間的學習以後,比如是一個章節的學習,就一定要拿出數學課本,找一個連貫的時間,靜靜地讀完數學課本里對應章節的每一段話,每一個字,包括所有的補充材料。

當然,課後的習題,也都要通讀。在讀完這些內容以後,最後還要翻開課本的目錄,對應這個章節的每一個小標題,靜心回憶一下每一個小標題的最重要的知識點,你最感興趣的內容等等。

二、學數學的技巧。

製作錯題本,錯題本的意義,不是把每一道你做錯的題目都謄寫一遍,而是要把那些反復做不對,反復做都有差錯的題目保存下來。錯題本的本質,是對我們思維方式,思考習慣的一個糾正。在這個錯題本上的題目都應該是做了3遍還會出錯的題目。

而錯題本的記錄內容,至少應該包括下面幾個內容。是完整的題目信息;是用自己的方式演算出的正確答案(將參考答案照抄一遍沒有任何意義);是自己對這個題目的評論,需要重點指出關鍵步驟,以及自己最初的想法與正確做法的差異在哪裡。

⑧ 數學的方法有哪些

1.數形結合思想:就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義,又揭示其幾何意義,使數量關系和圖形巧妙和諧地結合起來,並充分利用這種結合,尋求解體思路,使問題得到解決。

2.聯系與轉化的思想:事物之間是相互聯系、相互制約的,是可以相互轉化的。數學學科的各部分之間也是相互聯系,可以相互轉化的。在解題時,如果能恰當處理它們之間的相互轉化,往往可以化難為易,化繁為簡。如:代換轉化、已知與未知的轉化、特殊與一般的轉化、具體與抽象的轉化、部分與整體的轉化、動與靜的轉化等等。

3.分類討論的思想:在數學中,我們常常需要根據研究對象性質的差異,分各種不同情況予以考查,這種分類思考的方法,是一種重要的數學思想方法,同時也是一種重要的解題策略。

4.待定系數法:當我們所研究的數學式子具有某種特定形式時,要確定它,只要求出式子中待確定的字母得值就可以了。為此,把已知條件代入這個待定形式的式子中,往往會得到含待定字母的方程或方程組,然後解這個方程或方程組就使問題得到解決。

5.配方法:就是把一個代數式設法構造成平方式,然後再進行所需要的變化。配方法是初中代數中重要的變形技巧,配方法在分解因式、解方程、討論二次函數等問題,都有重要的作用。

6.換元法:在解題過程中,把某個或某些字母的式子作為一個整體,用一個新的字母表示,以便進一步解決問題的一種方法。換元法可以把一個較為復雜的式子化簡,把問題歸結為比原來更為基本的問題,從而達到化繁為簡,化難為易的目的。

7.分析法:在研究或證明一個命題時,又結論向已知條件追溯,既從結論開始,推求它成立的充分條件,這個條件的成立還不顯然,則再把它當作結論,進一步研究它成立的充分條件,直至達到已知條件為止,從而使命題得到證明。這種思維過程通常稱為「執果尋因」

⑨ 數學方法包括哪些

所謂方法,是指人們為了達到某種目的而採取的手段、途徑和行為方式中所包含的可操作的規則或模式.人們通過長期的實踐,發現了許多運用數學思想的手段、門路或程序.同一手段、門路或程序被重復運用了多次,並且都達到了預期的目的,就成為數學方法.數學方法是以數學為工具進行科學研究的方法,即用數學語言表達事物的狀態、關系和過程,經過推導、運算與分析,以形成解釋、判斷和預言的方法.
數學方法具有以下三個基本特徵:一是高度的抽象性和概括性;二是精確性,即邏輯的嚴密性及結論的確定性;三是應用的普遍性和可操作性.
數學方法在科學技術研究中具有舉足輕重的地位和作用:一是提供簡潔精確的形式化語言,二是提供數量分析及計算的方法,三是提供邏輯推理的工具.現代科學技術特別是電子計算機的發展,與數學方法的地位和作用的強化正好是相輔相成.
在中學數學中經常用到的基本數學方法,大致可以分為以下三類:
(1)邏輯學中的方法.例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等.這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色.
(2)數學中的一般方法.例如建模法、消元法、降次法、代入法、圖象法(也稱坐標法,在代數中常稱圖象法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛.
(3)數學中的特殊方法.例如配方法、待定系數法、加減(消元)法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等.這些方法在解決某些數學問題時也起著重要作用,我們不可等閑視之.

⑩ 數學方法有哪些

一、抓住課堂

理科學習重在平日功夫,不適於突擊復習。平日學習最重要的是課堂45分鍾,聽講要聚精會神,思維緊跟老師。同時要說明一點,許多同學容易忽略老師所講的數學思想、數學方法,而注重題目的解答,其實諸如\"化歸\"、\"數形結合\"等思想方法遠遠重要於某道題目的解答。

二、高質量完成作業

所謂高質量是指高正確率和高速度。寫作業時,有時同一類型的題重復練習,這時就要有意識的考查速度和准確率,並且在每做完一次時能夠對此類題目有更深層的思考,諸如它考查的內容,運用的數學思想方法,解題的規律、技巧等。另外對於老師布置的思考題,也要認真完成。如果不會決不能輕易放棄,要發揚\"釘子\"精神,一有空就靜心思考,靈感總是突然來到你身邊的。最重要的是,這是一次挑戰自我的機會。成功會帶來自信,而自信對於學習理科十分重要;即使失敗,這道題也會給你留下深刻的印象。

三、勤思考,多提問

首先對於老師給出的規律、定理,不僅要知\"其然\"還要\"知其所以然\",做到刨根問底,這便是理解的最佳途徑。其次,學習任何學科都應抱著懷疑的態度,尤其是理科。對於老師的講解,課本的內容,有疑問應盡管提出,與老師討論。總之,思考、提問是清除學習隱患的最佳途徑。

四、總結比較,理清思緒

(1)知識點的總結比較。每學完一章都應將本章內容做一個框架圖或在腦中過一遍,整理出它們的關系。對於相似易混淆的知識點應分項歸納比較,有時可用聯想法將其區分開 。

(2)題目的總結比較。同學們可以建立自己的題庫。我就有兩本題集。一本是錯題,一本是精題。對於平時作業,考試出現的錯題,有選擇地記下來,並用紅筆在一側批註注意事項,考試前只需翻看紅筆寫的內容即可。我還把見到的一些極其巧妙或難度高的題記下來,也用紅筆批註此題所用方法和思想。時間長了,自己就可總結出一些類型的解題規律,也用紅筆記下這些規律。最終它們會成為你寶貴的財富,對你的數學學習有極大的幫助。

五、有選擇地做課外練習

課余時間對我們中學生來說是十分珍貴的,所以在做課外練習時要少而精,只要每天做兩三道題,天長日久,你的思路就會開闊許多。

學習數學方法固然重要,但刻苦鑽研,精益求精的精神更為重要。只要你堅持不懈地努力,就一定可以學好數學。相信自己,數學會使你智慧的光芒更加耀眼奪目!

所謂方法,是指人們為了達到某種目的而採取的手段、途徑和行為方式中所包含的可操《數學方法論在數學教學教育中的應用》封面
作的規則或模式.人們通過長期的實踐,發現了許多運用數學思想的手段、門路或程序.同一手段、門路或程序被重復運用了多次,並且都達到了預期的目的,就成為數學方法.數學方法是以數學為工具進行科學研究的方法,即用數學語言表達事物的狀態、關系和過程,經過推導、運算與分析,以形成解釋、判斷和預言的方法.
編輯本段特徵
數學方法具有以下三個基本特徵:一是高度的抽象性和概括性;二是精確性,即邏輯的嚴密性及結論的確定性;三是應用的普遍性和可操作性.
編輯本段作用
數學方法在科學技術研究中具有舉足輕重的地位和作用:一是提供簡潔精確的形式化語言,二是提供數量分析及計算的方法,三是提供邏輯推理的工具.現代科學技術特別是電子計算機的發展,與數學方法的地位和作用的強化正好是相輔相成.
編輯本段分類
在中學數學中經常用到的基本數學方法,大致可以分為以下三類: (1)邏輯學中的方法.例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等.這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色. (2)數學中的一般方法.例如建模法、消元法、降次法、代入法、圖象法(也稱坐標法,在代數中常稱圖象法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等.這些方法極為重要,應用也很廣泛. (3)數學中的特殊方法.例如配方法、待定系數法、加減(消元)法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等.這些方法在解決某些數學問題時也起著重要作用,我們不可等閑視之.
編輯本段相關
無論自然科學、技術科學或社會科學,為了要對所研究的對象的質獲得比較深刻的認識,都需要對之作出量的方面的刻畫,這就需要藉助於數學方法。對不同性質和不同復雜程度的事物,運用數學方法的要求和可能性是不同的。總的看,一門科學只有當它達到了能夠運用數學時,才算真正成熟了。在現代科學中,運用數學的程度,已成為衡量一門科學的發展程度,特別是衡量其理論成熟與否的重要標志。 在科學研究中成功地運用數學方法的關鍵,就在於針對所要研究的問題提煉出一個合適的數學模型,這個模型既能反映問題的本質,又能使問題得到必要的簡化,以利於展開數學推導。數學方法
建立數學模型是對問題進行具體分析的科學抽象過程,因而要善於抓住主要矛盾,突出主要因素和關系,撇開那些次要因素和關系。建立模型的過程還是一個「化繁為簡」、「化難為易」的過程。當然,簡化不是無條件的,合理的簡化必須考慮到實際問題所能允許的誤差范圍和所用的數學方法要求的前提條件。對於同一個問題可以建立不同的數學模型,同時在研究過程中不斷檢驗、比較,逐漸篩選出最優的模型,並在應用過程中繼續加以檢驗和修正,使之逐步完善。從一個特殊問題抽象出來的數學模型常常具有某種程度的普遍性,這是因為一個特殊的數學模型可以發展成為描述同一類現象的共同的數學模型。已經獲得廣泛應用並且卓有成效的數學模型大體上有兩類:一類稱為確定性模型,即用各種數學方程如代數方程、微分方程、積分方程、差分方程等描述和研究各種必然性現象,在這類模型中事物的變化發展遵從確定的力學規律性;另一類稱為隨機性模型,即用概率論和數理統計方法描述和研究各種或然性現象,事物的發展變化在這類模型中表現為隨機性過程,並遵從統計規律,而且具有多種可能的結果。客觀世界的必然性現象和或然性現象並不是截然分開的。有些事物主要地表現為必然性現象,但是當隨機因素的影響不可忽視時,則有必要在確定性模型中引入隨機因素,從而形成隨機微分方程這樣一類數學模型。20世紀70年代以來,還陸續發現在一些確定性模型中,如某些描述保守系統或耗散結構的非線性方程,並不附加隨機因素,但卻在一定的參數范圍內表現出「內在的隨機性」,即出現分岔和混沌的隨機行為。這類現象的機制及其數學問題已引起數學家和科學家的重視,目前正在研究中。

閱讀全文

與數學基本量方法有哪些相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:976
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1653
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059