『壹』 求數學反比例函數設參法的題目,謝謝各位大佬
過反比例函數圖像上第一象限的一點P,分別做x軸和y軸的垂線,垂足為M,N,若矩形OMPN的面積為2,求反比例函數的解析式。
『貳』 數學題,怎麼設參數方程
設點p(x,y)並且滿足
x=3+2cost
y=4+2sint
PA^2=(3+2cost+1)^2+(4+2sint)^2=36+16cost+16sint
PB^2=(3+2cost-1)^2+(4+2sint)^2=24+8cost+16sint
PA^2+PB^2=50+24cost+32sint=50+40(0.6cost+0.8sint
=50+40sin(t+a),cosa=0.8,sina=0.6,0<a<pi/2
當sin(t+a)=-1時,PA^2+PB^2最小為50-40=10
其時,sint=sin(t+a-a)=sin(t+a)cosa-cos(t+a)sina=-1*0.8-0=-0.8,cos(t)= cos (t+a-a)= cos (t+a)cosa-sin (t+a)sina=0.6
則x=3+2*0.6=4.2,y=4-2*0.8=2.4
『叄』 七年級數學什麼叫設參數消元請舉例說明,謝謝!
參數消元法的定義
如果當變數x在其變化范圍內任意取定一個數值時,量y按照一定的法則總有確定的數值與它對應,則稱y是x的函數.變數x的變化范圍叫做這個函數的定義域.通常x叫做自變數,y叫做因變數.
註:為了表明y是x的函數,我們用記號y=f(x)、y=F(x)等等來表示.這里的字母"f"、"F"表示y與x之間的對應法則即函數關系,它們是可以任意採用不同的字母來表示的.
註:如果自變數在定義域內任取一個確定的值時,函數只有一個確定的值和它對應,這種函數叫做單值函數,否則叫做多值函數.這里我們只討論單值函數.
函數的表示
a):解析法:用數學式子表示自變數和因變數之間的對應關系的方法即是解析法.
例:直角坐標系中,半徑為r、圓心在原點的圓的方程是:x2+y2=r2
b):表格法:將一系列的自變數值與對應的函數值列成表來表示函數關系的方法即是表格法.
例:在實際應用中,我們經常會用到的平方表,三角函數表等都是用表格法表示的函數.
c):圖示法:用坐標平面上曲線來表示函數的方法即是圖示法.一般用橫坐標表
設參代入法
說明:方程以比例(或可化為比例)的形式出現時,可引入輔助參數消元
『肆』 數學參數方程怎麼學
方程」的思想 數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系.最常見的等量關系就是「方程」.比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度*時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是「方程」,而通過方程里的已知量求出未知量的過程就是解方程.我們在小學就已經接觸過簡易方程,而初一則比較系統地學習解一元一次方程,並總結出解一元一次方程的五個步驟.如果學會並掌握了這五個步驟,任何一個一元一次方程都能順利地解出來
『伍』 求數學解題方法
第一章 高中數學解題基本方法
一、 配方法
配方法是對數學式子進行一種定向變形(配成「完全平方」)的技巧,通過配方找到已知和未知的聯系,從而化繁為簡。何時配方,需要我們適當預測,並且合理運用「裂項」與「添項」、「配」與「湊」的技巧,從而完成配方。有時也將其稱為「湊配法」。
最常見的配方是進行恆等變形,使數學式子出現完全平方。它主要適用於:已知或者未知中含有二次方程、二次不等式、二次函數、二次代數式的討論與求解,或者缺xy項的二次曲線的平移變換等問題。
配方法使用的最基本的配方依據是二項完全平方公式(a+b)2=a2+2ab+b2,將這個公式靈活運用,可得到各種基本配方形式,如:
二、換元法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標准型問題標准化、復雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯系起來,隱含的條件顯露出來,或者把條件與結論聯系起來。或者變為熟悉的形式,把復雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函數、數列、三角等問題中有廣泛的應用。
換元的方法有:局部換元、三角換元、均值換元等。局部換元又稱整體換元,是在已知或者未知中,某個代數式幾次出現,而用一個字母來代替它從而簡化問題,當然有時候要通過變形才能發現。
三角換元,應用於去根號,或者變換為三角形式易求時,主要利用已知代數式中與三角知識中有某點聯系進行換元。
我們使用換元法時,要遵循有利於運算、有利於標准化的原則,換元後要注重新變數范圍的選取,一定要使新變數范圍對應於原變數的取值范圍,不能縮小也不能擴大。
三、待定系數法
要確定變數間的函數關系,設出某些未知系數,然後根據所給條件來確定這些未知系數的方法叫待定系數法,其理論依據是多項式恆等,也就是利用了多項式f(x)=g(x)的充要條件是:對於一個任意的a值,都有f(a)=g(a);或者兩個多項式各同類項的系數對應相等。
待定系數法解題的關鍵是依據已知,正確列出等式或方程。使用待定系數法,就是把具有某種確定形式的數學問題,通過引入一些待定的系數,轉化為方程組來解決,要判斷一個問題是否用待定系數法求解,主要是看所求解的數學問題是否具有某種確定的數學表達式,如果具有,就可以用待定系數法求解。例如分解因式、拆分分式、數列求和、求函數式、求復數、解析幾何中求曲線方程等,這些問題都具有確定的數學表達形式,所以都可以用待定系數法求解。
使用待定系數法,它解題的基本步驟是:
第一步,確定所求問題含有待定系數的解析式;
第二步,根據恆等的條件,列出一組含待定系數的方程;
第三步,解方程組或者消去待定系數,從而使問題得到解決。
如何列出一組含待定系數的方程,主要從以下幾方面著手分析:
① 利用對應系數相等列方程;
② 由恆等的概念用數值代入法列方程;
③ 利用定義本身的屬性列方程;
④ 利用幾何條件列方程。
比如在求圓錐曲線的方程時,我們可以用待定系數法求方程:首先設所求方程的形式,其中含有待定的系數;再把幾何條件轉化為含所求方程未知系數的方程或方程組;最後解所得的方程或方程組求出未知的系數,並把求出的系數代入已經明確的方程形式,得到所求圓錐曲線的方程。
四、定義法
所謂定義法,就是直接用數學定義解題。數學中的定理、公式、性質和法則等,都是由定義和公理推演出來。定義是揭示概念內涵的邏輯方法,它通過指出概念所反映的事物的本質屬性來明確概念。
定義是千百次實踐後的必然結果,它科學地反映和揭示了客觀世界的事物的本質特點。簡單地說,定義是基本概念對數學實體的高度抽象。用定義法解題,是最直接的方法,本講讓我們回到定義中去。
五、數學歸納法
歸納是一種有特殊事例導出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據一類事物中的部分對象具有的共同性質,推斷該類事物全體都具有的性質,這種推理方法,在數學推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對象後歸納得出結論來。
數學歸納法是用來證明某些與自然數有關的數學命題的一種推理方法,在解數學題中有著廣泛的應用。它是一個遞推的數學論證方法,論證的第一步是證明命題在n=1(或n )時成立,這是遞推的基礎;第二步是假設在n=k時命題成立,再證明n=k+1時命題也成立,這是無限遞推下去的理論依據,它判斷命題的正確性能否由特殊推廣到一般,實際上它使命題的正確性突破了有限,達到無限。這兩個步驟密切相關,缺一不可,完成了這兩步,就可以斷定「對任何自然數(或n≥n 且n∈N)結論都正確」。由這兩步可以看出,數學歸納法是由遞推實現歸納的,屬於完全歸納。
運用數學歸納法證明問題時,關鍵是n=k+1時命題成立的推證,此步證明要具有目標意識,注意與最終要達到的解題目標進行分析比較,以此確定和調控解題的方向,使差異逐步減小,最終實現目標完成解題。
運用數學歸納法,可以證明下列問題:與自然數n有關的恆等式、代數不等式、三角不等式、數列問題、幾何問題、整除性問題等等。
六、參數法
參數法是指在解題過程中,通過適當引入一些與題目研究的數學對象發生聯系的新變數(參數),以此作為媒介,再進行分析和綜合,從而解決問題。直線與二次曲線的參數方程都是用參數法解題的例證。換元法也是引入參數的典型例子。
辨證唯物論肯定了事物之間的聯系是無窮的,聯系的方式是豐富多採的,科學的任務就是要揭示事物之間的內在聯系,從而發現事物的變化規律。參數的作用就是刻畫事物的變化狀態,揭示變化因素之間的內在聯系。參數體現了近代數學中運動與變化的思想,其觀點已經滲透到中學數學的各個分支。運用參數法解題已經比較普遍。
參數法解題的關鍵是恰到好處地引進參數,溝通已知和未知之間的內在聯系,利用參數提供的信息,順利地解答問題。
七、反證法
與前面所講的方法不同,反證法是屬於「間接證明法」一類,是從反面的角度思考問題的證明方法,即:肯定題設而否定結論,從而導出矛盾推理而得。法國數學家阿達瑪(Hadamard)對反證法的實質作過概括:「若肯定定理的假設而否定其結論,就會導致矛盾」。具體地講,反證法就是從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件、已知公理、定理、法則或者已經證明為正確的命題等相矛,矛盾的原因是假設不成立,所以肯定了命題的結論,從而使命題獲得了證明。
反證法所依據的是邏輯思維規律中的「矛盾律」和「排中律」。在同一思維過程中,兩個互相矛盾的判斷不能同時都為真,至少有一個是假的,這就是邏輯思維中的「矛盾律」;兩個互相矛盾的判斷不能同時都假,簡單地說「A或者非A」,這就是邏輯思維中的「排中律」。反證法在其證明過程中,得到矛盾的判斷,根據「矛盾律」,這些矛盾的判斷不能同時為真,必有一假,而已知條件、已知公理、定理、法則或者已經證明為正確的命題都是真的,所以「否定的結論」必為假。再根據「排中律」,結論與「否定的結論」這一對立的互相否定的判斷不能同時為假,必有一真,於是我們得到原結論必為真。所以反證法是以邏輯思維的基本規律和理論為依據的,反證法是可信的。
反證法的證題模式可以簡要的概括我為「否定→推理→否定」。即從否定結論開始,經過正確無誤的推理導致邏輯矛盾,達到新的否定,可以認為反證法的基本思想就是「否定之否定」。應用反證法證明的主要三步是:否定結論 → 推導出矛盾 → 結論成立。實施的具體步驟是:
第一步,反設:作出與求證結論相反的假設;
第二步,歸謬:將反設作為條件,並由此通過一系列的正確推理導出矛盾;
第三步,結論:說明反設不成立,從而肯定原命題成立。
在應用反證法證題時,一定要用到「反設」進行推理,否則就不是反證法。用反證法證題時,如果欲證明的命題的方面情況只有一種,那麼只要將這種情況駁倒了就可以,這種反證法又叫「歸謬法」;如果結論的方面情況有多種,那麼必須將所有的反面情況一一駁倒,才能推斷原結論成立,這種證法又叫「窮舉法」。
在數學解題中經常使用反證法,牛頓曾經說過:「反證法是數學家最精當的武器之一」。一般來講,反證法常用來證明的題型有:命題的結論以「否定形式」、「至少」或「至多」、「唯一」、「無限」形式出現的命題;或者否定結論更明顯。具體、簡單的命題;或者直接證明難以下手的命題,改變其思維方向,從結論入手進行反面思考,問題可能解決得十分乾脆。
第二章 高中數學常用的數學思想
一、數形結合思想方法
中學數學的基本知識分三類:一類是純粹數的知識,如實數、代數式、方程(組)、不等式(組)、函數等;一類是關於純粹形的知識,如平面幾何、立體幾何等;一類是關於數形結合的知識,主要體現是解析幾何。
數形結合是一個數學思想方法,包含「以形助數」和「以數輔形」兩個方面,其應用大致可以分為兩種情形:或者是藉助形的生動和直觀性來闡明數之間的聯系,即以形作為手段,數為目的,比如應用函數的圖像來直觀地說明函數的性質;或者是藉助於數的精確性和規范嚴密性來闡明形的某些屬性,即以數作為手段,形作為目的,如應用曲線的方程來精確地闡明曲線的幾何性質。
恩格斯曾說過:「數學是研究現實世界的量的關系與空間形式的科學。」數形結合就是根據數學問題的條件和結論之間的內在聯系,既分析其代數意義,又揭示其幾何直觀,使數量關的精確刻劃與空間形式的直觀形象巧妙、和諧地結合在一起,充分利用這種結合,尋找解題思路,使問題化難為易、化繁為簡,從而得到解決。「數」與「形」是一對矛盾,宇宙間萬物無不是「數」和「形」的矛盾的統一。華羅庚先生說過:數缺形時少直觀,形少數時難入微,數形結合百般好,隔裂分家萬事休。
數形結合的思想,其實質是將抽象的數學語言與直觀的圖像結合起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。在運用數形結合思想分析和解決問題時,要注意三點:第一要徹底明白一些概念和運算的幾何意義以及曲線的代數特徵,對數學題目中的條件和結論既分析其幾何意義又分析其代數意義;第二是恰當設參、合理用參,建立關系,由數思形,以形想數,做好數形轉化;第三是正確確定參數的取值范圍。
數學中的知識,有的本身就可以看作是數形的結合。如:銳角三角函數的定義是藉助於直角三角形來定義的;任意角的三角函數是藉助於直角坐標系或單位圓來定義的。
二、分類討論思想方法
在解答某些數學問題時,有時會遇到多種情況,需要對各種情況加以分類,並逐類求解,然後綜合得解,這就是分類討論法。分類討論是一種邏輯方法,是一種重要的數學思想,同時也是一種重要的解題策略,它體現了化整為零、積零為整的思想與歸類整理的方法。有關分類討論思想的數學問題具有明顯的邏輯性、綜合性、探索性,能訓練人的思維條理性和概括性,所以在高考試題中佔有重要的位置。
引起分類討論的原因主要是以下幾個方面:
① 問題所涉及到的數學概念是分類進行定義的。如|a|的定義分a>0、a=0、a<0三種情況。這種分類討論題型可以稱為概念型。
② 問題中涉及到的數學定理、公式和運算性質、法則有范圍或者條件限制,或者是分類給出的。如等比數列的前n項和的公式,分q=1和q≠1兩種情況。這種分類討論題型可以稱為性質型。
③ 解含有參數的題目時,必須根據參數的不同取值范圍進行討論。如解不等式ax>2時分a>0、a=0和a<0三種情況討論。這稱為含參型。
另外,某些不確定的數量、不確定的圖形的形狀或位置、不確定的結論等,都主要通過分類討論,保證其完整性,使之具有確定性。
進行分類討論時,我們要遵循的原則是:分類的對象是確定的,標準是統一的,不遺漏、不重復,科學地劃分,分清主次,不越級討論。其中最重要的一條是「不漏不重」。
解答分類討論問題時,我們的基本方法和步驟是:首先要確定討論對象以及所討論對象的全體的范圍;其次確定分類標准,正確進行合理分類,即標准統一、不漏不重、分類互斥(沒有重復);再對所分類逐步進行討論,分級進行,獲取階段性結果;最後進行歸納小結,綜合得出結論。
三、函數與方程的思想方法
函數思想,是指用函數的概念和性質去分析問題、轉化問題和解決問題。方程思想,是從問題的數量關系入手,運用數學語言將問題中的條件轉化為數學模型(方程、不等式、或方程與不等式的混合組),然後通過解方程(組)或不等式(組)來使問題獲解。有時,還實現函數與方程的互相轉化、接軌,達到解決問題的目的。
笛卡爾的方程思想是:實際問題→數學問題→代數問題→方程問題。宇宙世界,充斥著等式和不等式。我們知道,哪裡有等式,哪裡就有方程;哪裡有公式,哪裡就有方程;求值問題是通過解方程來實現的……等等;不等式問題也與方程是近親,密切相關。而函數和多元方程沒有什麼本質的區別,如函數y=f(x),就可以看作關於x、y的二元方程f(x)-y=0。可以說,函數的研究離不開方程。列方程、解方程和研究方程的特性,都是應用方程思想時需要重點考慮的。
函數描述了自然界中數量之間的關系,函數思想通過提出問題的數學特徵,建立函數關系型的數學模型,從而進行研究。它體現了「聯系和變化」的辯證唯物主義觀點。一般地,函數思想是構造函數從而利用函數的性質解題,經常利用的性質是:f(x)、f(x)反函數的單調性、奇偶性、周期性、最大值和最小值、圖像變換等,要求我們熟練掌握的是一次函數、二次函數、冪函數、指數函數、對數函數、三角函數的具體特性。在解題中,善於挖掘題目中的隱含條件,構造出函數解析式和妙用函數的性質,是應用函數思想的關鍵。對所給的問題觀察、分析、判斷比較深入、充分、全面時,才能產生由此及彼的聯系,構造出函數原型。另外,方程問題、不等式問題和某些代數問題也可以轉化為與其相關的函數問題,即用函數思想解答非函數問題。
函數知識涉及的知識點多、面廣,在概念性、應用性、理解性都有一定的要求,所以是高考中考查的重點。我們應用函數思想的幾種常見題型是:遇到變數,構造函數關系解題;有關的不等式、方程、最小值和最大值之類的問題,利用函數觀點加以分析;含有多個變數的數學問題中,選定合適的主變數,從而揭示其中的函數關系;實際應用問題,翻譯成數學語言,建立數學模型和函數關系式,應用函數性質或不等式等知識解答;等差、等比數列中,通項公式、前n項和的公式,都可以看成n的函數,數列問題也可以用函數方法解決。
四、等價轉化思想方法
等價轉化是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的思想方法。通過不斷的轉化,把不熟悉、不規范、復雜的問題轉化為熟悉、規范甚至模式法、簡單的問題。歷年高考,等價轉化思想無處不見,我們要不斷培養和訓練自覺的轉化意識,將有利於強化解決數學問題中的應變能力,提高思維能力和技能、技巧。
轉化有等價轉化與非等價轉化。等價轉化要求轉化過程中前因後果是充分必要的,才保證轉化後的結果仍為原問題的結果。非等價轉化其過程是充分或必要的,要對結論進行必要的修正(如無理方程化有理方程要求驗根),它能給人帶來思維的閃光點,找到解決問題的突破口。我們在應用時一定要注意轉化的等價性與非等價性的不同要求,實施等價轉化時確保其等價性,保證邏輯上的正確。
著名的數學家,莫斯科大學教授C.A.雅潔卡婭曾在一次向數學奧林匹克參賽者發表《什麼叫解題》的演講時提出:「解題就是把要解題轉化為已經解過的題」。數學的解題過程,就是從未知向已知、從復雜到簡單的化歸轉換過程。
等價轉化思想方法的特點是具有靈活性和多樣性。在應用等價轉化的思想方法去解決數學問題時,沒有一個統一的模式去進行。它可以在數與數、形與形、數與形之間進行轉換;它可以在宏觀上進行等價轉化,如在分析和解決實際問題的過程中,普通語言向數學語言的翻譯;它可以在符號系統內部實施轉換,即所說的恆等變形。消去法、換元法、數形結合法、求值求范圍問題等等,都體現了等價轉化思想,我們更是經常在函數、方程、不等式之間進行等價轉化。可以說,等價轉化是將恆等變形在代數式方面的形變上升到保持命題的真假不變。由於其多樣性和靈活性,我們要合理地設計好轉化的途徑和方法,避免死搬硬套題型。
在數學操作中實施等價轉化時,我們要遵循熟悉化、簡單化、直觀化、標准化的原則,即把我們遇到的問題,通過轉化變成我們比較熟悉的問題來處理;或者將較為繁瑣、復雜的問題,變成比較簡單的問題,比如從超越式到代數式、從無理式到有理式、從分式到整式…等;或者比較難以解決、比較抽象的問題,轉化為比較直觀的問題,以便准確把握問題的求解過程,比如數形結合法;或者從非標准型向標准型進行轉化。按照這些原則進行數學操作,轉化過程省時省力,有如順水推舟,經常滲透等價轉化思想,可以提高解題的水平和能力。
『陸』 數學問題目 什麼是參數設參數的作用是什麼
參數 對指定應用而言,它可以是賦予的常數值;在泛指時,它可以是一種變數,用來控制隨其變化而變化的其他的量.參數是現在很多機械設置或維修上能用到的一個選項,怎麼理解參數呢,字面上理解是可供參考的數據,但有時又不全是數據.相關的我們可以搜索--參數查看.簡單說,參數是給我們參考的.也有讓我們很為難的,那就是參數設置了.統計學中:描述總體特徵的概括性數字度量,它是研究者想要了解的總體的某種特徵值 在數學中 數學中 參數思想貫徹於解析幾何中 對於幾何變數 人們用含有字母的代數式來表示變數 這個代數式叫作參數式 其中的字母叫做參數式 用圖形幾何性質 與代數關系來連立整式 進而解題 同時 參數法 也是許許多多解題技巧的源泉
『柒』 數學問題目 什麼是參數設參數的作用是什麼
參數 對指定應用而言,它可以是賦予的常數值;在泛指時,它可以是一種變數,用來控制隨其變化而變化的其他的量.參數是現在很多機械設置或維修上能用到的一個選項,怎麼理解參數呢,字面上理解是可供參考的數據,但有時又不全是數據.相關的我們可以搜索--參數查看.簡單說,參數是給我們參考的.也有讓我們很為難的,那就是參數設置了.統計學中:描述總體特徵的概括性數字度量,它是研究者想要了解的總體的某種特徵值 在數學中 數學中 參數思想貫徹於解析幾何中 對於幾何變數 人們用含有字母的代數式來表示變數 這個代數式叫作參數式 其中的字母叫做參數式 用圖形幾何性質 與代數關系來連立整式 進而解題 同時 參數法 也是許許多多解題技巧的源泉
『捌』 如何將方程化為參數方程 基本數學題目一道 解惑啊~~~~~~
參數方程 就是指X,Y都相對於某一個量(參數)變化 然後X,Y通過這個參數產生間接聯系
y=2x+1 設X=T代入左邊 就得到Y=2T+1這x=t,y=2t+1就是參數方程
同樣,設第二個里,x=t,y=9/t 這兩個式子就是參數方程
第三個也是同理
第四個設x=cos t y=sin t
這就是第四個的參數方程
像第四個式子這樣的,有經驗了就條件反射般地知道要用三角換元
而前面三個的參數方程都比較靈活 你也可以設x=2t
具體怎麼設取參數要根據問題中怎麼設參數計算簡便來選取,也就是說他們的參數方程不是唯一的。
至於參數方程化為原來的。、
就是把X,Y同時寫進一個於參數無關的等式里(把參數消掉),就可以了實際上化回普通方程就是消參的過程
比如x=cos t
y=sint
這個參數方程
就去找他們有什麼關系,發現x^2+y^2=1 這就是普通方程
又如 x=2t y=3t^2+5
這個參數方程
t=x/2
代入y中的T內 y=3*(x^2/4)+5 這就是普通方程了 化簡一下就可以了
具體的消參方法,是沒有固定公式的
一個要靠觀察,一個要靠經驗。 不過有很多比較簡單的都可以像上面那樣用代入法。