A. 小學數學統計中數據收集方法方法有哪些
統計表:統計調查所得來的原始資料,經過整理,得到說明社會現象及其發展過程的數據,把這些數據按一定的順序排列在表格中,就形成「統計表
統計圖:統計圖是根據統計數字,用幾何圖形、事物形象和地圖等繪制的各種圖形。它具有直觀、形象、生動、具體等特點。統計圖可以使復雜的統計數字簡單化、通俗化、形象化,使人一目瞭然,便於理解和比較。
1)條形統計圖:條形統計圖是用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然後把這些直條按一定的順序排列起來。從條形統計圖中很容易看出各種數量的多少。
2)扇形統計圖:扇形統計圖是用整個圓表示總數(單位「1」),用圓內各個扇形的大小表示各部分量占總量的百分之幾,扇形統計圖中各部分的百分比之和是單位「1」。
3)折線統計圖:以折線的上升或下降來表示統計數量的增減變化的統計圖,叫作折線統計圖。(折線變化幅度越大,數量關系變化越大)與條形統計圖比較,折線統計圖不僅可以表示數量的多少,而且可以反映數據的增減變化情況,。
B. 數學有幾種統計方法
要從樣本中抽樣調查,可以分為概率抽樣和非概率抽樣。
概率抽樣方法又分為 簡單隨機抽樣,分層抽樣,系統抽樣,整群抽樣,多階段抽樣。
而非概率抽樣分為:方便抽樣。判斷抽樣,配額抽樣,滾雪球抽樣。
簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調查單位。特點是:每個樣本單位被抽中的概率相等,樣本的每個單位完全獨立,彼此間無一定的關聯性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數目較少時,才採用這種方法。
分層抽樣,適用於總體量大、差異程度較大的情況。先將總體單位按其差異程度或某一特徵分類、分層,然後在各類或每層中再隨機抽取樣本單位。分層抽樣實際上是科學分組、或分類與隨機原則的結合。分層抽樣有等比抽樣和不等比抽樣之分,當總數各類差別過大時,可採用不等比抽樣。除了分層或分類外,其組織方式與簡單隨機抽樣和等距抽樣相同。
系統抽樣,將總體各單位按摩椅標志順序排隊,然後按照一定時間隔抽取樣本單位。如總體共有N個單位,從中抽取的樣本為n個單位,將總體單位數N除以樣本單位數n,便是等距抽樣的間隔距離。讓後在第一組中先隨即抽取一個單位,再每隔k個單位抽一個,直到抽滿n個單位為止。
整群抽樣,在全及總體中以群(或組)為單位,按純隨機方式或等距抽樣方式,抽取若干群(或組),然後對所有抽中的各群(或各組)中的全部單位一一進行調查。
多階段抽樣,將多個抽樣程序分成若干階段,然後逐階段進行抽樣,以完成整個抽樣過程。
適用范圍:總體包括的單位很多,而且分布很廣,通過一次抽樣抽選出樣本是很困難的,這時使用多階段抽樣。
多階段抽樣的一個例子
例:對我國的農產量進行抽樣調查。
抽樣方法是:先由省抽縣,由抽中的縣內再抽鄉、村,由抽中的鄉、村抽地塊,最後才由抽中的地塊再抽樣本單位。
C. 小學數學的統計方法有哪些
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
D. 統計方法有哪些啊
統計方法有:描述統計方法和推斷統計方法。
1、描述統計方法
描述統計方法是指通過圖表的方式對數據進行處理顯示,進而對數據進行定量的綜合概括的統計方法。
2、推斷統計方法
推斷統計方法是指根據樣本數據去推斷總體數量測度的方法。
統計方法的作用:
統計方法作為一種為決策提供依據的工具,可以幫助企業進行數據分析,了解產品質量狀態的分布情況,找出問題、缺陷及原因,有針對性地採取措施,提高產品和服務的質量。
原始數據不經過整理和分析,只是一堆「資料」,而有用的信息往往蘊藏在大量的數據之中,所以數據的應用是統計技術的前提,統計技術是整理和分析數據的工具。
統計方法可應用在設計階段的市場預測、可行性分析、方案設計、初試樣試制、小批量生產等;應用在生產階段的工藝設計、過程式控制制、能力研究和質量改進;應用在銷售階段的營銷策略研究、預期銷售額的測算、顧客回報率的評價、安全性評價和風險分析等。
E. 數學統計方法有哪些
統計分析 方法 以數學為基礎,具有嚴密的結構,需要遵循特定的程序和規范,從確立選題、提出假設、進行抽樣、具體實施,一直到分析解釋數據,得出結論,都須符合一定的邏輯和標准。下面我給大家整理了關於數學統計方法有哪些,希望對你有幫助!
1數學統計方法有哪些
數學統計方法有哪些?掌握、了解統計分析的基本特徵,對於我們進行統計分析具有重要的意義。採用統計分析方法進行研究,是研究達到高水平的客觀要求,應用統計分析方法進行科學研究。
2統計分析方法特徵
直觀性:現實世界是復雜多樣的,其本質和規律難以直接把握,統計分析方法從現實情境中收集數據,通過次序、頻數等直觀、淺顯的量化數字及簡明的圖表表現出來,這些數據的處理,將我們的調研與客觀世界緊密相連,從而提示和洞悉現實世界的本質及其規律。
科學性:統計分析方法以數學為基礎,具有嚴密的結構,需要遵循特定的程序和規范,從確立選題、提出假設、進行抽樣、具體實施,一直到分析解釋數據,得出結論,都須符合一定的邏輯和標准。
可重復性:可重復性是衡量研究質量與水平高低的一個客觀尺度,用統計分析方法進行的研究皆是可重復的。從課題的選取、抽樣的設計,到數據的收集與處理,皆可在相同的條件下進行重復,並能對研究所得的結果進行驗證。
3數學統計圖介紹
條形統計圖:用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然後把這些直線按照一定的順序排列起來。優點:很容易看出各種數量的多少。注意:畫條形統計圖時,直條的寬窄必須相同。取一個單位長度表示數量的多少要根據具體情況而確定; 復式條形統計圖中表示不同項目的直條,要用不同的線條或顏色區別開,並在制圖日期下面註明圖例。製作條形統計圖的一般步驟:
(1)根據圖紙的大小,畫出兩條互相垂直的射線。
(2)在水平射線上,適當分配條形的位置,確定直線的寬度和間隔。
(3)在與水平射線垂直的深線上根據數據大小的具體情況,確定單位長度表示多少。
(4)按照數據的大小畫出長短不同的直條,並註明數量。
折線統計圖「用一個單位長度表示一定的數量,根據數量的多少描出各點,然後把各點用線段順次連接起來。優點:不但可以表示數量的多少,而且能夠清楚地表示出數量增減變化的情況。注意:折線統計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據年份或月份的間隔來確定。製作折線統計圖的一般步驟:
(1)根據圖紙的大小,畫出兩條互相垂直的射線。
(2)在水平射線上,適當分配折線的位置,確定直線的寬度和間隔。
(3)在與水平射線垂直的深線上根據數據大小的具體情況,確定單位長度表示多少。
(4)按照數據的大小描出各點,再用線段順次連接起來,並註明數量。
扇形統計圖:用整個圓的面積表示總數,用扇形面積表示各部分所佔總數的百分數。優點:很清楚地表示出各部分同總數之間的關系。制扇形統計圖的一般步驟:
1)先算出各部分數量占總量的百分之幾。
2)再算出表示各部分數量的扇形的圓心角度數。
3)取適當的半徑畫一個圓,並按照上面算出的圓心角的度數,在圓里畫出各個扇形。
4)在每個扇形中標明所表示的各部分數量名稱和所佔的百分數,並用不同顏色或條紋把各個扇形區別開。
4數學的統計方法
統計表:統計調查所得來的原始資料,經過整理,得到說明社會現象及其發展過程的數據,把這些數據按一定的順序排列在表格中,就形成「統計表
統計圖:統計圖是根據統計數字,用幾何圖形、事物形象和地圖等繪制的各種圖形。它具有直觀、形象、生動、具體等特點。統計圖可以使復雜的統計數字簡單化、通俗化、形象化,使人一目瞭然,便於理解和比較。
條形統計圖:條形統計圖是用一個單位長度表示一定的數量,根據數量的多少畫成長短不同的直條,然後把這些直條按一定的順序排列起來。從條形統計圖中很容易看出各種數量的多少。
2)扇形統計圖:扇形統計圖是用整個圓表示總數(單位「1」),用圓內各個扇形的大小表示各部分量占總量的百分之幾,扇形統計圖中各部分的百分比之和是單位「1」。
3)折線統計圖:以折線的上升或下降來表示統計數量的增減變化的統計圖,叫作折線統計圖。(折線變化幅度越大,數量關系變化越大)與條形統計圖比較,折線統計圖不僅可以表示數量的多少,而且可以反映數據的增減變化情況,。
數學統計方法有哪些相關 文章 :
★ 數學教學方法有哪些
★ 常用的數學教學方法有哪些
★ 有效的數學教學方法有哪些
★ 數學十大速算技巧
★ 最新小學數學有哪些教學方法
★ 初中數學的學習方法有哪些
★ 數學思維方法有哪些
★ 數學常用的教學方法有哪些
★ 小學數學教學方法有哪些?
★ 小學數學教法方法有哪些
F. 統計學方法有哪些
一、描述統計
描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析和離中趨勢分析和相關分析三大部分。
集中趨勢分析:集中趨勢分析主要靠平均數、中數、眾數等統計指標來表示數據的集中趨勢。例如被試的平均成績多少?是正偏分布還是負偏分布?
離中趨勢分析:離中趨勢分析主要靠全距、四分差、平均差、方差(協方差:用來度量兩個隨機變數關系的統計量)、標准差等統計指標來研究數據的離中趨勢。例如,我們想知道兩個教學班的語文成績中,哪個班級內的成績分布更分散,就可以用兩個班級的四分差或百分點來比較。
相關分析:相關分析探討數據之間是否具有統計學上的關聯性。這種關系既包括兩個數據之間的單一相關關系——如年齡與個人領域空間之間的關系,也包括多個數據之間的多重相關關系——如年齡、抑鬱症發生率、個人領域空間之間的關系;既包括A大B就大(小),A小B就小(大)的直線相關關系,也可以是復雜相關關系(A=Y-B*X);既可以是A、B變數同時增大這種正相關關系,也可以是A變數增大時B變數減小這種負相關,還包括兩變數共同變化的緊密程度——即相關系數。實際上,相關關系唯一不研究的數據關系,就是數據協同變化的內在根據——即因果關系。獲得相關系數有什麼用呢?簡而言之,有了相關系數,就可以根據回歸方程,進行A變數到B變數的估算,這就是所謂的回歸分析,因此,相關分析是一種完整的統計研究方法,它貫穿於提出假設,數據研究,數據分析,數據研究的始終。
例如,我們想知道對監獄情景進行什麼改造,可以降低囚徒的暴力傾向。我們就需要將不同的囚舍顏色基調、囚舍綠化程度、囚室人口密度、放風時間、探視時間進行排列組合,然後讓每個囚室一種實驗處理,然後用因素分析法找出與囚徒暴力傾向的相關系數最高的因素。假定這一因素為囚室人口密度,我們又要將被試隨機分入不同人口密度的十幾個囚室中生活,繼而得到人口密度和暴力傾向兩組變數(即我們討論過的A、B兩列變數)。然後,我們將人口密度排入X軸,將暴力傾向分排入Y軸,獲得了一個很有價值的圖表,當某典獄長想知道,某囚舍擴建到N人/間囚室,暴力傾向能降低多少。我們可以當前人口密度和改建後人口密度帶入相應的回歸方程,算出擴建前的預期暴力傾向和擴建後的預期暴力傾向,兩數據之差即典獄長想知道的結果。
推論統計:
推論統計是統計學乃至於心理統計學中較為年輕的一部分內容。它以統計結果為依據,來證明或推翻某個命題。具體來說,就是通過分析樣本與樣本分布的差異,來估算樣本與總體、同一樣本的前後測成績差異,樣本與樣本的成績差距、總體與總體的成績差距是否具有顯著性差異。例如,我們想研究教育背景是否會影響人的智力測驗成績。可以找100名24歲大學畢業生和100名24歲初中畢業生。採集他們的一些智力測驗成績。用推論統計方法進行數據處理,最後會得出類似這樣兒的結論:「研究發現,大學畢業生組的成績顯著高於初中畢業生組的成績,二者在0.01水平上具有顯著性差異,說明大學畢業生的一些智力測驗成績優於中學畢業生組。」
其中,如果用EXCEL 來求描述統計。其方法是:工具-載入宏-勾選"分析工具庫",然後關閉Excel然後重新打開,工具菜單就會出現"數據分析"。描述統計是「數據分析」內一個子菜單,在做的時候,記得要把方格輸入正確。最好直接點選。
2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。
二、假設檢驗
1、參數檢驗
參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。
1)U驗 :使用條件:當樣本含量n較大時,樣本值符合正態分布
2)T檢驗 使用條件:當樣本含量n較小時,樣本值符合正態分布
A 單樣本t檢驗:推斷該樣本來自的總體均數μ與已知的某一總體均數μ0 (常為理論值或標准值)有無差別;
B 配對樣本t檢驗:當總體均數未知時,且兩個樣本可以配對,同對中的兩者在可能會影響處理效果的各種條件方面扱為相似;
C 兩獨立樣本t檢驗:無法找到在各方面極為相似的兩樣本作配對比較時使用。
2、非參數檢驗
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。
適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。
A 雖然是連續數據,但總體分布形態未知或者非正態;
B 體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。
三、信度分析
介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。
方法:(1)重測信度法編輯:這一方法是用同樣的問卷對同一組被調查者間隔一定時間重復施測,計算兩次施測結果的相關系數。顯然,重測信度屬於穩定系數。重測信度法特別適用於事實式問卷,如性別、出生年月等在兩次施測中不應有任何差異,大多數被調查者的興趣、愛好、習慣等在短時間內也不會有十分明顯的變化。如果沒有突發事件導致被調查者的態度、意見突變,這種方法也適用於態度、意見式問卷。由於重測信度法需要對同一樣本試測兩次,被調查者容易受到各種事件、活動和他人的影響,而且間隔時間長短也有一定限制,因此在實施中有一定困難。
(2)復本信度法編輯:讓同一組被調查者一次填答兩份問卷復本,計算兩個復本的相關系數。復本信度屬於等值系數。復本信度法要求兩個復本除表述方式不同外,在內容、格式、難度和對應題項的提問方向等方面要完全一致,而在實際調查中,很難使調查問卷達到這種要求,因此採用這種方法者較少。
(3)折半信度法編輯:折半信度法是將調查項目分為兩半,計算兩半得分的相關系數,進而估計整個量表的信度。折半信度屬於內在一致性系數,測量的是兩半題項得分間的一致性。這種方法一般不適用於事實式問卷(如年齡與性別無法相比),常用於態度、意見式問卷的信度分析。在問卷調查中,態度測量最常見的形式是5級李克特(Likert)量表(李克特量表(Likert scale)是屬評分加總式量表最常用的一種,屬同一構念的這些項目是用加總方式來計分,單獨或個別項目是無意義的。它是由美國社會心理學家李克特於1932年在原有的總加量表基礎上改進而成的。該量表由一組陳述組成,每一陳述有"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五種回答,分別記為5、4、3、2、1,每個被調查者的態度總分就是他對各道題的回答所得分數的加總,這一總分可說明他的態度強弱或他在這一量表上的不同狀態。)。進行折半信度分析時,如果量表中含有反意題項,應先將反意題項的得分作逆向處理,以保證各題項得分方向的一致性,然後將全部題項按奇偶或前後分為盡可能相等的兩半,計算二者的相關系數(rhh,即半個量表的信度系數),最後用斯皮爾曼-布朗(Spearman-Brown)公式:求出整個量表的信度系數(ru)。
(4)α信度系數法編輯:Cronbach
α信度系數是目前最常用的信度系數,其公式為:
α=(k/(k-1))*(1-(∑Si^2)/ST^2)
其中,K為量表中題項的總數, Si^2為第i題得分的題內方差, ST^2為全部題項總得分的方差。從公式中可以看出,α系數評價的是量表中各題項得分間的一致性,屬於內在一致性系數。這種方法適用於態度、意見式問卷(量表)的信度分析。
總量表的信度系數最好在0.8以上,0.7-0.8之間可以接受;分量表的信度系數最好在0.7以上,0.6-0.7還可以接受。Cronbach 's alpha系數如果在0.6以下就要考慮重新編問卷。
檢査測量的可信度,例如調查問卷的真實性。
分類:
1、外在信度:不同時間測量時量表的一致性程度,常用方法重測信度
2、內在信度;每個量表是否測量到單一的概念,同時組成兩表的內在體項一致性如何,常用方法分半信度。
四、列聯表分析
列聯表是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。
簡介:一般,若總體中的個體可按兩個屬性A、B分類,A有r個等級A1,A2,…,Ar,B有c個等級B1,B2,…,Bc,從總體中抽取大小為n的樣本,設其中有nij個個體的屬性屬於等級Ai和Bj,nij稱為頻數,將r×c個nij排列為一個r行c列的二維列聯表,簡稱r×c表。若所考慮的屬性多於兩個,也可按類似的方式作出列聯表,稱為多維列聯表。
列聯表又稱交互分類表,所謂交互分類,是指同時依據兩個變數的值,將所研究的個案分類。交互分類的目的是將兩變數分組,然後比較各組的分布狀況,以尋找變數間的關系。
用於分析離散變數或定型變數之間是否存在相關。
列聯表分析的基本問題是,判明所考察的各屬性之間有無關聯,即是否獨立。如在前例中,問題是:一個人是否色盲與其性別是否有關?在r×с表中,若以pi、pj和pij分別表示總體中的個體屬於等級Ai,屬於等級Bj和同時屬於Ai、Bj的概率(pi,pj稱邊緣概率,pij稱格概率),「A、B兩屬性無關聯」的假設可以表述為H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知參數pij、pi、pj的最大似然估計(見點估計)分別為行和及列和(統稱邊緣和)
為樣本大小。根據K.皮爾森(1904)的擬合優度檢驗或似然比檢驗(見假設檢驗),當h0成立,且一切pi>0和pj>0時,統計量的漸近分布是自由度為(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n稱為期望頻數。當n足夠大,且表中各格的Eij都不太小時,可以據此對h0作檢驗:若Ⅹ值足夠大,就拒絕假設h0,即認為A與B有關聯。在前面的色覺問題中,曾按此檢驗,判定出性別與色覺之間存在某種關聯。
需要注意:
若樣本大小n不很大,則上述基於漸近分布的方法就不適用。對此,在四格表情形,R.A.費希爾(1935)提出了一種適用於所有n的精確檢驗法。其思想是在固定各邊緣和的條件下,根據超幾何分布(見概率分布),可以計算觀測頻數出現任意一種特定排列的條件概率。把實際出現的觀測頻數排列,以及比它呈現更多關聯跡象的所有可能排列的條件概率都算出來並相加,若所得結果小於給定的顯著性水平,則判定所考慮的兩個屬性存在關聯,從而拒絕h0。
對於二維表,可進行卡方檢驗,對於三維表,可作Mentel-Hanszel分層分析。
列聯表分析還包括配對計數資料的卡方檢驗、行列均為順序變數的相關檢驗。
五、相關分析
研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。
1、單相關: 兩個因素之間的相關關系叫單相關,即研究時只涉及一個自變數和一個因變數;
2、復相關 :三個或三個以上因素的相關關系叫復相關,即研究時涉及兩個或兩個以上的自變數和因變數相關;
3、偏相關:在某一現象與多種現象相關的場合,當假定其他變數不變時,其中兩個變數之間的相關關系稱為偏相關。
六、方差分析
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。
分類
1、單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系
2、多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系
3、多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系
4、協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,使之影響了分祈結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法,
七、回歸分析
分類:
1、一元線性回歸分析:只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布。
2、多元線性回歸分析
使用條件:分析多個自變數與因變數Y的關系,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布 。
1)變呈篩選方式:選擇最優回歸方程的變里篩選法包括全橫型法(CP法)、逐步回歸法,向前引入法和向後剔除法
2)橫型診斷方法:
A 殘差檢驗: 觀測值與估計值的差值要艱從正態分布
B 強影響點判斷:尋找方式一般分為標准誤差法、Mahalanobis距離法
C 共線性診斷:
• 診斷方式:容忍度、方差擴大因子法(又稱膨脹系數VIF)、特徵根判定法、條件指針CI、方差比例
• 處理方法:增加樣本容量或選取另外的回歸如主成分回歸、嶺回歸等
3、Logistic回歸分析
線性回歸模型要求因變數是連續的正態分布變里,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況
分類:
Logistic回歸模型有條件與非條件之分,條件Logistic回歸模型和非條件Logistic回歸模型的區別在於參數的估計是否用到了條件概率。
4、其他回歸方法 非線性回歸、有序回歸、Probit回歸、加權回歸等
八、聚類分析
聚類與分類的不同在於,聚類所要求劃分的類是未知的。
聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k-均值、k-中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。
從機器學習的角度講,簇相當於隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習演算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。
聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。
從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。而且聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特徵,集中對特定的聚簇集合作進一步地分析。聚類分析還可以作為其他演算法(如分類和定性歸納演算法)的預處理步驟。
定義:
依據研究對象(樣品或指標)的特徵,對其進行分類的方法,減少研究對象的數目。
各類事物缺乏可靠的歷史資料,無法確定共有多少類別,目的是將性質相近事物歸入一類。
各指標之間具有一定的相關關系。
聚類分析(cluster
analysis)是一組將研究對象分為相對同質的群組(clusters)的統計分析技術。聚類分析區別於分類分析(classification
analysis) ,後者是有監督的學習。
變數類型:定類變數、定量(離散和連續)變數
樣本個體或指標變數按其具有的特性進行分類,尋找合理的度量事物相似性的統計量。
1、性質分類:
Q型聚類分析:對樣本進行分類處理,又稱樣本聚類分祈使用距離系數作為統計量衡量相似度,如歐式距離、極端距離、絕對距離等
R型聚類分析:對指標進行分類處理,又稱指標聚類分析使用相似系數作為統計量衡量相似度,相關系數、列聯系數等
2、方法分類:
1)系統聚類法:適用於小樣本的樣本聚類或指標聚類,一般用系統聚類法來聚類指標,又稱分層聚類
2)逐步聚類法:適用於大樣本的樣本聚類
3)其他聚類法:兩步聚類、K均值聚類等
九、判別分析
1、判別分析:根據已掌握的一批分類明確的樣品建立判別函數,使產生錯判的事例最少,進而對給定的一個新樣品,判斷它來自哪個總體
2、與聚類分析區別
1)聚類分析可以對樣本逬行分類,也可以對指標進行分類;而判別分析只能對樣本
2)聚類分析事先不知道事物的類別,也不知道分幾類;而判別分析必須事先知道事物的類別,也知道分幾類
3)聚類分析不需要分類的歷史資料,而直接對樣本進行分類;而判別分析需要分類歷史資料去建立判別函數,然後才能對樣本進行分類
3、進行分類 :
1)Fisher判別分析法 :
以距離為判別准則來分類,即樣本與哪個類的距離最短就分到哪一類,適用於兩類判別;
以概率為判別准則來分類,即樣本屬於哪一類的概率最大就分到哪一類,適用於
適用於多類判別。
2)BAYES判別分析法 :
BAYES判別分析法比FISHER判別分析法更加完善和先進,它不僅能解決多類判別分析,而且分析時考慮了數據的分布狀態,所以一般較多使用;
十、主成分分析
介紹:主成分分析(Principal
Component Analysis,PCA), 是一種統計方法。通過正交變換將一組可能存在相關性的變數轉換為一組線性不相關的變數,轉換後的這組變數叫主成分。
在實際課題中,為了全面分析問題,往往提出很多與此有關的變數(或因素),因為每個變數都在不同程度上反映這個課題的某些信息。
主成分分析首先是由K.皮爾森(Karl Pearson)對非隨機變數引入的,爾後H.霍特林將此方法推廣到隨機向量的情形。信息的大小通常用離差平方和或方差來衡量。
將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息。
原理:在用統計分析方法研究多變數的課題時,變數個數太多就會增加課題的復雜性。人們自然希望變數個數較少而得到的信息較多。在很多情形,變數之間是有一定的相關關系的,當兩個變數之間有一定相關關系時,可以解釋為這兩個變數反映此課題的信息有一定的重疊。主成分分析是對於原先提出的所有變數,將重復的變數(關系緊密的變數)刪去多餘,建立盡可能少的新變數,使得這些新變數是兩兩不相關的,而且這些新變數在反映課題的信息方面盡可能保持原有的信息。
設法將原來變數重新組合成一組新的互相無關的幾個綜合變數,同時根據實際需要從中可以取出幾個較少的綜合變數盡可能多地反映原來變數的信息的統計方法叫做主成分分析或稱主分量分析,也是數學上用來降維的一種方法。
缺點: 1、在主成分分析中,我們首先應保證所提取的前幾個主成分的累計貢獻率達到一個較高的水平(即變數降維後的信息量須保持在一個較高水平上),其次對這些被提取的主成分必須都能夠給出符合實際背景和意義的解釋(否則主成分將空有信息量而無實際含義)。
2、主成分的解釋其含義一般多少帶有點模糊性,不像原始變數的含義那麼清楚、確切,這是變數降維過程中不得不付出的代價。因此,提取的主成分個數m通常應明顯小於原始變數個數p(除非p本身較小),否則維數降低的「利」可能抵不過主成分含義不如原始變數清楚的「弊」。
十一、因子分析
一種旨在尋找隱藏在多變數數據中、無法直接觀察到卻影響或支配可測變數的潛在因子、並估計潛在因子對可測變數的影響程度以及潛在因子之間的相關性的一種多元統計分析方法
與主成分分析比較:
相同:都能夠起到治理多個原始變數內在結構關系的作用
不同:主成分分析重在綜合原始變適的信息.而因子分析重在解釋原始變數間的關系,是比主成分分析更深入的一種多元統計方法
用途:
1)減少分析變數個數
2)通過對變數間相關關系探測,將原始變數進行分類
十二、時間序列分析
動態數據處理的統計方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題;時間序列通常由4種要素組成:趨勢、季節變動、循環波動和不規則波動。
主要方法:移動平均濾波與指數平滑法、ARIMA橫型、量ARIMA橫型、ARIMAX模型、向呈自回歸橫型、ARCH族模型
時間序列是指同一變數按事件發生的先後順序排列起來的一組觀察值或記錄值。構成時間序列的要素有兩個:其一是時間,其二是與時間相對應的變數水平。實際數據的時間序列能夠展示研究對象在一定時期內的發展變化趨勢與規律,因而可以從時間序列中找出變數變化的特徵、趨勢以及發展規律,從而對變數的未來變化進行有效地預測。
時間序列的變動形態一般分為四種:長期趨勢變動,季節變動,循環變動,不規則變動。
時間序列預測法的應用:
系統描述:根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述;
系統分析:當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理;
預測未來:一般用ARMA模型擬合時間序列,預測該時間序列未來值;
決策和控制:根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。
特點:
假定事物的過去趨勢會延伸到未來;
預測所依據的數據具有不規則性;
撇開了市場發展之間的因果關系。
①時間序列分析預測法是根據市場過去的變化趨勢預測未來的發展,它的前提是假定事物的過去會同樣延續到未來。事物的現實是歷史發展的結果,而事物的未來又是現實的延伸,事物的過去和未來是有聯系的。市場預測的時間序列分析法,正是根據客觀事物發展的這種連續規律性,運用過去的歷史數據,通過統計分析,進一步推測市場未來的發展趨勢。市場預測中,事物的過去會同樣延續到未來,其意思是說,市場未來不會發生突然跳躍式變化,而是漸進變化的。
時間序列分析預測法的哲學依據,是唯物辯證法中的基本觀點,即認為一切事物都是發展變化的,事物的發展變化在時間上具有連續性,市場現象也是這樣。市場現象過去和現在的發展變化規律和發展水平,會影響到市場現象未來的發展變化規律和規模水平;市場現象未來的變化規律和水平,是市場現象過去和現在變化規律和發展水平的結果。
需要指出,由於事物的發展不僅有連續性的特點,而且又是復雜多樣的。因此,在應用時間序列分析法進行市場預測時應注意市場現象未來發展變化規律和發展水平,不一定與其歷史和現在的發展變化規律完全一致。隨著市場現象的發展,它還會出現一些新的特點。因此,在時間序列分析預測中,決不能機械地按市場現象過去和現在的規律向外延伸。必須要研究分析市場現象變化的新特點,新表現,並且將這些新特點和新表現充分考慮在預測值內。這樣才能對市場現象做出既延續其歷史變化規律,又符合其現實表現的可靠的預測結果。
②時間序列分析預測法突出了時間因素在預測中的作用,暫不考慮外界具體因素的影響。時間序列在時間序列分析預測法處於核心位置,沒有時間序列,就沒有這一方法的存在。雖然,預測對象的發展變化是受很多因素影響的。但是,運用時間序列分析進行量的預測,實際上將所有的影響因素歸結到時間這一因素上,只承認所有影響因素的綜合作用,並在未來對預測對象仍然起作用,並未去分析探討預測對象和影響因素之間的因果關系。因此,為了求得能反映市場未來發展變化的精確預測值,在運用時間序列分析法進行預測時,必須將量的分析方法和質的分析方法結合起來,從質的方面充分研究各種因素與市場的關系,在充分分析研究影響市場變化的各種因素的基礎上確定預測值。
需要指出的是,時間序列預測法因突出時間序列暫不考慮外界因素影響,因而存在著預測誤差的缺陷,當遇到外界發生較大變化,往往會有較大偏差,時間序列預測法對於中短期預測的效果要比長期預測的效果好。因為客觀事物,尤其是經濟現象,在一個較長時間內發生外界因素變化的可能性加大,它們對市場經濟現象必定要產生重大影響。如果出現這種情況,進行預測時,只考慮時間因素不考慮外界因素對預測對象的影響,其預測結果就會與實際狀況嚴重不符。
G. 四年級上冊數學知識點筆記
課堂臨時報佛腳,不如 課前預習 好。其實任何學科的知識都是一樣的,學習任何一門學科,勤奮都是最好的 學習 方法 ,沒有之一,書山有路勤為徑。下面是我給大家整理的一些 四年級數學 的知識點,希望對大家有所幫助。
小學四年級數學上冊《統計》知識點歸納
【知識點】:
1、統計圖中1格表示不同單位量,要結合具體的情況來判斷1個表示幾個單位。數據大,每1格所表示的單位就多,數據小,每1格所表示的單位就小。
2、理解條形統計圖上的數據所表示的意義。
3、明確條形統計圖的特點:直觀、方便、便於察看。
4、製作條形統計圖的方法:確定水平方向,標出項目;確定垂直方向代表的數量(一格代表的數量);根據數據的大小畫出長度不同的直條;寫出標題。
補充【知識點】:初步了解復式條形統計圖,能夠從中獲得信息,並能回答相應的問題。
栽蒜苗(二)(折線統計圖)
【知識點】:
1、折線統計圖的特點:能獲取數據變化情況的信息,並進行簡單的預測。
2、折線統計圖的方法:在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。
3、能夠看出折線統計圖所提供的信息,並回答相關的問題。
補充【知識點】:
1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。
2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。
四年級下冊數學四則運算知識點
(一)加法運算定律:
1、兩個加數交換位置,和不變,這叫做加法交換律。
字母公式:a+b=b+a
2、先把前兩個數相加,或者先把後兩個數相加,和不變,這叫做加法結合律。
字母公式:(a+b) +c=a+(b+c)
(二)乘法運算定律:
1、交換兩個因數的位置,積不變,這叫做乘法交換律。
字母公式:a×b=b×a
2、先乘前兩個數,或者先乘後兩個數,積不變,這叫做乘法結合律。
字母公式:(a×b)×c=a×(b×c)
3、兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加,這叫做乘法分配律。
用字母公式:(a+b)×c=a×c+b×c或a×(b+c) =a×b+a×c
拓展:(a-b)×c=a×c-b×c或a×(b-c) =a×b-a×c
(三)減法簡便運算:
1、一個數連續減去兩個數,可以用這個數減去這兩個數的和。
用字母表示:a-b-c=a-(b+c)
2、一個數連續減去兩個數,可以用這個數先減去後一個數再減去前一個數。
用字母表示:a-b-c=a—c-b
(四)除法簡便運算:
1、一個數連續除以兩個數,可以用這個數除以這兩個數的積。
用字母表示:a÷b÷c=a÷(b×c)
2、一個數連續除以兩個數,可以用這個數先除以後一個數再除以前一個數。
用字母表示:a÷b÷c=a÷c÷b
四年級上冊數學《數一數》知識點歸納
【知識點】:
億以內數的讀數方法。
含有個級、萬級和億級的數,必須先讀億級,再讀萬級,最後讀個級。(即從高位讀起)億級或萬級的數都按個級讀數的方法,在後面要加上億或萬。在級末尾的零不讀,在級中間的零必須讀。中間不管有幾個零,只讀一個零。
億以內數的寫數方法。
從高位寫起,按照數位的順序寫,中間或末尾哪一位上一個也沒有,就在那一位上寫0。
比較數大小的方法。
多位數比較大小,如果位數不同,那麼位數多的這個數就大,位數少的這個數就小。如果位數相同,從左起第一位開始比起,哪個數字大,哪個數就大。如果左起第一位上的數相同,就開始比第二位……直到比出大小為止。
國土面積(多位數的改寫)
【知識點】:
改寫以「萬」或「億」為單位的數的方法。
以「萬」為單位,就要把末尾的四個0去掉,再添上萬字;以「億」為單位,就要把末尾八個0去掉,再添上億字。
改寫的意義。
為了讀數、寫數方便。
森林面積(求近似數)
【知識點】:
精確數與近似數的特點。
精確數一般都以「一」為單位,近似數都是省略尾數,以「萬」或「億」為單位。
用四捨五入法保留近似數的方法。
根據題中要求,看到所要保留位數的下一位,如果這一位滿5,則向前一位進一;如果不夠5則捨去。而不管尾數的後幾位是多少。如精確到萬位,只看千位,精確到億位,只看到千萬位。最後一定要寫出單位名稱。
四年級上冊數學知識點筆記相關 文章 :
★ 四年級數學知識點整理總結
★ 四年級數學上冊知識點
★ 做小學四年級數學上冊知識點總結
★ 四年級數學上冊知識點總結
★ 2020小學四年級上冊數學知識點歸納
★ 四年級數學上冊知識點歸納
★ 四年級數學知識點總結整理
★ 四年級數學重點知識點總結
★ 四年級數學知識點歸納
★ 四年級數學知識點歸納整理
H. 小學四年級數學知識點歸納總結下冊
打盹會做夢,學習會圓夢。要想提高自身的學習成績,則需要實際行動起來,不能三天打魚,兩天曬網,學習如同逆水行舟,不進則退。下面是我給大家整理的一些 四年級數學 的知識點,希望對大家有所幫助。
小學四年級數學《統計》知識點歸納
栽蒜苗(一)(條形統計圖)
【知識點】:
1、統計圖中1格表示不同單位量,要結合具體的情況來判斷1個表示幾個單位。數據大,每1格所表示的單位就多,數據小,每1格所表示的單位就小。
2、理解條形統計圖上的數據所表示的意義。
3、明確條形統計圖的特點:直觀、方便、便於察看。
4、製作條形統計圖的 方法 :確定水平方向,標出項目;確定垂直方向代表的數量(一格代表的數量);根據數據的大小畫出長度不同的直條;寫出標題。
補充【知識點】:初步了解復式條形統計圖,能夠從中獲得信息,並能回答相應的問題。
栽蒜苗(二)(折線統計圖)
【知識點】:
1、折線統計圖的特點:能獲取數據變化情況的信息,並進行簡單的預測。
2、折線統計圖的方法:在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。
3、能夠看出折線統計圖所提供的信息,並回答相關的問題。
補充【知識點】:
1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。
2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。
四年級數學《數一數》知識點歸納
【知識點】:
億以內數的讀數方法。
含有個級、萬級和億級的數,必須先讀億級,再讀萬級,最後讀個級。(即從高位讀起)億級或萬級的數都按個級讀數的方法,在後面要加上億或萬。在級末尾的零不讀,在級中間的零必須讀。中間不管有幾個零,只讀一個零。
億以內數的寫數方法。
從高位寫起,按照數位的順序寫,中間或末尾哪一位上一個也沒有,就在那一位上寫0。
比較數大小的方法。
多位數比較大小,如果位數不同,那麼位數多的這個數就大,位數少的這個數就小。如果位數相同,從左起第一位開始比起,哪個數字大,哪個數就大。如果左起第一位上的數相同,就開始比第二位……直到比出大小為止。
國土面積(多位數的改寫)
【知識點】:
改寫以「萬」或「億」為單位的數的方法。
以「萬」為單位,就要把末尾的四個0去掉,再添上萬字;以「億」為單位,就要把末尾八個0去掉,再添上億字。
改寫的意義。
為了讀數、寫數方便。
森林面積(求近似數)
【知識點】:
精確數與近似數的特點。
精確數一般都以「一」為單位,近似數都是省略尾數,以「萬」或「億」為單位。
用四捨五入法保留近似數的方法。
根據題中要求,看到所要保留位數的下一位,如果這一位滿5,則向前一位進一;如果不夠5則捨去。而不管尾數的後幾位是多少。如精確到萬位,只看千位,精確到億位,只看到千萬位。最後一定要寫出單位名稱。
數學 學習方法 技巧四年級
一:記筆記
這方法其實很普遍也很簡單,但恰恰是很多同學不容易做到的,記筆記有很多好處,一是可以把老師的精華記錄下來方便復習,二是練習學生的書寫能力,三是可以讓學生養成邊聽邊寫的學習能力,這對於提高學習效率是非常有效的。
二:錯題本
很多孩子都馬虎,但有些馬虎其實是同學對知識點理解不清晰造成的,這類的題目一定要記錄下來。還有的是出題者故意設計的陷阱,這也可以記錄下來,定時復習,久了之後很多馬虎自然而然地就避免了。
三:學習小組
定期地和小組成員分享好試題,好方法,好技巧,好 經驗 ,即可以增加同學之間的情感,又可以在交朋友的過程學習到新的東西,提高學習效率,培養合作精神,增強協調能力。
四:題目分類本
和錯題本一樣,專門記錄自己做過的試題,分類指的是將自己做過的試題分為幾大類,一類是極其簡單,自己一看就會的。一類是有一定難度,需要思考找到突破口的,還有一類就是難度很大,需要綜合運用很多知識並進行推理才能解答的,後兩類都應該是我們的記錄重點。在對試題分類的過程中同學自然地就增強了對試題的進一步理解。
五:舊題新解
不定時的翻翻原來做過的試題,但是重點是思考有沒有新的解題思路和解題技巧。這樣不斷地增加思考有利於形成學生思考習慣的形成,也有利於學生 發散思維 的形成,多角度考察問題的思路,並隨時利用新學知識去解決問題。
小學四年級數學知識點歸納下冊相關 文章 :
★ 四年級數學知識點下冊歸納
★ 小學四年級數學知識點下冊
★ 小學四年級下冊數學知識點復習資料整理
★ 四年級數學下冊知識點總結
★ 四年級數學下冊知識點歸納
★ 人教版四年級數學知識點下冊
★ 四年級數學下冊知識點匯總
★ 小學四年級數學知識點歸納
★ 四年級數學知識點歸納人教版
★ 四年級數學下冊知識點