㈠ 小學生數學素養有哪些
小學生的數學素養包括數感、符號意識、空間觀念、統計觀念、數學應用意識五種數學意識,數學思維、數學理解、數學交流、解決問題四種數學能力以及數學價值觀的發展。
一、用數學的視角去認識世界。
1、什麼是「數學意識」呢?舉一個例子,假如學生會計算「48÷4」,說明學生具有除法的知識與技能。學生會解「有48個蘋果,平均每人分4個蘋果,可以分給多少人?」,說明學生具有一定的分析問題、解決問題的能力,但都不能說明學生具有數學意識。而在體育課上,48位學生在跳長繩,教師共准備了4根長繩,由此學生能想到「48÷4」這個算式,這就說明學生具有一定的數學意識了。
二、用數學的方式思考問題——數學思維能力的培養。
1、數形結合,發展學生的形象思維。比如,學生掂、稱出1千克蘋果、麵粉等後,讓學生數一數、看一看,就能發現4~6個蘋果約重1千克,2瓶礦泉水約重1千克,1千克黃豆(約4000粒)有幾捧。讓學生將抽象的1千克數學概念與具體事物的數量、體積聯系起來,能幫助學生有效建立1千克的質量概念,化抽象的概念為可以看得見的數學事實。
三、用數學的方法解決問題。
1、根據小學生的年齡特點,應把畫圖、列表、猜想與驗證、動手操作等作為常用策略在教學中加以指導。當遇到如「小軍去游泳池游泳,在泳道內遊了兩個來回,共遊了100米,這個游泳池的泳道有多長?」這樣的問題,可以讓學生用手在桌面上模擬一下真實情境,理解「兩個來回」實際上就是4個泳道的長。
㈡ 小學數學要培養學生哪些能力
小學數學怎麼樣學?隨著小學數學教材的不斷更新,內容不再是簡單的加減乘除算數題,而是將許多的生活中運算加到小學的知識中,這樣一來也在不同程度上使小學數學的成績加大了難度.那小學數學怎麼樣學才有效?學生們在學習過程中怎樣掌握方法才能學好小學數學?
以上九點是有關小學數學怎麼樣學才有效,提出相關的方法.希望能給你帶來借鑒和參考的價值,重要的是讓孩子通過正確的方法提高成績.
㈢ 小學數學能力包括哪些內容
小學數學基礎知識,以算術知識為主(整數、小數、分數、百分數、比和比例),還包括一些代數初步知識(簡易方程)和幾何初步知識(一些簡單幾何形體的認識以及周長、面積、體積、容積的求法),其內容就是這些知識范圍內的概念、定律、性質、法則、公式等.
小學數學概念包括:數的概念、數的運算的概念、幾何形體的概念、數的整除方面的概念.比和比例的概念、量的計量概念等.
運算定律共有五個:加法交換律、加法結合律、乘法交換律、乘法結合律、乘法分配律,要求在理解的基礎上掌握,並能靈活運用.
運算性質指:一個數加上兩個數的差;一個數減去兩個數的和;一個數減去兩個數的差;一個數乘以兩個數的商;一個數除以兩個數的積;一個數除以兩個數的商;幾個數的和除以一個數等.這部分內容只是用於簡便運算.
運演算法則包括:整數四則運演算法則、小數四則運演算法則、分數四則運演算法則,要求在理解的基礎上掌握法則,並能運用法則熟練地進行計算.
㈣ 小學數學學科的核心素養 包括哪些
1、抽象能力:捨去事物的一切物理屬性,得到數學研究對象的思維過程。主要包括從數量與數量關系、圖形與圖形關系中抽象出數學概念及概念之間的關系,從事物的具體背景中抽象出一般規律和結構。
2、邏輯推理:演繹推理是從大范圍內成立的命題推斷小范圍內命題也成立,只能用來驗證知識,不能用來發現新的知識。而歸納推理是通過條件預測結果、通過結果探究成因的推理,其結果是或然成立的,用於發現知識。
3、數學模型:對現實問題進行數學抽象,用數學語言表達問題,用數學知識與方法構建模型、解決問題的過程。
(4)小學數學能力緯度有哪些擴展閱讀:
數學素養特點:
1、 在討論問題時,習慣於強調定義(界定概念),強調問題存在的條件;
2、 在觀察問題時,習慣於抓住其中的(函數)關系,在微觀(局部)認識基礎上進一步做出多因素的全局性(全空間)考慮;
3、 在認識問題時,習慣於將已有的嚴格的數學概念如對偶、相關、隨機、泛涵、非線性、周期性、混沌等等概念廣義化,用於認識現實中的問題。比如可以看出價格是商品的對偶,效益是公司的泛涵等等。
㈤ 小學數學核心素養包括哪些
小學數學學科核心素養包含如下:
1、數感
關於數與數量、數量關系、 運算結果估計等方面的感悟。建立數感有助於學生理解現實生活中數的意義, 理解或表述具體情境中的數量關系。
2、符號意識
能夠理解並且運用符號表示數、數量關系和變化規律; 知道使用符號可以進行運算和推理,得到的結論具有一般性。 建立符號意識有助於學生理解符號的使用是數學表達和進行數學思考的重要形式。
3、空間觀念
根據物體特徵抽象出幾何圖形, 根據幾何圖形想像出所描述的實際物體;想像出物體的方位和相互之間的位置關系; 描述圖形的運動和變化;依據語言的描述畫出圖形等。
4、幾何直觀 利用圖形描述分析問題。
藉助幾何直觀可以把復雜的數學問題變得簡 明、形象,有助於探索解決問題的思路,預測結果。幾何直觀可以幫助學生直觀地理解數學,在整個數學學習過程中都發揮著重要作用。
5、數據分析觀念
了解現實生活中許多問題應先做調查研究,收集數據,通過分析做出 判斷,體會數據中蘊涵著信息。
了解對於同樣的數據可以有多種分析方法,需要根據問題背景選擇合適的方法; 通過數據分析體驗隨機性。數據分析是統計的核心。
6、運算能力
能夠根據法則和運算律正確地進行運算的能力。 培養運算能力有助於學生理解運算的算理,尋求合理簡潔的運算途徑解決問題。
數學核心素養的特點:
1、 在討論問題時,習慣於強調定義(界定概念),強調問題存在的條件。
2、 在觀察問題時,習慣於抓住其中的(函數)關系,在微觀(局部)認識基礎上進一步做出多因素的全局性(全空間)考慮。
3、 在認識問題時,習慣於將已有的嚴格的數學概念如對偶、相關、隨機、泛涵、非線性、周期性、混沌等等概念廣義化,用於認識現實中的問題。比如可以看出價格是商品的對偶,效益是公司的泛涵等等。
㈥ 什麼是小學數學三維目標與四維目標有什麼不同
一、培養方式不同:
三維教學目標不是三個目標,而是一個問題的三個方面。它集中體現了新課程的基本理念,集中體現了素質教育在學科課程中培養的基本途徑,集中體現了學生全面和諧發展,個性發展和終身發展的客觀要求。
新版課標《小學數學課程標准(修訂稿)》(就是常說的2011版)中,將數學課程的總體目標與分學段目標按四個維度表述,也就是你所說的「四維目標」,即知識技能、數學思考、問題解決、情感態度。
二、課程目標不同:
三維課程目標:
情感態度與價值觀目標。 情感不僅指學習興趣、學習責任,更重要的是樂觀的生活態度、求實的科學態度、寬容的人生態度。價值觀不僅強調個人的價值,更強調個人價值和社會價值的統一。
四維課程目標:
1、獲得適應未來社會生活和進一步發展所必需的重要數學知識(包括數學事實、數學活動經驗)以及基本的數學思想方法和必要的應用技能;
2、初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活中和其他學科學習中的問題,增強應用數學的意識;
3、體會數學與自然及人類社會的密切聯系,了解數學的價值,增進對數學的理解和學好數學的信心;
三、表達不同:
確定教學目標,「三維度」是明確的,「四要素」滲透在三維度之中,它們互相交叉,相互依存,二者不可偏廢。
教學目標的設定要注重可操作性初中數學教學目標的設定一般應顯現「三個維度」,體現「四個要素」,通過行為動詞的使用,形象地、具體地反映出課程理念的變化,使教學目標更具有可操作性。
㈦ 小學生的基本數學素養包括哪些
小學生的數學素養包括數感、符號意識、空間觀念、統計觀念、數學應用意識五種數學意識,數學思維、數學理解、數學交流、解決問題四種數學能力以及數學價值觀的發展。
數學素養是一種綜合素質,它主要表現在觀念、能力、語言、思維、心理等方面。包括數學意識、解決問題、數學推理、信息交流、數學心理素質五個部分。
拓展資料:
何謂數學素養?數學素養是學生以先天遺傳因素為基體,在從事數學學習與應用活動的過程中,通過主體自身的不斷認識和實踐的影響下,使數學文化知識和數學能力在主體發展中內化,逐漸形成和發展起來的「數學化」思維意識與「數學化」地觀察世界、處理和解決問題的能力。
通俗說,一個人的數學素養好,與說一個人有數學頭腦的意思差不多,歸根到底是指他從數學的角度來思考問題。一個具備數學素養的人,不僅僅表現在數學考試中能解題,還應在日常生活中,時時處處表現出是個學過數學的人,它是在長期的數學學習中逐步內化而成的。
小學生應具備的數學素養:
1、從觀念層面考慮,應具備自覺的定量、定量化數學意識。
數學意識是指用數學的觀點和態度去觀察解釋和表示事物的數量關系、空間形式和數據信息,以形成量化意識和良好數感。
定量化數學意識:指人們從實際中提煉數學問題,抽象化為數學模型,用數學計算求出此模型的解或近似解,然後回到現實中進行檢驗,必要時修改模型使之更切合實際,最後編制解題的軟體包,以便得到更廣泛的方便的應用。
2、從能力層面考慮,應具備問題解決的數學素養。數學源於於現實,寓於現實,並用於現實。數學教學的大眾化目的,在於使學生獲得解決他們在日常生活和工作中遇到的數學問題能力和可以用數學解決的其它問題。簡言之,就是運用「數學化」的思維習慣去描述、分析、解決問題。
3、從語言層面考慮,應具備運用數學語言進行信息交流的數學素質。數學既是科學的語言,也是日常生活語言。數學語言是以精確、簡約、抽象為特點。它可以使人在表達思想時做到清晰、准確、簡潔,在處理問題時能將問題中的復雜關系表述的條理清楚、結構分明。隨著新技術應用的日益廣泛,利用數學進行交流的需要也日益廣泛。在小學數學教學中利用交流這一手段有助於有意義的數學學習,如果在數學課堂中充滿豐富的交流,可以獲得雙重效益:一是那些積極參加討論的學生,在不同的爭議中將對數學獲得更好的理解;二是如果在數學課堂上給學生聽、說、讀、寫數學的機會,他們將學會數學的交流。
4、從思維層面考慮,應具備數學推理能力。
《數學課程標准》中指出:「推理能力主要表現在:能通過觀察、實驗、歸納、類比等獲得數學猜想,並進一步尋求證據、給出證明或舉出反例;能清晰、有條理地表達自己的思考過程,做到言之有理、落筆有據;在與他人交流的過程中,能運用數學語言合乎邏輯地進行討論與質疑。」根據標准要求,掌握比較完善的推理能力是兒童智力發展的重要環節和主要標志,數學教學中應注意培養和發展兒童的推理能力。結合教學實際,我們認為小學數學中常用的推理有歸納推理、演繹推理和類比推理。
㈧ 小學數學中有哪些思維能力
一)從數學的特點看:數學具有抽象性和邏輯嚴密性。數學本身是由許多判斷組成的確定體系。這些判斷都是由數學術語和邏輯術語以及相應的符號所表示的語句來表達的,並且藉助邏輯推理由一些判斷形成新的判斷。而這些判斷的總和就構成了數學這門科學。小學數學內容雖然比較簡單,也沒有嚴格的推理論證,但都是經過人們抽象、概括、判斷、推理、論證得出的真正的科學結論,只是不給學生進行嚴密的合乎邏輯的論證。即使這樣,一時一刻也離不開判斷、推理。這就為培養學生的邏輯思維提供了十分有利的條件。
(二)從小學生的思維特點看:小學生正處在從具體形象思維向抽象邏輯思維過渡的階段。特別是中、高年級,學生的抽象思維發生了「飛躍」或「質變」。具體地說,10—11歲學生開始能逐步分出概念的本質特徵,能初步掌握比較科學的定義,能領會概念之間的邏輯關系,也能獨立進行一些簡單的邏輯分析,並進行間接的推理(即由幾個判斷推出新的判斷)。因此可以說,這一階段正是發展學生形式邏輯思維的有利時期。
由此可以看出,小學數學教學大綱中提出培養學生初步的邏輯思維能力,既符合數學學科的特點,又符合小學生的年齡特點。
㈨ 小學數學核心素養有哪些
小學數學核心素養有用數學觀點、數學思維方式和數學方法觀察、分析、解決問題的能力及其傾向性,包括數學意識、數學行為、數學思維習慣、興趣、可能性、品質等等。
㈩ 數學學科能力有哪些
數學七大能力包括:抽象概括能力、空間想像能力、推理論證能力、運算求解能力、數據處理能力、應用意識、創新意識。數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用於現實世界的任何問題,所有的數學對象本質上都是人為定義的。從這個意義上,數學屬於形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。