導航:首頁 > 數字科學 > 數學在哪裡小學五年級上冊的手抄報

數學在哪裡小學五年級上冊的手抄報

發布時間:2022-01-20 08:30:54

❶ 小學五年級上冊數學手抄報圖片

答--您想要問什麼?小學生的課活動有很多種形式,手做報紙就是其中之一,所以學生就要好好學習。

❷ 數學五年級上冊的手抄報急!!!!!!!!!!!!!!

寫一些解決問題和數學知識就好了,如果要好點就可以寫一些小論文或者是調查報告

❸ 五年級上冊數學手抄報

我有個朋友,她是五年級,什麼你告訴我,我問她.

❹ 求五年級上冊數學手抄報內容!!!!!!!!!

裡面含每個單元的公式,知識要點和概念還以再加些內容比如:課外小知識,笑話之類的。

❺ 五年級數學上冊手抄報圖片簡單點

直接寫一些花紋,然後再寫一些,數學上冊的一些內容

❻ 小學五年級數學手抄報有哪些

趣味數學小故事 泰勒斯看到人們都在看告示,便上去看。原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。於是就找法老。 法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,他量了金字塔影子的長度和金字塔底面邊長的一半。把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。

❼ 小學五年級上冊數學手抄報寫點啥

可以先畫幾個圖片,再寫一些對數學的認識,還可以寫對學習數學的看法。

❽ 數學五年級上冊手抄報內容

1.有兩根不均勻分布的香,香燒完的時間是一個小時,你能用什麼方法來確定一段15分鍾的時間?

2.有三個人去住旅館,住三間房,每一間房$10元,於是他們一共付給老闆$30,
第二天,老闆覺得三間房只需要$25元就夠了於是叫小弟退回$5給三位客人,
誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等於那三位客人每人各花了九元,
於是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29。可是當初他們三個人一共付出$30那麼還有$1呢?

3.有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全相同,
而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩對呢?

4.有一輛火車以每小時15公里的速度離開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯。如果有一隻鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發,碰到另一輛車後返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長距離?

5.你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?

6.你有四個裝葯丸的罐子,每個葯丸都有一定的重量,被污染的葯丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的葯被污染了?

7.你有一桶果凍,其中有%%,綠色,紅色三種,閉上眼睛,抓取兩個同種顏色的果凍。抓取多少個就可以確定你肯定有兩個同一顏色的果凍?

8.對一批編號為1~100,全部開關朝上(開)的燈進行以下*作:凡是1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最後為關熄狀態的燈的編號。

9.想像你在鏡子前,請問,為什麼鏡子中的影像可以顛倒左右,卻不能顛倒上下?

10.一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?

11.兩個圓環,半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?如果在大圓的外部,小圓自身轉幾周呢?

12.1元錢一瓶汽水,喝完後兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
答案:
1.一隻兩頭點燃,另一隻一頭點燃,當第一隻燒完後,第二隻丙再頭點燃,就可以得到15`

2.怎麼會是每人第天九元呢,每人每天 (25/3) + 1,那一元差在25 - 24 = 1

3.每人取每雙中的一隻就可以了

4.(D / 35 ) * 30 = D

5.自己睜著眼睛挑一個紅色的啊,這樣是給紅色最大的機會了,除了你是色盲,呵呵 ,當然他們的幾率都是1/2。

6.一個中取一個編號,然後稱一下就知道

7.4個

8. 當該數的方根為整數時超下,其它的超上。這樣 1、4、9、16、25、36、49、64、81、100號超下

9. 因為照鏡子時,鏡子是與你垂直平行的,但在水平方向剛好轉了180度。

10.應該是三個人:
1,若是兩個人,設A、B是黑帽子,第二次關燈就會有人打耳光。原因是A看到B第一次沒打耳光,就知道B也一定看到了有帶黑帽子的人,可A除了知道B帶黑帽子外,其他人都是白帽子,就可推出他自己是帶黑帽子的人!同理B也是這么想的,這樣第二次熄燈會有兩個耳光的聲音。
2,如果是三個人,A,B,C. A第一次沒打耳光,因為他看到B,C都是帶黑帽子的;而且假設自己帶的是白帽子,這樣只有BC戴的是黑帽子;按照只有兩個人帶黑帽子的推論,第二次應該有人打耳光;可第二次卻沒有。。。於是他知道B和C一定看到了除BC之外的其他人帶了黑帽子,於是他知道BC看到的那個人一定是他,所以第三次有三個人打了自己一個耳光!
3,若是第三次也沒有人打耳光,而是第四次有人打了耳光,那麼應該有幾個人帶了黑貓子呢?大家給個結果看看^_^

11.可以把圓看成一根繩子,大繩是小繩的2倍長,所以應該是2圈吧。

12.一開始20瓶沒有問題,隨後的10瓶和5瓶也都沒有問題,接著把5瓶分成4瓶和1瓶,前4個空瓶再換2瓶,喝完後2瓶再換1瓶,此時喝完後手頭上剩餘的空瓶數為2個,把這2個瓶換1瓶繼續喝,喝完後把這1個空瓶換1瓶汽水,喝完換來的那瓶再把瓶子還給人家即可,所以最多可以喝的汽水數為:20+10+5+2+1+1+1=40
寫幾題上去就行了!
故事:
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。

高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。

老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。

1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。

1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。

1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。

希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:

一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:

1、n = 2k,k = 2, 3,…

2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…

費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:

任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。

事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。

在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。

這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。

二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。

當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。

高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。

1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。

1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。

1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。

1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。

在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。

1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。

1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。

高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。

1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。

高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:

to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。

早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。

美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:

在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。

在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。

太長了,簡化一下就行了!
加油!祝你成功

❾ 五年級數學手抄報怎麼畫 一等獎

五年級所有單元手抄報 一單元:《分數乘法》
分數乘法(一)
知識點:1、理解分數乘整數的意義.分數乘整數的意義同整數乘法的意義相同,就是求幾個相同加數的和的簡便運算.
2、分數乘整數的計算方法.分母不變,分子和整數相乘的積作分子.能約分的要約成最簡分數.
3、計算時,可以先約分在計算.
分數乘法(二)
知識點:1、結合具體情境,進一步探索並理解分數乘整數的意義,並能正確進行計算.
2、能夠求一個數的幾分之幾是多少.
3、理解打折的含義.例如:九折,是指現價是原價的十分之九.
分數乘法(三)
知識點:1、分數乘分數的計算方法,並能正確進行計算.
分子相乘做分子,分母相乘做分母,能約分的可以先約分.計算結果要求是最簡分數.
2、比較分數相乘的積與每一個乘數的大小.
真分數相乘積小於任何一個乘數;真分數與假分數相乘積大於真分數小於假分數.
二單元:《長方體(一)》
長方體的認識
知識點:1、認識長方體、正方體,了解各部分的名稱.
2、長方體、正方體各自的特點.
頂 點 面 棱
個 數 個 數 形 狀 大小關系 條數 長度關系
8 6 都是長方形,特殊的有兩個相對的面是正方形,其餘四個面是完全一樣的長方形. 相對的面是完全一樣的長方形. 12 可以分為三組,相對的棱平行且相等.
8 6 都是正方形. 每個面都是正方形. 12 長度都相等.
3、知道正方體是特殊的長方體.
4、能計算長方體、正方體的棱長總和.
長方體的棱長總和=(長+寬+高)*4或者是長*4+寬*4+高*4
正方體的棱長總和=棱長*12
靈活運用公式,能求出長方體的長、寬、高或是正方體的棱長.
展開與折疊
知識點:1、認識並了解長方體和正方體的平面展開圖.
2、了解正方體平面展開圖的幾種形式,並以此來判斷.
長方體的表面積
知識點:1、理解表面積的意義.是指六個面的面積之和.
2、長方體和正方體表面積的計算方法.
3、能結合生活中的實際情況,計算圖形的表面積.
露在外面的面
知識點:1、在觀察中,通過不同的觀察策略進行觀察.
如:一種是看每個紙箱露在外面的面,再加到一起;另一種是分別從正面、上面、側面進行不同角度的觀察,看每個角度都能看到多少個面,再加到一起.
2、發現並找出堆放的正方體的個數與露在外面的面的面數的變化規律.
三單元:《分數除法》
倒數
知識點:1、發現倒數的特徵並理解倒數的意義.
如果兩個數的乘積是1,那麼我們稱其中一個數是另一個數的倒數.倒數是對兩個數來說的,並不是孤立存在的.

❿ 數學五年級上冊的手抄報

1畫些關於科技的圖
2有一位老人,他有三個兒子和十七匹馬。他在臨終前對他的兒子們說:「我已經寫好了遺囑,我把馬留給你們,你們一定要按我的要求去分。」
老人去世後,三兄弟看到了遺囑。遺囑上寫著:「我把十七匹馬全都留給我的三個兒子。長子得一半,次子得三分之一,給幼子九分之一。不許流血,不許殺馬。你們必須遵從父親的遺願!」
這三個兄弟迷惑不解。盡管他們在學校里學習成績都不錯,可是他們還是不會用17除以2、用17除以3、用17除以9,又不讓馬流血。於是他們就去請教當地一位公認的智者。這位智者看了遺囑以後說:「我借給你們一匹馬,去按你們父親的遺願分吧!」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。
3寫些經典例題
4外加些數學家的故事
例如
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了。

數學手抄報資料

一元錢哪裡去了

三人住旅店,每人每天的價格是十元,每人付了十元錢,總共給了老闆三十元,後來老闆優惠了五元,讓服務員退給他們,結果服務員貪污了兩元,剩下三元每人退了一元錢,也就是說每人消費了9元錢。三個人總共花了27元,加上服務員貪污的2元總共29元。那一元錢到哪去了?

分蘋果

小咪家裡來了5位同學。小咪的爸爸想用蘋果來招待這6位小朋友,可是家裡只有5個蘋果。怎麼辦呢?只好把蘋果切開了,可是又不能切成碎塊,小咪的爸爸希望每個蘋果最多切成3塊。這就成了又一道題目:給6個孩子平均分配5個蘋果,每個蘋果都不許切成3塊以上。

小咪的爸爸是怎樣做的呢?

小馬虎數雞

春節里,養雞專業戶小馬虎站在院子里,數了一遍雞的總數,決定留下 ,1/2外,把1/4慰問解放軍,1/3送給養老院。他把雞送走後,聽到房內有雞叫,才知道少數了10隻雞。於是把房內房外的雞重數一遍,沒有錯,不多不少,正是留下1/2的數。小馬虎奇怪了。問題出在哪裡呢?你知道小馬虎在院里數的雞是多少只嗎? 『本文由第一範文網www.DiYiFanWen.com整理,版權歸原作者、原出處所有。』

來了多少客人一天,小林正在家裡洗碗,小強看見了問道:「怎麼洗那麼多的碗 ?」「

家裡來了客人了。」「來了多少人?」小林說:「我沒有數,只知道他們每人用一個飯碗,,二人合用一個湯碗,三人合用一個菜碗,四人合用一個大酒碗,一共用了15個碗。」你知道來了多少客人嗎?

閱讀全文

與數學在哪裡小學五年級上冊的手抄報相關的資料

熱點內容
word中化學式的數字怎麼打出來 瀏覽:740
乙酸乙酯化學式怎麼算 瀏覽:1406
沈陽初中的數學是什麼版本的 瀏覽:1353
華為手機家人共享如何查看地理位置 瀏覽:1045
一氧化碳還原氧化鋁化學方程式怎麼配平 瀏覽:886
數學c什麼意思是什麼意思是什麼 瀏覽:1411
中考初中地理如何補 瀏覽:1300
360瀏覽器歷史在哪裡下載迅雷下載 瀏覽:703
數學奧數卡怎麼辦 瀏覽:1388
如何回答地理是什麼 瀏覽:1025
win7如何刪除電腦文件瀏覽歷史 瀏覽:1058
大學物理實驗干什麼用的到 瀏覽:1487
二年級上冊數學框框怎麼填 瀏覽:1701
西安瑞禧生物科技有限公司怎麼樣 瀏覽:974
武大的分析化學怎麼樣 瀏覽:1250
ige電化學發光偏高怎麼辦 瀏覽:1339
學而思初中英語和語文怎麼樣 瀏覽:1651
下列哪個水飛薊素化學結構 瀏覽:1425
化學理學哪些專業好 瀏覽:1488
數學中的棱的意思是什麼 瀏覽:1059